entityLink.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. '''
  2. Created on 2019年5月21日
  3. @author: User
  4. '''
  5. import re
  6. import os
  7. import time
  8. _time = time.time()
  9. from BiddingKG.dl.common.Utils import *
  10. from BiddingKG.dl.interface.Entitys import *
  11. import json
  12. def edit_distance(source,target):
  13. dp = [["" for i in range(len(source)+1)] for j in range(len(target)+1)]
  14. for i in range(len(dp)):
  15. for j in range(len(dp[i])):
  16. if i==0:
  17. dp[i][j] = j
  18. elif j==0:
  19. dp[i][j] = i
  20. else:
  21. if source[j-1]==target[i-1]:
  22. cost = 0
  23. else:
  24. cost = 2
  25. dp[i][j] = min([dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+cost])
  26. return dp[-1][-1]
  27. def jaccard_score(source,target):
  28. source_set = set([s for s in source])
  29. target_set = set([s for s in target])
  30. if len(source_set)==0 or len(target_set)==0:
  31. return 0
  32. return max(len(source_set&target_set)/len(source_set),len(source_set&target_set)/len(target_set))
  33. def link_entitys(list_entitys,on_value=0.8):
  34. for list_entity in list_entitys:
  35. range_entity = []
  36. for _entity in list_entity:
  37. if _entity.entity_type in ["org","company"]:
  38. range_entity.append(_entity)
  39. range_entity = range_entity[:1000]
  40. for first_i in range(len(range_entity)):
  41. _entity = range_entity[first_i]
  42. for second_i in range(first_i+1,len(range_entity)):
  43. _ent = range_entity[second_i]
  44. # 2021/5/21 update: 两个实体标签互斥(一个是招标人、一个是代理人)且entity_text不相等时,跳过
  45. if _entity.entity_text != _ent.entity_text and _entity.label != _ent.label and _entity.label in [0,1] and _ent.label in [0, 1]:
  46. continue
  47. _score = jaccard_score(_entity.entity_text, _ent.entity_text)
  48. if _entity.entity_text!=_ent.entity_text and _score>=on_value:
  49. _entity.linked_entitys.append(_ent)
  50. _ent.linked_entitys.append(_entity)
  51. #替换公司名称
  52. for _entity in range_entity:
  53. if re.search("公司",_entity.entity_text) is None:
  54. for _ent in _entity.linked_entitys:
  55. if re.search("公司$",_ent.entity_text) is not None:
  56. if len(_ent.entity_text)>len(_entity.entity_text):
  57. _entity.entity_text = _ent.entity_text
  58. # 2021/12/21 替换通过字典识别到的取长度最大的相似实体
  59. for _entity in range_entity:
  60. for _ent in _entity.linked_entitys:
  61. # print("_entity, _ent", _entity.entity_text, _ent.if_dict_match, _ent.entity_text)
  62. if re.search("公司$", _ent.entity_text) is not None \
  63. and _ent.if_dict_match == 1:
  64. if len(_ent.entity_text) > len(_entity.entity_text):
  65. _entity.entity_text = _ent.entity_text
  66. def getEnterprisePath():
  67. filename = "../LEGAL_ENTERPRISE.txt"
  68. real_path = getFileFromSysPath(filename)
  69. if real_path is None:
  70. real_path = filename
  71. return real_path
  72. DICT_ENTERPRISE = {}
  73. DICT_ENTERPRISE_DONE = False
  74. def getDict_enterprise():
  75. global DICT_ENTERPRISE,DICT_ENTERPRISE_DONE
  76. real_path = getEnterprisePath()
  77. with open(real_path,"r",encoding="UTF8") as f:
  78. for _e in f:
  79. if not _e:
  80. continue
  81. _e = _e.strip()
  82. if len(_e)>=4:
  83. key_enter = _e[:4]
  84. if key_enter not in DICT_ENTERPRISE:
  85. DICT_ENTERPRISE[key_enter] = set()
  86. DICT_ENTERPRISE[key_enter].add(_e[4:])
  87. # for _e in ["河南省柘源","建筑工程有限公司"]:
  88. # if not _e:
  89. # continue
  90. # _e = _e.strip()
  91. # if len(_e)>=4:
  92. # key_enter = _e[:4]
  93. # if key_enter not in DICT_ENTERPRISE:
  94. # DICT_ENTERPRISE[key_enter] = set()
  95. # DICT_ENTERPRISE[key_enter].add(_e[4:])
  96. DICT_ENTERPRISE_DONE = True
  97. return DICT_ENTERPRISE
  98. import threading
  99. import time
  100. load_enterprise_thread = threading.Thread(target=getDict_enterprise)
  101. load_enterprise_thread.start()
  102. MAX_ENTERPRISE_LEN = 30
  103. def match_enterprise_max_first(sentence):
  104. while True:
  105. if not DICT_ENTERPRISE_DONE:
  106. time.sleep(1)
  107. else:
  108. break
  109. list_match = []
  110. begin_index = 0
  111. if len(sentence)>4:
  112. while True:
  113. if begin_index+4<len(sentence):
  114. key_enter = sentence[begin_index:begin_index+4]
  115. if key_enter in DICT_ENTERPRISE:
