punish_predictor.py 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464
  1. #!/usr/bin/python3
  2. # -*- coding: utf-8 -*-
  3. # @Author : bidikeji
  4. # @Time : 2021/1/25 0025 16:35
  5. #!/usr/bin/python3
  6. # -*- coding: utf-8 -*-
  7. # @Author : bidikeji
  8. # @Time : 2020/12/24 0024 15:23
  9. import re
  10. import os
  11. import time
  12. import tensorflow as tf
  13. # from BiddingKG.dl.common.Utils import *
  14. from tensorflow.contrib.crf import crf_log_likelihood
  15. from tensorflow.contrib.layers.python.layers import initializers
  16. # from keras.preprocessing.sequence import pad_sequences
  17. # import BiddingKG.dl.interface.Preprocessing as Preprocessing
  18. from BiddingKG.dl.interface.Preprocessing import *
  19. def decode(logits, trans, sequence_lengths, tag_num):
  20. viterbi_sequences = []
  21. for logit, length in zip(logits, sequence_lengths):
  22. score = logit[:length]
  23. viterbi_seq, viterbi_score = viterbi_decode(score, trans)
  24. viterbi_sequences.append(viterbi_seq)
  25. return viterbi_sequences
  26. class Punish_Extract():
  27. def __init__(self, model_file = os.path.dirname(__file__)+"/models/punish_code.pb"):
  28. print('model_file_path:',model_file)
  29. self.sess = tf.Session(graph=tf.Graph())
  30. self.code = ""
  31. self.punish_dicition = ""
  32. self.model_file = model_file #预测编号模型
  33. self.load_model()
  34. # 加载处罚编号预测模型
  35. def load_model(self):
  36. log("get model of time")
  37. with self.sess.as_default():
  38. with self.sess.graph.as_default():
  39. output_graph_def = tf.GraphDef()
  40. with open(self.model_file, 'rb') as f:
  41. output_graph_def.ParseFromString(f.read())
  42. tf.import_graph_def(output_graph_def, name="")
  43. self.sess.run(tf.global_variables_initializer())
  44. self.char_input = self.sess.graph.get_tensor_by_name("char_input:0")
  45. self.length = self.sess.graph.get_tensor_by_name("length:0")
  46. self.trans = self.sess.graph.get_tensor_by_name("crf_loss/transitons:0")
  47. self.logits = self.sess.graph.get_tensor_by_name("CRF/output/logits:0")
  48. # 处罚编号预测
  49. def predict_punishCode(self,list_sentences, MAXlLEN=5000):
  50. '''
  51. 每个句子预测处罚编号
  52. :param list_sentences: 多篇文章句子列表[[每篇文章句子列表]]
  53. :param MAXlLEN: 控制最大每个句子长度,超过截断
  54. :return: 处罚编号字符串,若有多个;号隔开
  55. '''
  56. re_ner = re.compile("12+?3")
  57. article_ner_list = []
  58. count = 0
  59. with self.sess.as_default():
  60. with self.sess.graph.as_default():
  61. for sentences in list_sentences:
  62. count += 1
  63. # print(count)
  64. sentence_len = [len(sentence.sentence_text) for sentence in sentences]
  65. maxlen = min(max(sentence_len),MAXlLEN)
  66. sentences_x = []
  67. for sentence in sentences:
  68. sentence = sentence.sentence_text
