modelFactory.py 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642
  1. '''
  2. Created on 2019年5月16日
  3. @author: User
  4. '''
  5. import os
  6. import sys
  7. sys.path.append(os.path.abspath("../.."))
  8. from keras import models
  9. from keras import layers
  10. # from keras_contrib.layers import CRF
  11. from keras.preprocessing.sequence import pad_sequences
  12. from keras import optimizers,losses,metrics
  13. from BiddingKG.dl.common.Utils import *
  14. import tensorflow as tf
  15. import json
  16. class Model_role_classify():
  17. def __init__(self,lazyLoad=getLazyLoad()):
  18. #self.model_role_file = os.path.abspath("../role/models/model_role.model.hdf5")
  19. self.model_role_file = os.path.dirname(__file__)+"/../role/log/new_biLSTM-ep012-loss0.028-val_loss0.040-f10.954.h5"
  20. self.model_role = None
  21. self.graph = tf.get_default_graph()
  22. if not lazyLoad:
  23. self.getModel()
  24. def getModel(self):
  25. if self.model_role is None:
  26. self.model_role = models.load_model(self.model_role_file,custom_objects={'precision':precision,'recall':recall,'f1_score':f1_score})
  27. return self.model_role
  28. def encode(self,tokens,begin_index,end_index,**kwargs):
  29. return embedding(spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=10),shape=(2,10,128))
  30. def predict(self,x):
  31. x = np.transpose(np.array(x),(1,0,2,3))
  32. with self.graph.as_default():
  33. return self.getModel().predict([x[0],x[1]])
  34. class Model_role_classify_word():
  35. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  36. if USE_PAI_EAS:
  37. lazyLoad = True
  38. #self.model_role_file = os.path.abspath("../role/log/ep071-loss0.107-val_loss0.122-f10.956.h5")
  39. # self.model_role_file = os.path.dirname(__file__)+"/../role/models/ep038-loss0.140-val_loss0.149-f10.947.h5"
  40. #self.model_role_file = os.path.abspath("../role/log/textcnn_ep017-loss0.088-val_loss0.125-f10.955.h5")
  41. self.model_role = None
  42. self.sess_role = tf.Session(graph=tf.Graph(),config=config)
  43. if not lazyLoad:
  44. self.getModel()
  45. def getModel(self):
  46. if self.model_role is None:
  47. with self.sess_role.as_default() as sess:
  48. with self.sess_role.graph.as_default():
  49. meta_graph_def = tf.saved_model.loader.load(sess=self.sess_role, tags=["serve"], export_dir=os.path.dirname(__file__)+"/role_savedmodel")
  50. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  51. signature_def = meta_graph_def.signature_def
  52. input0 = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  53. input1 = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  54. # input2 = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].inputs["input2"].name)
  55. output = self.sess_role.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  56. self.model_role = [[input0,input1],output] #,input2
  57. return self.model_role
  58. '''
  59. def load_weights(self):
  60. model = self.getModel()
  61. model.load_weights(self.model_role_file)
  62. '''
  63. def encode(self,tokens,begin_index,end_index,entity_text,**kwargs):
  64. _span = spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=20,center_include=False,word_flag=True,text=entity_text) #size=12 center_include=True
  65. # print(_span)
  66. _encode_span = encodeInput(_span, word_len=20, word_flag=True,userFool=False) # word_len=20
  67. # print(_encode_span)
  68. return _encode_span
  69. def fix_digit_eng(self, text):
  70. '''
  71. 处理数字及英文编号等
  72. :param text:
  73. :return:
  74. '''
  75. text = re.sub('第[一二三1-3]([条项章]|中学|医院|附属)|第三方(服务机构)?|(中标|成交|中选)(候选|结果)?(单位|人)?公[示告]', 'xxx', text)
  76. text = re.sub('第01(中标|成交)?候选人', '第一中标候选人', text)