  116. for _i in range(MAX_ENTERPRISE_LEN-4+1):
  117. enter_name = sentence[begin_index+4:begin_index+MAX_ENTERPRISE_LEN-_i]
  118. if enter_name in DICT_ENTERPRISE[key_enter]:
  119. match_item = {"entity_text":"%s%s"%(key_enter,enter_name),"begin_index":begin_index,"end_index":begin_index+len(key_enter)+len(enter_name)}
  120. list_match.append(match_item)
  121. begin_index += (len(key_enter)+len(enter_name))-1
  122. break
  123. begin_index += 1
  124. else:
  125. break
  126. return list_match
  127. def calibrateEnterprise(list_articles,list_sentences,list_entitys):
  128. for _article,list_sentence,list_entity in zip(list_articles,list_sentences,list_entitys):
  129. list_calibrate = []
  130. match_add = False
  131. match_replace = False
  132. range_entity = []
  133. for p_entity in list_entity:
  134. if p_entity.entity_type in ("org","company","location"):
  135. range_entity.append(p_entity)
  136. if len(range_entity)>1000:
  137. break
  138. for p_sentence in list_sentence:
  139. sentence = p_sentence.sentence_text
  140. list_match = match_enterprise_max_first(sentence)
  141. # print("list_match", list_match)
  142. doc_id = p_sentence.doc_id
  143. sentence_index = p_sentence.sentence_index
  144. tokens = p_sentence.tokens
  145. list_match.sort(key=lambda x:x["begin_index"])
  146. for _match_index in range(len(list_match)):
  147. _match = list_match[_match_index]
  148. find_flag = False
  149. for p_entity in range_entity:
  150. if p_entity.sentence_index!=p_sentence.sentence_index:
  151. continue
  152. if p_entity.entity_type=="location" and p_entity.entity_text==_match["entity_text"]:
  153. find_flag = True
  154. p_entity.entity_type = "company"
  155. p_entity.if_dict_match = 1
  156. if p_entity.entity_type not in ["location","org","company"]:
  157. continue
  158. if _match["entity_text"] == p_entity.entity_text:
  159. p_entity.if_dict_match = 1
  160. #有重叠
  161. #match部分被包含则不处理
  162. if _match["begin_index"]>=p_entity.wordOffset_begin and _match["end_index"]<=p_entity.wordOffset_end:
  163. find_flag = True
  164. #判断是否是多个公司
  165. for _match_j in range(_match_index,len(list_match)):
  166. if not list_match[_match_j]["end_index"]<=p_entity.wordOffset_end:
  167. _match_j -= 1
  168. break
  169. if _match_j>_match_index:
  170. match_replace = True
  171. match_add = True
  172. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  173. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  174. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  175. p_entity.entity_text = _match["entity_text"]
  176. p_entity.wordOffset_begin = _match["begin_index"]
  177. p_entity.wordOffset_end = _match["end_index"]
  178. p_entity.begin_index = begin_index
  179. p_entity.end_index = end_index
  180. # 该公司实体是字典识别的
  181. p_entity.if_dict_match = 1
  182. for _match_h in range(_match_index+1,_match_j+1):
  183. entity_text = list_match[_match_h]["entity_text"]
  184. entity_type = "company"
  185. begin_index = changeIndexFromWordToWords(tokens,list_match[_match_h]["begin_index"])
  186. end_index = changeIndexFromWordToWords(tokens,list_match[_match_h]["end_index"])
  187. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  188. add_entity = Entity(p_sentence.doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,list_match[_match_h]["begin_index"],list_match[_match_h]["end_index"])
  189. add_entity.if_dict_match = 1
  190. list_entity.append(add_entity)
  191. range_entity.append(add_entity)
  192. list_calibrate.append({"type":"add","from":"","to":entity_text})
  193. _match_index = _match_j
  194. break
  195. continue
  196. elif _match["begin_index"]<=p_entity.wordOffset_begin and _match["end_index"]>p_entity.wordOffset_begin:
  197. find_flag = True
  198. if _match["begin_index"]<p_entity.wordOffset_begin and _match["end_index"]<=p_entity.wordOffset_end:
  199. if p_entity.entity_type in ("org","company"):
  200. _diff_text = sentence[p_entity.wordOffset_end:_match["end_index"]]
  201. if re.search("分",_diff_text) is not None:
  202. pass
  203. else:
  204. match_replace = True
  205. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  206. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  207. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  208. p_entity.entity_text = _match["entity_text"]
