1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768 |
- '''
- Created on 2019年1月15日
- @author: User
- '''
- import tensorflow as tf
- from tensorflow.contrib.crf import crf_log_likelihood
- path = "D://Anaconda3.4//envs//dl_nlp//fool//pos.pb"
- def loss_layer(project_logits,y_target,trans,max_steps):
- with tf.variable_scope("crf_loss1"):
- log_likelihood, trans = crf_log_likelihood(inputs=project_logits, tag_indices=y_target,
- transition_params=trans, sequence_lengths=max_steps)
- return tf.reduce_mean(-log_likelihood)
- def load_graph(path):
- with tf.gfile.GFile(path, mode='rb') as f:
- graph_def = tf.GraphDef()
- graph_def.ParseFromString(f.read())
- for i,n in enumerate(graph_def.node):
- print("Name of the node - %s" % n.name)
- with tf.Graph().as_default() as graph:
- tf.import_graph_def(graph_def, name="prefix")
- return graph
- '''
- with tf.gfile.GFile(path, mode='rb') as f:
- graph_def = tf.GraphDef()
- graph_def.ParseFromString(f.read())
- for i,n in enumerate(graph_def.node):
- print("Name of the node - %s" % n.name)
- with tf.Graph().as_default() as graph:
- tf.import_graph_def(graph_def)
- trans = graph.get_tensor_by_name("prefix/crf_loss/transitions:0")
- logits = graph.get_tensor_by_name("prefix/project/logits:0")
- y_target = tf.placeholder()
- loss = loss_layer(logits, y_target, trans, 100)
- summaryWriter = tf.summary.FileWriter('log/', graph)
- #tf.Graph().get_operations()
-
- '''
- def buildModel():
- graph = load_graph(path)
- with graph.as_default():
- trans = graph.get_tensor_by_name("prefix/crf_loss/transitions:0")
- lengths = graph.get_tensor_by_name("prefix/lengths:0")
- logits = graph.get_tensor_by_name("prefix/project/logits:0")
- print(logits)
- print(trans)
- y_target = tf.placeholder(dtype=tf.int32, shape=[None, None], name='y_target')
- #loss = loss_layer(logits, y_target, trans, lengths)
- summaryWriter = tf.summary.FileWriter('log/', graph)
-
- if __name__=="__main__":
- # import fool
- # a = fool.LEXICAL_ANALYSER
- # a._load_ner_model()
- # _dict = a.ner_model.id_to_tag
- # for _key in _dict.keys():
- # print(_key,_dict[_key])
- # load_graph(path)
- a = [1,2,3,44]
- print(a[-100:])
-
-
|