  77. text = re.sub('(标[段的包项]?|品目)[一二三1-3]', '标段', text)
  78. text = re.sub('第?[一二三1-3](标段?|[分子标]?包)', 'd标段', text)
  79. text = re.sub('[a-zA-Z][a-zA-Z0-9=&_—-]{3,}', 'abc', text)
  80. text = re.sub('[【(\[][0-9]{2,}[\])】]|\d+([::.-]\d+)+', 'd', text)
  81. text = re.sub('[一二三四五六七八九十]{2,}|[四五六七八九十]+', 'd', text)
  82. text = re.sub('\d{2,}(\.\d+)?|\d\.\d+|[04-9]', 'd', text)
  83. text = re.sub('序号:\d+', '序号:d', text)
  84. text = re.sub('第?[一二三四五六七八九十\d]+次|[一二三四五六七八九十\d]+、|([^\w]|^)序:?\d+', ' d', text) # ,序:1,单位名称:
  85. text = re.sub('(中标|成交|中选|入围)(工程|项目)', '工程', text) # 修复易错分为中标人
  86. text = re.sub('约定|(盖章|签名):?', ' ', text) # 修复 233233636 错分为中标人 国有产权网上竞价有关约定 辽阳市公共资源交易中心 ,标 修复 273505905 乡镇签名:盖章: 次村产权交易服务中心 预测为中标
  87. text = re.sub('中介机构', '投标机构', text) # 251058999 错分为中标人 序号:2,中介机构名称:
  88. text = re.sub('(采购|招标)人名称、地址和联系方式:|采购方,指', '采购人:', text) # 275065998 修复 224703143 采购的中标人;采购方,指 预测为中标
  89. if re.search('(最终)?排名:', text) and re.search('(最终)?排名:第?[123一二三]', text)==None:
  90. text = re.sub('(最终)?排名:', ' ', text)
  91. text = re.sub('交易单位', '发布单位', text)
  92. text = re.sub('[,:]各种数据:', ':', text) # 20240620优化 478331984 山东省交通运输厅站源提取不到 各种数据:中标单位,各种数据:济南金曰公路工程有限公司,
  93. text = re.sub('电子签章', '', text) # 20240924 修复 529923459 电子签名:投标人名称(电子签章:西君兰信息科技有限公司,2024年9月7日 预测为中标
  94. text = re.sub('采购方式', 'xxxx', text) # 修复 499096797 招标人预测错误
  95. text = re.sub('中标人\d名称', '中标人名称', text) # 修复 499096797 中标人预测错误
  96. text = re.sub('\|候选人', '、候选人', text) # 修复 626660259 排名:1|候选人:库尔勒海南广电工程有限责任公司
  97. return text.replace('(', '(').replace(')', ')').replace('單', '单').replace('稱','承').replace('標', '标').replace('採購', '采购').replace('機構', '机构')
  98. def encode_word(self, sentence_text, begin_index, end_index, size=20, **kwargs):
  99. '''
  100. 上下文数字化,使用字偏移
  101. :param sentence_text: 句子文本
  102. :param begin_index: 实体字开始位置
  103. :param end_index: 实体字结束位置
  104. :param size: 字偏移量
  105. :param kwargs:
  106. :return:
  107. '''
  108. _span = get_context(sentence_text, begin_index, end_index,size=size, center_include=False) # size=12 center_include=True
  109. # print(_span)
  110. _span = [self.fix_digit_eng(text) for text in _span]
  111. _encode_span = encodeInput(_span, word_len=30, word_flag=True, userFool=False) # word_len=20
  112. # print(_encode_span)
  113. return _encode_span
  114. def predict(self,x):
  115. x = np.transpose(np.array(x),(1,0,2))
  116. model_role = self.getModel()
  117. assert len(x)==len(model_role[0])
  118. feed_dict = {}
  119. for _x,_t in zip(x,model_role[0]):
  120. feed_dict[_t] = _x
  121. list_result = limitRun(self.sess_role,[model_role[1]],feed_dict)[0]
  122. return list_result
  123. #return self.sess_role.run(model_role[1],feed_dict=feed_dict)
  124. class Model_money_classify():
  125. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  126. if USE_PAI_EAS:
  127. lazyLoad = True
  128. self.model_money_file = os.path.dirname(__file__)+"/../money/models/model_money_word.h5"
  129. self.model_money = None
  130. self.sess_money = tf.Session(graph=tf.Graph(),config=config)
  131. if not lazyLoad:
  132. self.getModel()
  133. def getModel(self):
  134. if self.model_money is None:
  135. with self.sess_money.as_default() as sess:
  136. with sess.graph.as_default():
  137. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/money_savedmodel")
  138. # meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/money_savedmodel_bilstmonly")
  139. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  140. signature_def = meta_graph_def.signature_def
  141. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  142. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  143. input2 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input2"].name)
