12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- '''
- Created on 2019年4月11日
- @author: User
- '''
- from keras import layers,models,losses,optimizers
- from BiddingKG.dl.common.Utils import *
- def getTextCNNModel(vocab,embedding_weights,input_shape=(3,50,100),classes=3):
- input_left = layers.Input(shape=(input_shape[1],))
- input_center = layers.Input(shape=(input_shape[1],))
- input_right = layers.Input(shape=(input_shape[1],))
-
- list_kernel = [3,6]
- out_left = []
- out_center = []
- out_right = []
-
- embedding = layers.Embedding(len(vocab),input_shape[2],weights=[embedding_weights] if embedding_weights is not None else None,trainable=True,name="char_embeding")
-
- for kernel in list_kernel:
- out_left.append(layers.Conv1D(10, kernel, activation="relu",padding='same')(embedding(input_left)))
- concat_left = layers.merge(out_left,mode="concat")
-
- for kernel in list_kernel:
- out_center.append(layers.Conv1D(4,kernel,activation="relu",padding="same")(embedding(input_center)))
- concat_center = layers.merge(out_center,mode="concat")
-
- for kernel in list_kernel:
- out_right.append(layers.Conv1D(10,kernel,activation="relu",padding="same")(embedding(input_right)))
- concat_right = layers.merge(out_right,mode="concat")
-
- matrix_left = layers.Dense(12,activation="relu")(concat_left)
- matrix_center = layers.Dense(12,activation="relu")(concat_center)
- matrix_right = layers.Dense(12,activation="relu")(concat_right)
- #layers.average(inputs)
- concat_matrix = layers.merge([matrix_left,matrix_center,matrix_right],mode="ave")
-
- flattern = layers.Flatten()(concat_matrix)
-
- out = layers.Dense(classes,activation="softmax")(flattern)
-
- model = models.Model([input_left,input_center,input_right],out)
-
- model.compile(optimizer=optimizers.Adam(lr=0.001), loss=losses.categorical_crossentropy, metrics=[precision,recall,f1_score])
- model.summary()
- return model
- import tensorflow as tf
- if __name__=="__main__":
- with tf.Graph().as_default() as g:
- getTextCNNModel()
- for _vars in tf.global_variables():
- print(_vars.name,_vars)
|