  209. p_entity.wordOffset_begin = _match["begin_index"]
  210. p_entity.wordOffset_end = _match["end_index"]
  211. p_entity.begin_index = begin_index
  212. p_entity.end_index = end_index
  213. p_entity.if_dict_match = 1
  214. elif _match["end_index"]>=p_entity.wordOffset_end:
  215. match_replace = True
  216. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  217. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  218. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  219. p_entity.entity_text = _match["entity_text"]
  220. p_entity.wordOffset_begin = _match["begin_index"]
  221. p_entity.wordOffset_end = _match["end_index"]
  222. p_entity.begin_index = begin_index
  223. p_entity.end_index = end_index
  224. p_entity.entity_type = "company"
  225. p_entity.if_dict_match = 1
  226. elif _match["begin_index"]<p_entity.wordOffset_end and _match["end_index"]>p_entity.wordOffset_end:
  227. find_flag = True
  228. if p_entity.entity_type in ("org","company"):
  229. match_replace = True
  230. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  231. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  232. list_calibrate.append({"type":"update","from":p_entity.entity_text,"to":_match["entity_text"]})
  233. p_entity.entity_text = _match["entity_text"]
  234. p_entity.wordOffset_begin = _match["begin_index"]
  235. p_entity.wordOffset_end = _match["end_index"]
  236. p_entity.begin_index = begin_index
  237. p_entity.end_index = end_index
  238. p_entity.if_dict_match = 1
  239. if not find_flag:
  240. match_add = True
  241. entity_text = _match["entity_text"]
  242. entity_type = "company"
  243. begin_index = changeIndexFromWordToWords(tokens,_match["begin_index"])
  244. end_index = changeIndexFromWordToWords(tokens,_match["end_index"])
  245. entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index)
  246. add_entity = Entity(p_sentence.doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,_match["begin_index"],_match["end_index"])
  247. list_entity.append(add_entity)
  248. range_entity.append(add_entity)
  249. list_calibrate.append({"type":"add","from":"","to":entity_text})
  250. #去重
  251. set_calibrate = set()
  252. list_match_enterprise = []
  253. for _calibrate in list_calibrate:
  254. _from = _calibrate.get("from","")
  255. _to = _calibrate.get("to","")
  256. _key = _from+_to
  257. if _key not in set_calibrate:
  258. list_match_enterprise.append(_calibrate)
  259. set_calibrate.add(_key)
  260. match_enterprise_type = 0
  261. if match_add:
  262. match_enterprise_type += 1
  263. if match_replace:
  264. match_enterprise_type += 2
  265. _article.match_enterprise = list_match_enterprise
  266. _article.match_enterprise_type = match_enterprise_type
  267. def isLegalEnterprise(name):
  268. is_legal = True
  269. if re.search("^[省市区县]",name) is not None or re.search("^.{,3}(分(公司|行|支)|街道|中心|办事处|经营部)$",name) or re.search("标段|标包|名称",name) is not None:
  270. is_legal = False
  271. return is_legal
  272. def fix_LEGAL_ENTERPRISE():
  273. unlegal_enterprise = []
  274. _path = getEnterprisePath()
  275. _sum = 0
  276. set_enter = set()
  277. paths = [_path,"enterprise_name.txt"]
  278. for _p in paths:
  279. with open(_p,"r",encoding="utf8") as f:
  280. while True:
  281. line = f.readline()
  282. if not line:
  283. break
  284. line = line.strip()
  285. if isLegalEnterprise(line):
  286. set_enter.add(line)
  287. with open("enter.txt","w",encoding="utf8") as fwrite:
  288. for line in list(set_enter):
  289. fwrite.write(line.replace("(","(").replace(")",")"))
  290. fwrite.write("\n")
  291. # if re.search("标段|地址|标包|名称",line) is not None:#\(|\)||
  292. # _count += 1
  293. # print("=",line)
  294. # print("%d/%d"%(_count,_sum))
  295. if __name__=="__main__":
  296. # edit_distance("GUMBO","GAMBOL")
  297. # print(jaccard_score("周口经济开发区陈营运粮河两岸拆迁工地土工布覆盖项目竞争性谈判公告","周口经济开发区陈营运粮河两岸拆迁工地土工布覆盖项目-成交公告"))
  298. #
  299. # sentences = "广州比地数据科技有限公司比地数据科技有限公司1111111123沈阳南光工贸有限公司"
  300. # print(match_enterprise_max_first(sentences))
  301. #
  302. # print("takes %d s"%(time.time()-_time))
  303. fix_LEGAL_ENTERPRISE()