  144. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  145. self.model_money = [[input0,input1,input2],output]
  146. return self.model_money
  147. '''
  148. if self.model_money is None:
  149. self.model_money = models.load_model(self.model_money_file,custom_objects={'precision':precision,'recall':recall,'f1_score':f1_score})
  150. return self.model_money
  151. '''
  152. '''
  153. def load_weights(self):
  154. model = self.getModel()
  155. model.load_weights(self.model_money_file)
  156. '''
  157. def encode(self,tokens,begin_index,end_index,**kwargs):
  158. _span = spanWindow(tokens=tokens, begin_index=begin_index, end_index=end_index, size=10, center_include=True, word_flag=True)
  159. # print(_span)
  160. return encodeInput(_span, word_len=30, word_flag=True,userFool=False)
  161. return embedding_word(_span,shape=(3,100,60))
  162. def predict(self,x):
  163. # print("shape",np.shape(x))
  164. x = np.transpose(np.array(x),(1,0,2))
  165. model_money = self.getModel()
  166. assert len(x)==len(model_money[0])
  167. feed_dict = {}
  168. for _x,_t in zip(x,model_money[0]):
  169. feed_dict[_t] = _x
  170. list_result = limitRun(self.sess_money,[model_money[1]],feed_dict)[0]
  171. #return self.sess_money.run(model_money[1],feed_dict=feed_dict)
  172. return list_result
  173. '''
  174. with self.graph.as_default():
  175. return self.getModel().predict([x[0],x[1],x[2]])
  176. '''
  177. from itertools import groupby
  178. from BiddingKG.dl.relation_extraction.model import get_words_matrix
  179. class Model_relation_extraction():
  180. def __init__(self,lazyLoad=getLazyLoad()):
  181. if USE_PAI_EAS:
  182. lazyLoad = True
  183. self.subject_model_file = os.path.dirname(__file__)+"/../relation_extraction/models2/subject_model"
  184. self.object_model_file = os.path.dirname(__file__)+"/../relation_extraction/models2/object_model"
  185. self.model_subject = None
  186. self.model_object = None
  187. self.sess_subject = tf.Session(graph=tf.Graph())
  188. self.sess_object = tf.Session(graph=tf.Graph())
  189. if not lazyLoad:
  190. self.getModel1()
  191. self.getModel2()
  192. self.entity_type_dict = {
  193. 'org': '<company/org>',
  194. 'company': '<company/org>',
  195. 'location': '<location>',
  196. 'phone': '<phone>',
  197. 'person': '<contact_person>'
  198. }
  199. self.id2predicate = {
  200. 0: "rel_person", # 公司——联系人
  201. 1: "rel_phone", # 联系人——电话
  202. 2: "rel_address" # 公司——地址
  203. }
  204. self.words_size = 128
  205. # subject_model
  206. def getModel1(self):
  207. if self.model_subject is None:
  208. with self.sess_subject.as_default() as sess:
  209. with sess.graph.as_default():
  210. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=self.subject_model_file)
  211. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  212. signature_def = meta_graph_def.signature_def
  213. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  214. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  215. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  216. self.model_subject = [[input0,input1],output]
  217. return self.model_subject
  218. # object_model
  219. def getModel2(self):
  220. if self.model_object is None:
  221. with self.sess_object.as_default() as sess:
  222. with sess.graph.as_default():
  223. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=self.object_model_file)
  224. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  225. signature_def = meta_graph_def.signature_def