  69. sentence = list(sentence)
  70. sentence2id = [getIndexOfWord(word) for word in sentence]
  71. sentences_x.append(sentence2id)
  72. sentences_x = pad_sequences(sentences_x, maxlen=maxlen, padding="post", truncating="post")
  73. sentences_x = [np.array(x) for x in sentences_x]
  74. _logits, _trans = self.sess.run([self.logits, self.trans],
  75. feed_dict={self.char_input: np.array(sentences_x), self.length: sentence_len})
  76. viterbi_sequence = decode(logits=_logits, trans=_trans, sequence_lengths=sentence_len, tag_num=4)
  77. ner_list = []
  78. for _seq, sentence in zip(viterbi_sequence, sentences):
  79. sentence = sentence.sentence_text
  80. seq_id = ''.join([str(s) for s in _seq])
  81. if re_ner.search(seq_id):
  82. # print("sentence: ",sentence)
  83. for _ner in re_ner.finditer(seq_id):
  84. start = _ner.start()
  85. end = _ner.end()
  86. n = sentence[start:end]
  87. # print(n,'<==>',start,end)
  88. # ner_list.append((n, start, end))
  89. ner_list.append(n) # 改为只返回实体字符
  90. # article_ner_list.append(ner_list)
  91. article_ner_list.append(';'.join(set(ner_list)))
  92. return article_ner_list[0]
  93. # 处罚类型
  94. def get_punishType(self, x1, x2):
  95. '''通过文章标题及内容判断文章类别
  96. x1: 标题
  97. x2: 内容
  98. return 类别'''
  99. # x1 = x1.replace('(','(').replace(')', ')').replace(' ','')
  100. # x2 = x2.replace('(', '(').replace(')', ')').replace(' ', '')
  101. '''标题正则'''
  102. # 未知公告
  103. unknow = re.compile('采购方式|采购公告|采购招标|磋商公告|谈判公告|交易公告$|征集|征求|招标公告|竞标公告|中标公告|'
  104. '成交公告|成交信息|流标公告|废标公告|城市管理考评|决算表|决算|预算|资格考试|招聘|选聘'
  105. '|聘请|拟录用|无违规违法|无此项信息|暂无工程投标违法|管理办法|指导意见|无投诉|投诉办法'
  106. '公共资源交易情况|绩效评价|考试成绩|付息公告|不动产|办证|印发|转发') #|结果公示 部分是
  107. # 投诉处理
  108. tscl = re.compile('投诉不予[处受]理|投诉不成立|终止投诉|投诉终止|不予受理|投诉事?项?的?处理')
  109. # 行政处罚
  110. xzcf = re.compile('行政处罚|行政处理|政处罚|行政裁决|防罚|公罚|医罚|环罚|政罚|文罚|局罚|旅罚|财罚|运罚')
  111. # 监督检查
  112. jdjc = re.compile('(监督检查的?问?题?(处理|整改|记分|结果|决定|处罚))|监督处罚|调查处理|监督处理')
  113. # 严重违法
  114. yzwf = re.compile('严重违法失信|黑名单|失信名单')
  115. # 不良行为
  116. blxw = re.compile('((不良|失信|不诚信|差错|不规范|违规|违约|处罚|违法)(行为|记录|信息))|((违约|违规|违法)(处理|操作|情况|问题))'
  117. '|通报批评|记分管理|迟到|早退|缺席|虚假材料|弄虚作假|履职不到位|诚信考核扣分|串通投标'
  118. '|审核不通过|码一致|地址一致|扣分处理|扣分通知|扣[0-9]+分|责令整改|信用信息认定书$'
  119. '|关于.{,30}的处罚|关于.{,10}的?考评通报|关于.{,30}扣分情况|不规范代理行为'
  120. '|(取消|暂停|限制).{,50}((专家|评标|评委|投标|竞价|被抽取|中标|供应商|候选人)资格)'
  121. '|(代理服?务?机构).{,10}(扣分)|(专家).{,30}(扣分|记分|处罚)|对.{,30}处理|冻结.{,30}账号')
  122. # 其他不良行为
  123. other = re.compile('质疑|代理机构进场交易情况|网上投诉办理|信用奖惩|信用奖罚|进场工作.{,5}考核'
  124. '|举报处理|结果无效|成交无效|行政复议')
  125. '''正文内容正则'''
  126. # 投诉处理
  127. tscl_c = re.compile('(投诉(人|单位)[1-9]?(名称)?[::])|(投诉事项[1-5一二三四五、]*部?分?(成立|予以受理))'
  128. '|((驳回|撤回|撤销|终止)[^,。]{,60}(投诉|质疑))')
  129. # 行政处罚
  130. xzcf_c = re.compile('((处理依据及结果|处理结果|处罚结果)).*行政处罚|如下行政处罚|行政处罚决定')
  131. # 诚信加分
  132. cxjf_c = re.compile('处罚结果.*诚信加分')
  133. # 严重违法失信
  134. yzwf_c = re.compile('工商部门严重违法失信起名单|严重违法失信的具体情形') #|严重违法失信的具体情形
  135. # 不良行为
  136. blxw_c = re.compile('(取消|暂停|限制).{,30}((专家|评标|评委|投标|采购|竞价|被抽取|中标|供应商)的?资格)'
  137. '|(处罚结果|处罚情况).*(扣[1-9]*分|记分|不良行为|不良记录|不良信用|不诚信|扣除信用'
  138. '|诚信档案|信用信息|取消.*资格|口头警告|处罚机关|责令改正|罚款|限制投标|暂扣|禁止'
  139. '|暂停|封禁|暂无|行政处罚)|处罚结果'
  140. '|处罚主题|禁止参与.{,10}政府采购活动|列入不良行为|处罚如下|如下处罚|违规处罚|处罚违规'
  141. '|责令改正|责令整改|处罚依据|进行以下处理|处理依据及结果|处理结果|处罚决定书|'
  142. '(不规范|不良|不诚信)行为记录')
  143. # 其他不良行为
  144. other_c = re.compile('质疑(人|单位)[1-9]?(名称)?:|公告期内受质疑')
  145. if re.search(unknow, x1):
  146. return re.search(unknow, x1).group(0), '未知类别'
  147. elif re.search(yzwf, x1):
  148. return re.search(yzwf, x1).group(0), '严重违法'
  149. elif re.search(yzwf_c, x2):
  150. return re.search(yzwf_c, x2).group(0), '严重违法'
  151. elif re.search(tscl, x1):
  152. return re.search(tscl, x1).group(0), '投诉处理'
  153. elif re.search(xzcf, x1):
  154. return re.search(xzcf, x1).group(0), '行政处罚'
  155. elif re.search(jdjc, x1):
  156. return re.search(jdjc, x1).group(0), '监督检查'
  157. elif re.search(blxw, x1):
  158. return re.search(blxw, x1).group(0), '不良行为'
  159. elif re.search(other, x1):
  160. return re.search(other, x1).group(0), '其他不良行为'
  161. elif re.search(tscl_c, x2):
  162. return re.search(tscl_c, x2).group(0), '投诉处理'
  163. elif re.search(xzcf_c, x2):
  164. return re.search(xzcf_c, x2).group(0), '行政处罚'
  165. elif re.search(cxjf_c, x2):
  166. return re.search(cxjf_c, x2).group(0), '诚信加分'
  167. elif re.search(blxw_c, x2):
  168. return re.search(blxw_c, x2).group(0), '不良行为'
  169. elif re.search(other_c, x2):
  170. return re.search(other_c, x2).group(0), '其他不良行为'
  171. return ' ', '未知类别'
  172. # 处罚决定
  173. def get_punishDecision(self, x, x2):
  174. '''通过正则匹配文章内容中的处理决定
  175. x:正文内容
  176. x2: 处罚类别
  177. return 处理决定字符串'''
  178. rule1 = re.compile(
  179. '(((如下|以下|处理|研究|本机关|我机关|本局|我局)决定)|((决定|处理|处理意见|行政处罚|处罚)(如下|如下))'
  180. '|((以下|如下)(决定|处理|处理意见|行政处罚|处罚))|处理依据及结果|处理结果|处罚结果|处罚情况|限制行为'
  181. '|整改意见)[::].{5,}')
  182. rule2 = re.compile(
  183. '(((如下|以下|处理|研究|本机关|我机关|本局|我局)决定)|((决定|处理|处罚|处理意见)(如下|如下))'
  184. '|((以下|如下)(决定|处理|处理意见|处罚))|处理依据及结果|处理结果|处罚结果|处罚情况|限制行为'
  185. '|处罚内容)[:,,].{10,}')
  186. rule3 = re.compile('考评结果:?.*')
  187. rule4 = re.compile('(依据|根据)《.*》.*')
  188. if x2 == '未知类别':
  189. return ' '
  190. elif re.search(rule1, x[-int(len(x)*0.4):]):
  191. return re.search(rule1, x[-int(len(x)*0.4):]).group(0)
  192. elif re.search(rule1, x[-int(len(x)*0.6):]):
  193. return re.search(rule1, x[-int(len(x)*0.6):]).group(0)
  194. elif re.search(rule2, x[-int(len(x)*0.7):]):
  195. return re.search(rule2, x[-int(len(x)*0.7):]).group(0)