  226. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  227. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  228. input2 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input2"].name)
  229. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  230. self.model_object = [[input0,input1,input2],output]
  231. return self.model_object
  232. def encode(self,entity_list,list_sentence):
  233. list_sentence = sorted(list_sentence, key=lambda x: x.sentence_index)
  234. entity_list = sorted(entity_list, key=lambda x: (x.sentence_index, x.begin_index))
  235. pre_data = []
  236. text_data = []
  237. last_sentence_index = -1
  238. for key, group in groupby(entity_list, key=lambda x: x.sentence_index):
  239. if key - last_sentence_index > 1:
  240. for i in range(last_sentence_index + 1, key):
  241. pre_data.extend(list_sentence[i].tokens)
  242. text_data.extend([0] * len(list_sentence[i].tokens))
  243. group = list(group)
  244. for i in range(len(group)):
  245. ent = group[i]
  246. _tokens = list_sentence[key].tokens
  247. if i == len(group) - 1:
  248. if i == 0:
  249. pre_data.extend(_tokens[:ent.begin_index])
  250. text_data.extend([0] * len(_tokens[:ent.begin_index]))
  251. pre_data.append(self.entity_type_dict[ent.entity_type])
  252. text_data.append(ent)
  253. pre_data.extend(_tokens[ent.end_index + 1:])
  254. text_data.extend([0] * len(_tokens[ent.end_index + 1:]))
  255. break
  256. else:
  257. pre_data.append(self.entity_type_dict[ent.entity_type])
  258. text_data.append(ent)
  259. pre_data.extend(_tokens[ent.end_index + 1:])
  260. text_data.extend([0] * len(_tokens[ent.end_index + 1:]))
  261. break
  262. if i == 0:
  263. pre_data.extend(_tokens[:ent.begin_index])
  264. text_data.extend([0] * len(_tokens[:ent.begin_index]))
  265. pre_data.append(self.entity_type_dict[ent.entity_type])
  266. text_data.append(ent)
  267. pre_data.extend(_tokens[ent.end_index + 1:group[i + 1].begin_index])
  268. text_data.extend([0] * len(_tokens[ent.end_index + 1:group[i + 1].begin_index]))
  269. else:
  270. pre_data.append(self.entity_type_dict[ent.entity_type])
  271. text_data.append(ent)
  272. pre_data.extend(_tokens[ent.end_index + 1:group[i + 1].begin_index])
  273. text_data.extend([0] * len(_tokens[ent.end_index + 1:group[i + 1].begin_index]))
  274. last_sentence_index = key
  275. return text_data, pre_data
  276. def check_data(self, words):
  277. # 检查数据是否包含可预测的subject和object
  278. # 没有需要预测的链接属性,直接return
  279. company_relation = 0
  280. person_relation = 0
  281. if '<company/org>' in words:
  282. company_relation += 1
  283. if '<contact_person>' in words:
  284. person_relation += 1
  285. if company_relation:
  286. company_relation += 1
  287. # 暂时不考虑地址location实体
  288. # if '<location>' in words and company_relation:
  289. # company_relation += 1
  290. if '<phone>' in words and company_relation:
  291. person_relation += 1
  292. if company_relation < 2 and person_relation < 2:
  293. return False
  294. return True
  295. def predict_by_api(self,text_in,words,sentence_vetor):
  296. status_code = 0
  297. # save([words,sentence_vetor.tolist()],"C:/Users/Administrator/Desktop/test_data.pk")
  298. try:
  299. requests_result = requests.post(API_URL + "/predict_relation", json={"sentence_vetor": sentence_vetor.tolist(), "words": words},
  300. verify=True)
  301. status_code = requests_result.status_code
  302. triple_index_list = json.loads(requests_result.text)['triple_list']
  303. # print("triple_list:",json.loads(requests_result.text)['triple_list'])
  304. print("cost_time:",json.loads(requests_result.text)['cost_time'])
  305. triple_list = [(text_in[triple[0]], triple[1], text_in[triple[2]]) for triple in triple_index_list]