  196. elif re.search(rule3, x[-int(len(x)*0.6):]):
  197. return re.search(rule3, x[-int(len(x)*0.6):]).group(0)
  198. elif re.search(rule4, x[-int(len(x)*0.4):]):
  199. return re.search(rule4, x[-int(len(x)*0.4):]).group(0)
  200. else:
  201. return ' '
  202. # 投诉是否成立
  203. def get_punishWhether(self, x1, x2, x3):
  204. '''通过正则匹配处理决定判断投诉是否成立
  205. x1: 处理决定字符串
  206. x2: 正文内容
  207. x3: 处罚类别
  208. return 投诉是否成立'''
  209. p1 = re.compile('(投诉|投拆|质疑|举报)(事项|内容|事实)?[^不,。]{,10}(成立|属实|予以受理|予以支持)|责令|废标|(中标|成交)[^,。]{,10}无效'
  210. '|取消[^,。]{,60}资格|罚款|重新(组织|开展)?(招标|采购)|投诉成立|被投诉人存在违法违规行为'
  211. '|采购活动违法|(中标|评标|成交)结果无效')
  212. p2 = re.compile('投诉不予[处受]理|((投诉|投拆|质疑|举报)(事项|内容|事实)?[^,。]{,10}(不成立|情?况?不属实|不予支持|缺乏事实依据))'
  213. '|((驳回|撤回|撤销|终止)[^,。]*(投诉|质疑|诉求))|终止[^,。]{,20}(行政裁决|投诉处理|采购活动)|投诉终止|投诉无效'
  214. '|予以驳回|不予受理|继续开展采购|被投诉人不存在违法违规行为|中标结果有效|投诉[^,。]{,10}不成立'
  215. '|维持被投诉人|不支持[^,。]{,20}投诉|无确凿证据')
  216. if x3 != '投诉处理':
  217. return ' '
  218. elif re.search(p1, x1):
  219. return '投诉成立'
  220. elif re.search(p2, x1):
  221. return '投诉无效'
  222. elif re.search(p1, x2):
  223. return '投诉成立'
  224. elif re.search(p2, x2):
  225. return '投诉无效'
  226. return ' '
  227. # 执法机构、处罚时间
  228. def get_institution(self, title, sentences_l, entity_l):
  229. '''
  230. 通过判断实体前信息判断改实体是否为执法机构
  231. :param title: 文章标题
  232. :param sentences_l: 单篇公告句子列表
  233. :param entity_l: 单篇公告实体列表
  234. :return: 执法机构及处罚时间字符串,多个的用;号隔开
  235. '''
  236. institutions = []
  237. punishTimes = []
  238. institution_1 = re.compile("(?:处罚执行部门|认定部门|执法机关名称|执法单位|通报部门|处罚机关|处罚部门)[::]")
  239. punishTimes_1 = re.compile("(?:处罚日期|限制行为开始时间|曝光开始日期|处罚决定日期|处罚期限|处罚时间|处理日期|公告开始时间)[::]")
  240. # 通过实体前面关键词判断是否为执法机构或处罚时间
  241. for ner in entity_l:
  242. if ner.entity_type == 'org':
  243. left = sentences_l[ner.sentence_index].sentence_text[
  244. max(0, ner.wordOffset_begin - 15):ner.wordOffset_begin]
  245. if institution_1.search(left):
  246. institutions.append(ner)
  247. elif institutions != [] and ner.sentence_index == institutions[-1].sentence_index and \
  248. ner.wordOffset_begin - institutions[-1].wordOffset_end < 2 and \
  249. sentences_l[ner.sentence_index].sentence_text[
  250. ner.wordOffset_begin:institutions[-1].wordOffset_end] \
  251. in ['', '、', '和', '及']:
  252. institutions.append(ner)
  253. elif ner.entity_type == 'time':
  254. left = sentences_l[ner.sentence_index].sentence_text[
  255. max(0, ner.wordOffset_begin - 15):ner.wordOffset_begin]
  256. if punishTimes_1.search(left):
  257. punishTimes.append(ner)
  258. institution_title = re.compile("财政局|财政厅|监督管理局|公管局|公共资源局|委员会")
  259. institution_time = re.compile(
  260. "(^,?[\d一二三四五六七八九十]{4},?[/年-][\d一二三四五六七八九十]{1,2},?[/月-][\d一二三四五六七八九十]{1,2},?[/日-]?)")
  261. ins = ""
  262. ptime = ""
  263. # 如果前面步骤找不到处罚机构则在标题找实体,并正则检查是否有关键词
  264. if institutions == [] and len(title)>10:
  265. title_ners = getNers([title], useselffool=True)
  266. if title_ners[0]:
  267. for title_ner in title_ners[0]:
  268. if title_ner[2] == 'org' and institution_title.search(title_ner[3]):
  269. ins = title_ner[3]
  270. break
  271. if punishTimes == [] or institutions == []:
  272. # 如果前面步骤还没找到要素,则通过公司实体后面是否有日期关键词,有则作为处罚机构和处罚时间
  273. for ner in [ner for ner in entity_l if ner.entity_type == 'org'][-5:][::-1]:
  274. right = sentences_l[ner.sentence_index].sentence_text[ner.wordOffset_end:ner.wordOffset_end + 16]
  275. if institution_time.search(right):
  276. if ins == '':
  277. ins = ner.entity_text
  278. if ptime == '':
  279. ptime = institution_time.search(right).group(1)
  280. break
  281. # 前面步骤都没找到则判断最后一个时间实体是否在文章末尾,是则作为处罚时间
  282. if ptime == '':
  283. n_time = [ner for ner in entity_l if ner.entity_type == 'time']
  284. if len(n_time) != 0:
  285. ner = n_time[-1]
  286. if ner.sentence_index == len(sentences_l) - 1:
  287. textLong = len(sentences_l[ner.sentence_index].sentence_text)
  288. if ner.wordOffset_end > textLong - 3 and len(ner.entity_text) > 3:
  289. ptime = ner.entity_text
  290. institutions = [ner.entity_text for ner in institutions]
  291. punishTimes = [ner.entity_text for ner in punishTimes]
  292. if institutions == [] and ins != "":
  293. institutions.append(ins)
  294. if punishTimes == [] and ptime != "":
  295. punishTimes.append(ptime)
  296. return ";".join(institutions), ";".join(punishTimes)
  297. # 投诉人、被投诉人、被处罚人
  298. def get_complainant(self, punishType, sentences_l, entity_l):
  299. '''
  300. 通过对公告类别、句子列表、实体列表正则寻找投诉人、被投诉人、处罚人
  301. :param punishType: 公告处罚类别
  302. :param sentences_l: 单篇公告句子列表
  303. :param entity_l: 单篇公告实体列表
  304. :return: 投诉人、被投诉人
  305. '''
  306. complainants = [] # 投诉人
  307. punishPeople = [] # 被投诉人、被处罚人
  308. size = 16
  309. # 投诉人、质疑人
  310. complainants_rule1 = re.compile(
  311. "(?:[^被]|^)(?:投[诉拆][人方]|质疑[人方]|质疑供应商|质疑单位|疑问[人方]|检举[人方]|举报[人方])[\d一二三四五六七八九十]?(\(.+?\))?(:?,?名称[\d一二三四五六七八九十]?)?(?:[::,]+.{0,3}$|$)")
  312. # 被处罚人,被投诉人
  313. punishPeople_rule1 = re.compile(
  314. "(被投[诉拆][人方]|被检举[人方]|被举报[人方]|被处罚人|被处罚单位|行政相对人|单位名称|不良行为单位或个人|被查单位|处罚主题|企业|主体|违规对象|违规单位|当事人)[\d一二三四五六七八九十]?(\(.+?\))?(:?,?名称[\d一二三四五六七八九十]?)?(?:[::,]+.{0,3}$|$)")
  315. punishPeople_rule2_1 = re.compile(",$")
  316. punishPeople_rule2_2 = re.compile("^[::]")
  317. punishPeople_rule3_1 = re.compile("(?:关于|对)[^,。]*$")
  318. punishPeople_rule3_2 = re.compile("^[^,。]*(?:通报|处罚|披露|处理|信用奖惩|不良行为|不良记录)")
  319. punish_l = [] # 处罚实体列表
  320. tmp = []
  321. for ner in [ner for ner in entity_l if ner.entity_type in ['org', 'company', 'person']]:
  322. if tmp == []:
  323. tmp.append(ner)