  306. return triple_list,status_code
  307. except Exception as e:
  308. print(e)
  309. return [],status_code
  310. def predict(self,text_in, words, rate=0.5):
  311. _t2 = np.zeros((len(words), self.words_size))
  312. for i in range(len(words)):
  313. _t2[i] = np.array(get_words_matrix(words[i]))
  314. # a = time.time()
  315. # triple_list, status_code = self.predict_by_api(text_in, words,_t2)
  316. # print('time',time.time()-a)
  317. # print("status_code",status_code)
  318. # if status_code==200:
  319. # return triple_list
  320. # else:
  321. # 使用模型预测
  322. triple_list = []
  323. # print("tokens:",words)
  324. # _t2 = [self.words2id.get(c, 1) for c in words]
  325. _t2 = np.array([_t2])
  326. _t3 = [1 for _ in words]
  327. _t3 = np.array([_t3])
  328. # _k1 = self.model_subject.predict([_t2, _t3])
  329. _k1 = limitRun(self.sess_subject,[self.model_subject[1]],feed_dict={self.model_subject[0][0]:_t2,
  330. self.model_subject[0][1]:_t3})[0]
  331. _k1 = _k1[0, :, 0]
  332. _k1 = np.where(_k1 > rate)[0]
  333. # print('k1',_k1)
  334. _subjects = []
  335. for i in _k1:
  336. _subject = text_in[i]
  337. _subjects.append((_subject, i, i))
  338. if _subjects:
  339. _t2 = np.repeat(_t2, len(_subjects), 0)
  340. _t3 = np.repeat(_t3, len(_subjects), 0)
  341. _k1, _ = np.array([_s[1:] for _s in _subjects]).T.reshape((2, -1, 1))
  342. # _o1 = self.model_object.predict([_t2, _t3, _k1])
  343. _o1 = limitRun(self.sess_object, [self.model_object[1]], feed_dict={self.model_object[0][0]: _t2,
  344. self.model_object[0][1]: _t3,
  345. self.model_object[0][2]: _k1})[0]
  346. for i, _subject in enumerate(_subjects):
  347. _oo1 = np.where(_o1[i] > 0.5)
  348. # print('_oo1', _oo1)
  349. for _ooo1, _c1 in zip(*_oo1):
  350. _object = text_in[_ooo1]
  351. _predicate = self.id2predicate[_c1]
  352. triple_list.append((_subject[0], _predicate, _object))
  353. # print([(t[0].entity_text,t[1],t[2].entity_text) for t in triple_list])
  354. return triple_list
  355. else:
  356. return []
  357. class Model_person_classify():
  358. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  359. if USE_PAI_EAS:
  360. lazyLoad = True
  361. self.model_person_file = os.path.dirname(__file__)+"/../person/models/model_person.model.hdf5"
  362. self.model_person = None
  363. self.sess_person = tf.Session(graph=tf.Graph(),config=config)
  364. if not lazyLoad:
  365. self.getModel()
  366. def getModel(self):
  367. if self.model_person is None:
  368. with self.sess_person.as_default() as sess:
  369. with sess.graph.as_default():
  370. # meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/person_savedmodel_new")
  371. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir=os.path.dirname(__file__)+"/person_savedmodel_new_znj")
  372. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  373. signature_def = meta_graph_def.signature_def
  374. input0 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input0"].name)
  375. input1 = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["input1"].name)
  376. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  377. self.model_person = [[input0,input1],output]
  378. return self.model_person
  379. '''
  380. if self.model_person is None:
  381. self.model_person = models.load_model(self.model_person_file,custom_objects={'precision':precision,'recall':recall,'f1_score':f1_score})
  382. return self.model_person
  383. '''
  384. '''
  385. def load_weights(self):
  386. model = self.getModel()
  387. model.load_weights(self.model_person_file)
  388. '''
  389. def encode(self,tokens,begin_index,end_index,**kwargs):
  390. # return embedding(spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=10),shape=(2,10,128))
  391. return embedding(spanWindow(tokens=tokens,begin_index=begin_index,end_index=end_index,size=20),shape=(2,20,128))
  392. def predict(self,x):
  393. x = np.transpose(np.array(x),(1,0,2,3))
  394. model_person = self.getModel()
  395. assert len(x)==len(model_person[0])
  396. feed_dict = {}
  397. for _x,_t in zip(x,model_person[0]):
  398. feed_dict[_t] = _x
  399. list_result = limitRun(self.sess_person,[model_person[1]],feed_dict)[0]
  400. return list_result
  401. #return self.sess_person.run(model_person[1],feed_dict=feed_dict)
  402. '''
  403. with self.graph.as_default():
  404. return self.getModel().predict([x[0],x[1]])
  405. '''
  406. class Model_form_line():
  407. def __init__(self,lazyLoad=getLazyLoad()):
  408. self.model_file = os.path.dirname(__file__)+"/../form/model/model_form.model - 副本.hdf5"
  409. self.model_form = None
  410. self.graph = tf.get_default_graph()
  411. if not lazyLoad:
  412. self.getModel()
  413. def getModel(self):
  414. if self.model_form is None:
  415. self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  416. return self.model_form
  417. def encode(self,data,shape=(100,60),expand=False,**kwargs):
  418. embedding = np.zeros(shape)
  419. word_model = getModel_word()
  420. for i in range(len(data)):
  421. if i>=shape[0]:
  422. break
  423. if data[i] in word_model.vocab:
  424. embedding[i] = word_model[data[i]]
  425. if expand:
  426. embedding = np.expand_dims(embedding,0)
  427. return embedding
  428. def predict(self,x):
  429. with self.graph.as_default():
  430. return self.getModel().predict(x)
  431. class Model_form_item():
  432. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  433. self.model_file = os.path.dirname(__file__)+"/../form/log/ep039-loss0.038-val_loss0.064-f10.9783.h5"
  434. self.model_form = None
  435. self.sess_form = tf.Session(graph=tf.Graph(),config=config)
  436. if not lazyLoad:
  437. self.getModel()
  438. def getModel(self):
  439. if self.model_form is None:
  440. with self.sess_form.as_default() as sess:
  441. with sess.graph.as_default():
  442. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir="%s/form_savedmodel"%(os.path.dirname(__file__)))
  443. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  444. signature_def = meta_graph_def.signature_def
  445. inputs = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["inputs"].name)
  446. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  447. self.model_form = [[inputs],output]
  448. return self.model_form
  449. '''
  450. if self.model_form is None:
  451. with self.graph.as_defalt():
  452. self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  453. return self.model_form
  454. '''
  455. def encode(self,data,**kwargs):
  456. return encodeInput([data], word_len=50, word_flag=True,userFool=False)[0]
  457. return encodeInput_form(data)
  458. def predict(self,x):
  459. if USE_API:
  460. requests_result = requests.post(API_URL+"/predict_form_item",json={"inputs":x.tolist()}, verify=True)
  461. list_result = json.loads(requests_result.text)['result']
  462. else:
  463. model_form = self.getModel()
  464. list_result = limitRun(self.sess_form,[model_form[1]],feed_dict={model_form[0][0]:x})[0]
  465. return list_result
  466. # return self.sess_form.run(model_form[1],feed_dict={model_form[0][0]:x})
  467. '''
  468. with self.graph.as_default():
  469. return self.getModel().predict(x)
  470. '''
  471. class Model_form_context():
  472. def __init__(self,lazyLoad=getLazyLoad(),config=None):
  473. self.model_form = None
  474. self.sess_form = tf.Session(graph=tf.Graph(),config=config)