  324. elif ner.entity_type == tmp[-1].entity_type and ner.sentence_index == tmp[-1].sentence_index and \
  325. ner.wordOffset_begin - tmp[-1].wordOffset_end < 2 \
  326. and sentences_l[ner.sentence_index].sentence_text[ner.wordOffset_begin:tmp[-1].wordOffset_end] in [
  327. '',
  328. '、',
  329. '和',
  330. '及']:
  331. tmp.append(ner)
  332. elif ner.entity_type in ['org', 'company'] and tmp[-1].entity_type in ['org', 'company'] and \
  333. ner.sentence_index == tmp[-1].sentence_index and ner.wordOffset_begin - tmp[-1].wordOffset_end < 2 \
  334. and sentences_l[ner.sentence_index].sentence_text[ner.wordOffset_begin:tmp[-1].wordOffset_end] in [
  335. '',
  336. '、',
  337. '和',
  338. '及']:
  339. tmp.append(ner)
  340. else:
  341. punish_l.append(tmp)
  342. tmp = [ner]
  343. for ner_l in punish_l:
  344. begin_index = ner_l[0].wordOffset_begin
  345. end_index = ner_l[-1].wordOffset_end
  346. left = sentences_l[ner_l[0].sentence_index].sentence_text[max(0, begin_index - size):begin_index]
  347. right = sentences_l[ner_l[0].sentence_index].sentence_text[end_index:end_index + size]
  348. if complainants_rule1.search(left):
  349. complainants.append(ner_l)
  350. elif punishPeople_rule1.search(left):
  351. punishPeople.append(ner_l)
  352. elif punishPeople_rule2_1.search(left) and punishPeople_rule2_2.search(right):
  353. if punishType == '投诉处理':
  354. complainants.append(ner_l)
  355. else:
  356. punishPeople.append(ner_l)
  357. elif punishPeople_rule3_1.search(left) and punishPeople_rule3_2.search(right):
  358. punishPeople.append(ner_l)
  359. complainants = set([it.entity_text for l in complainants for it in l])
  360. punishPeople = set([it.entity_text for l in punishPeople for it in l])
  361. return ';'.join(complainants), ';'.join(punishPeople)
  362. def get_punish_extracts(self,list_articles,list_sentences, list_entitys):
  363. list_result = []
  364. for article,list_sentence,list_entity in zip(list_articles,list_sentences,list_entitys):
  365. title = article.title
  366. text=article.content
  367. keyword, punishType = self.get_punishType(title, text)
  368. # print('处罚类型:',punishType)
  369. punish_code = self.predict_punishCode(list_sentences)
  370. # print('处罚编号: ',punish_code)
  371. institutions, punishTimes = self.get_institution(title, list_sentence, list_entity)
  372. # print('执法机构:',institutions, '\n 处罚时间:', punishTimes)
  373. punishDecision = self.get_punishDecision(text, punishType)
  374. # print('处罚决定:',punishDecision)
  375. punishWhether= self.get_punishWhether(punishDecision, text, punishType)
  376. # print('投诉是否成立:',punishWhether)
  377. complainants, punishPeople = self.get_complainant(punishType, list_sentence, list_entity)
  378. # print('投诉人:%s 被投诉人:%s'%(complainants, punishPeople))
  379. punish_dic = {'punish_code':punish_code,
  380. 'punishType':punishType,