  475. if not lazyLoad:
  476. self.getModel()
  477. def getModel(self):
  478. if self.model_form is None:
  479. with self.sess_form.as_default() as sess:
  480. with sess.graph.as_default():
  481. meta_graph_def = tf.saved_model.loader.load(sess,tags=["serve"],export_dir="%s/form_context_savedmodel"%(os.path.dirname(__file__)))
  482. signature_key = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
  483. signature_def = meta_graph_def.signature_def
  484. inputs = sess.graph.get_tensor_by_name(signature_def[signature_key].inputs["inputs"].name)
  485. output = sess.graph.get_tensor_by_name(signature_def[signature_key].outputs["outputs"].name)
  486. self.model_form = [[inputs],output]
  487. return self.model_form
  488. '''
  489. if self.model_form is None:
  490. with self.graph.as_defalt():
  491. self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  492. return self.model_form
  493. '''
  494. def encode_table(self,inner_table,size=30):
  495. def encode_item(_table,i,j):
  496. _x = [_table[j-1][i-1],_table[j-1][i],_table[j-1][i+1],
  497. _table[j][i-1],_table[j][i],_table[j][i+1],
  498. _table[j+1][i-1],_table[j+1][i],_table[j+1][i+1]]
  499. e_x = [encodeInput_form(_temp[0],MAX_LEN=30) for _temp in _x]
  500. _label = _table[j][i][1]
  501. # print(_x)
  502. # print(_x[4],_label)
  503. return e_x,_label,_x
  504. def copytable(inner_table):
  505. table = []
  506. for line in inner_table:
  507. list_line = []
  508. for item in line:
  509. list_line.append([item[0][:size],item[1]])
  510. table.append(list_line)
  511. return table
  512. table = copytable(inner_table)
  513. padding = ["#"*30,0]
  514. width = len(table[0])
  515. height = len(table)
  516. table.insert(0,[padding for i in range(width)])
  517. table.append([padding for i in range(width)])
  518. for item in table:
  519. item.insert(0,padding.copy())
  520. item.append(padding.copy())
  521. data_x = []
  522. data_y = []
  523. data_text = []
  524. data_position = []
  525. for _i in range(1,width+1):
  526. for _j in range(1,height+1):
  527. _x,_y,_text = encode_item(table,_i,_j)
  528. data_x.append(_x)
  529. _label = [0,0]
  530. _label[_y] = 1
  531. data_y.append(_label)
  532. data_text.append(_text)
  533. data_position.append([_i-1,_j-1])
  534. # input = table[_j][_i][0]
  535. # item_y = [0,0]
  536. # item_y[table[_j][_i][1]] = 1
  537. # data_x.append(encodeInput([input], word_len=50, word_flag=True,userFool=False)[0])
  538. # data_y.append(item_y)
  539. return data_x,data_y,data_text,data_position
  540. def encode(self,inner_table,**kwargs):
  541. data_x,_,_,data_position = self.encode_table(inner_table)
  542. return data_x,data_position
  543. def predict(self,x):
  544. model_form = self.getModel()
  545. list_result = limitRun(self.sess_form,[model_form[1]],feed_dict={model_form[0][0]:x})[0]
  546. return list_result
  547. # class Model_form_item():
  548. # def __init__(self,lazyLoad=False):
  549. # self.model_file = os.path.dirname(__file__)+"/ep039-loss0.038-val_loss0.064-f10.9783.h5"
  550. # self.model_form = None
  551. #
  552. # if not lazyLoad:
  553. # self.getModel()
  554. # self.graph = tf.get_default_graph()
  555. #
  556. # def getModel(self):
  557. # if self.model_form is None:
  558. # self.model_form = models.load_model(self.model_file,custom_objects={"precision":precision,"recall":recall,"f1_score":f1_score})
  559. # return self.model_form
  560. #
  561. # def encode(self,data,**kwargs):
  562. #
  563. # return encodeInput_form(data)
  564. #
  565. # def predict(self,x):
  566. # with self.graph.as_default():
  567. # return self.getModel().predict(x)