  381. 'punishDecision':punishDecision,
  382. 'complainants':complainants,
  383. 'punishPeople':punishPeople,
  384. 'punishWhether':punishWhether,
  385. 'institutions':institutions,
  386. 'punishTimes':punishTimes}
  387. _count = 0
  388. for k,v in punish_dic.items():
  389. if v!="":
  390. _count += 1
  391. if _count>=2 and punish_dic["punishType"]!="未知类别":
  392. list_result.append({"punish":punish_dic})
  393. else:
  394. list_result.append({"punish":{}})
  395. return list_result
  396. if __name__ == "__main__":
  397. punish = Punish_Extract()
  398. import pandas as pd
  399. # with open('G:/失信数据/ALLDATA_re2-3.xlsx') as f:
  400. df = pd.read_excel('G:/失信数据/ALLDATA_re2-3.xlsx', index=0)[2:10]
  401. # i = 89
  402. # predict('2', df.loc[i, 'PAGE_TITLE'],df.loc[i, 'PAGE_CONTENT'])
  403. # i = 92
  404. # predict('2', df.loc[i, 'PAGE_TITLE'],df.loc[i, 'PAGE_CONTENT'])
  405. # t1 = time.time()
  406. # for i in df.index:
  407. # punish_code, punishType, punishDecision, complainants, punishPeople, punishWhether, institutions, punishTimes = \
  408. # get_punish_extracts(i, df.loc[i, 'PAGE_TITLE'], df.loc[i, 'PAGE_CONTENT'])
  409. # df.loc[i, '投诉人'] = complainants
  410. # df.loc[i, '被投诉人'] = punishPeople
  411. # df.loc[i, '执法机构'] = institutions
  412. # df.loc[i, '处罚时间'] = punishTimes
  413. # df.loc[i, '处罚编号'] = punish_code
  414. # print('完成第%d篇'%i)
  415. # # df.to_excel('G:/失信数据/ALLDATA_re2-4.xlsx', encoding='utf-8',columns=[['PAGE_TITLE', 'PAGE_CONTENT',
  416. # # '关键词', '类别', '处理决定', '投诉是否成立',
  417. # # 'DETAILLINK', 'sentences', 'PAGE_TIME', 'complainant', 'punishPeople',
  418. # # 'institution', 'punishTime', 'ner_test']])
  419. # t2 = time.time()
  420. # # df.to_excel('G:/失信数据/ALLDATA_re2-4.xlsx', encoding='utf-8',columns=['PAGE_TITLE', 'PAGE_CONTENT',
  421. # # '关键词', '类别', '处理决定', '投诉是否成立',
  422. # # 'DETAILLINK', 'sentences', 'PAGE_TIME', 'complainant', '投诉人', 'punishPeople', '被投诉人',
  423. # # 'institution', '执法机构', 'punishTime', '处罚时间', 'ner_test', '处罚编号'])
  424. # df.to_excel('G:/失信数据/ALLDATA_re2-4.xlsx', encoding='utf-8',columns=['PAGE_TITLE', 'PAGE_CONTENT',
  425. # '关键词', '类别', '处理决定', '投诉是否成立', '投诉人', '被投诉人','执法机构', '处罚时间', '处罚编号',
  426. # 'DETAILLINK', 'sentences', 'PAGE_TIME'])
  427. # t3 = time.time()
  428. # print('处理耗时:%.4f, 保存耗时:%.4f'%(t2-t1, t3-t2))
  429. s = '编号:厦财企〔2020〕12号,各有关单位:341号。处罚编号:厦财企〔2020〕12号,文章编号:京财采投字(2018)第42号。公告编号:闽建筑招〔2018〕5号。处罚编号:松公管监[2020]2号,'
  430. # list_sentences = [s.split('。')]
  431. # punish_code= punish.predict_punishCode( list_sentences)
  432. # print(punish_code)
  433. # punish_code, punishType, punishDecision, complainants, punishPeople, punishWhether, institutions, punishTimes = \
  434. # get_punish_extracts(text=s)
  435. # punish_dic = punish.get_punish_extracts(text=s)
  436. # print(punish_dic)