#coding:UTF8 from odps.udf import annotate from odps.udf import BaseUDAF from odps.udf import BaseUDTF def getSet(list_dict,key): _set = set() for item in list_dict: if key in item: if item[key]!='' and item[key] is not None: if re.search("^[\d\.]+$",item[key]) is not None: _set.add(str(float(item[key]))) else: _set.add(str(item[key])) return _set def split_with_time(list_dict,sort_key,timedelta=86400*120): if len(list_dict)>0: if sort_key in list_dict[0]: list_dict.sort(key=lambda x:x[sort_key]) list_group = [] _begin = 0 for i in range(len(list_dict)-1): if abs(list_dict[i][sort_key]-list_dict[i+1][sort_key])1: list_group.append(_group) _begin = i + 1 if len(list_dict)>1: _group = [] for j in range(_begin,len(list_dict)): _group.append(list_dict[j]) if len(_group)>1: list_group.append(_group) return list_group return [list_dict] @annotate('bigint,bigint,string,string,string,string,string,string,bigint->string') class f_merge_rule_limit_num_contain_greater(BaseUDAF): ''' 项目编号、中标单位、len(项目编号)>7、中标单位<> ""、合并后非空招标单位数<2、合并后同公告类型非空金额相同 ''' def __init__(self): import logging import json,re global json,logging,re logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s') def new_buffer(self): return [list()] def iterate(self, buffer,docid,page_time_stamp,set_limit_column1,set_limit_column2,set_limit_column3,set_limit_column4,contain_column,greater_column,MAX_NUM): buffer[0].append({"docid":docid,"page_time_stamp":page_time_stamp,"set_limit_column1":set_limit_column1, "set_limit_column2":set_limit_column2,"set_limit_column3":set_limit_column3,"set_limit_column4":set_limit_column4, "contain_column":contain_column,"greater_column":greater_column,"MAX_NUM":MAX_NUM}) def merge(self, buffer, pbuffer): buffer[0].extend(pbuffer[0]) def terminate(self, buffer): MAX_NUM = 5 if len(buffer[0])>0: MAX_NUM = buffer[0][0]["MAX_NUM"] list_split = split_with_time(buffer[0],"page_time_stamp") list_group = [] for _split in list_split: flag = True keys = ["set_limit_column1","set_limit_column2","set_limit_column3","set_limit_column4"] dict_set = {} for _key in keys: dict_set[_key] = set() if len(_split)>MAX_NUM: flag = False else: for _key in keys: logging.info(_key+str(getSet(_split,_key))) if len(getSet(_split,_key))>1: flag = False break MAX_CONTAIN_COLUMN = None #判断组内每条公告是否包含 if flag: for _d in _split: contain_column = _d["contain_column"] if contain_column is not None and contain_column !="": if MAX_CONTAIN_COLUMN is None: MAX_CONTAIN_COLUMN = contain_column else: if len(MAX_CONTAIN_COLUMN)1: list_group.append(list(_set_docid)) return json.dumps(list_group) def getDiffIndex(list_dict,key): _set = set() for _i in range(len(list_dict)): item = list_dict[_i] if key in item: if item[key]!='' and item[key] is not None: if re.search("^\d[\d\.]*$",item[key]) is not None: _set.add(str(float(item[key]))) else: _set.add(str(item[key])) if len(_set)>1: return _i return len(list_dict) @annotate('bigint,bigint,string,string,string,string,string,string,string,bigint->string') class f_remege_limit_num_contain(BaseUDAF): ''' 项目编号、中标单位、len(项目编号)>7、中标单位<> ""、合并后非空招标单位数<2、合并后同公告类型非空金额相同 ''' def __init__(self): import logging import json,re global json,logging,re logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s') def new_buffer(self): return [list()] def iterate(self, buffer,docid,page_time_stamp,set_limit_column1,set_limit_column2,set_limit_column3,set_limit_column4,contain_column1,contain_column2,notLike_column,confidence): buffer[0].append({"docid":docid,"page_time_stamp":page_time_stamp,"set_limit_column1":set_limit_column1, "set_limit_column2":set_limit_column2,"set_limit_column3":set_limit_column3,"set_limit_column4":set_limit_column4, "contain_column1":contain_column1,"contain_column2":contain_column2,"notLike_column":notLike_column,"confidence":confidence}) def merge(self, buffer, pbuffer): buffer[0].extend(pbuffer[0]) def getNotLikeSet(self,_dict,column_name): column_value = _dict.get(column_name,None) _set = set() if column_value is not None: for _i in range(1,len(column_value)): _set.add(column_value[_i-1:_i+1]) _dict["notLike_set"] = _set def getSimilarity(self,_set1,_set2): _sum = max([1,min([len(_set1),len(_set2)])]) return len(_set1&_set2)/_sum def terminate(self, buffer): list_group = [] the_group = buffer[0] SIM_PROB = 0.6 for _d in the_group: self.getNotLikeSet(_d,"notLike_column") #判断多个值与否 keys = ["set_limit_column1","set_limit_column2","set_limit_column3","set_limit_column4"] re_merge = False for _key in keys: if len(getSet(the_group,_key))>1: re_merge = True break #判断是否相似而不相同 re_merge_sim = False for _i1 in range(0,len(the_group)): for _j1 in range(_i1+1,len(the_group)): _set1 = the_group[_i1]["notLike_set"] _set2 = the_group[_j1]["notLike_set"] _sim = self.getSimilarity(_set1,_set2) if _sim>SIM_PROB and _sim<1: re_merge_sim = True break contain_keys = ["contain_column1","contain_column2"] logging.info(the_group) if re_merge or re_merge_sim: the_group.sort(key=lambda x:x["confidence"],reverse=True) the_group.sort(key=lambda x:x["page_time_stamp"]) #重新成组 dict_docid_doc = {} for _doc in the_group: dict_docid_doc[_doc["docid"]] = _doc for _doc in the_group: merge_flag = False for _index in range(len(list_group)): _g = list_group[_index] hit_count = 0 dict_temp = dict() #多个值的异常 if re_merge: for _c_key in contain_keys: dict_temp[_c_key] = _g[_c_key] if _g[_c_key] is not None and _doc[_c_key] is not None: if len(_g[_c_key])>len(_doc[_c_key]): if str(_g[_c_key]).find(str(_doc[_c_key]))>=0: dict_temp[_c_key] = _g[_c_key] hit_count += 1 else: if str(_doc[_c_key]).find(str(_g[_c_key]))>=0: dict_temp[_c_key] = _doc[_c_key] _g[_c_key] = _doc[_c_key] hit_count += 1 else: hit_count = 1 # if hit_count==len(contain_keys): if hit_count>0: _flag_sim = False #相似而不相同的异常 if re_merge_sim: for _docid in _g["docid"]: tmp_d = dict_docid_doc[_docid] _sim = self.getSimilarity(tmp_d["notLike_set"],_doc["notLike_set"]) if _sim>SIM_PROB and _sim<1: _flag_sim = True if not _flag_sim: for _c_key in dict_temp.keys(): _g[_c_key] = dict_temp[_c_key] _g["docid"].append(_doc["docid"]) merge_flag = True break if not merge_flag: _dict = dict() _dict["docid"] = [_doc["docid"]] for _c_key in contain_keys: _dict[_c_key] = _doc[_c_key] list_group.append(_dict) final_group = [] #判断是否符合一个值 for _group in list_group: _split = [] for _docid in _group["docid"]: _split.append(dict_docid_doc[_docid]) #通过置信度排序,尽可能保留组 _split.sort(key=lambda x:x["confidence"],reverse=True) #置信度 list_key_index = [] for _k in keys: list_key_index.append(getDiffIndex(_split,_k)) _index = min(list_key_index) final_group.append([_c["docid"] for _c in _split[:_index]]) for _c in _split[_index:]: final_group.append([_c["docid"]]) #若是找到两个以上,则全部单独成组,否则成一组 # _flag = True # for _key in keys: # if len(getSet(_split,_key))>1: # _flag = False # break # if not _flag: # for _docid in _group["docid"]: # final_group.append([_docid]) # else: # final_group.append(list(set(_group["docid"]))) else: final_group = [list(set([item["docid"] for item in the_group]))] return json.dumps(final_group) @annotate('string -> string') class f_get_remerge_group(BaseUDTF): ''' 将多个组拆解成多条记录 ''' def __init__(self): import logging import json global json,logging logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s') def process(self,json_remerge): if json_remerge is not None: list_group = json.loads(json_remerge) for _group in list_group: l_g = list(set(_group)) l_g.sort(key=lambda x:x) list_docid = [str(_docid) for _docid in l_g] self.forward(",".join(list_docid)) @annotate('bigint,bigint,string->string') class f_merge_probability(BaseUDAF): ''' 合并组为一条记录 ''' def __init__(self): import json global json def new_buffer(self): return [[]] def iterate(self, buffer,docid,page_time_stamp,_type): buffer[0].append({"docid":docid,"page_time_stamp":page_time_stamp,"type":_type}) def merge(self, buffer, pbuffer): buffer[0].extend(pbuffer[0]) def terminate(self, buffer): list_dict = buffer[0] list_dict = list_dict[:10000] list_group = split_with_time(list_dict,sort_key="page_time_stamp",timedelta=86400*120) return json.dumps(list_group) @annotate('string -> bigint,bigint,bigint,bigint,string') class f_split_merge_probability(BaseUDTF): def __init__(self): import logging import json global logging,json logging.basicConfig(level=logging.INFO,format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') def process(self,list_group_str): logging.info("0") logging.info(list_group_str) if list_group_str is not None: logging.info("1") try: list_group = json.loads(list_group_str) logging.info("2") for _group in list_group: if len(_group)>0: _type = _group[0].get("type","") logging.info("3%d"%len(list_group)) # _group.sort(key=lambda x:x["page_time_stamp"]) _len = min(100,len(_group)) for _index_i in range(_len): _count = 0 for _index_j in range(_index_i+1,_len): if abs(_group[_index_j]["page_time_stamp"]-_group[_index_i]["page_time_stamp"])>86400*120: break _count += 1 _docid1 = _group[_index_i]["docid"] _docid2 = _group[_index_j]["docid"] if _docid1<_docid2: self.forward(_docid1,_docid2,1,_len,_type) else: self.forward(_docid2,_docid1,1,_len,_type) except Exception as e: logging(str(e)) @annotate('bigint,bigint,string->string') class f_merge_groupPairs(BaseUDAF): ''' 合并组为一条记录 ''' def __init__(self): import json global json def new_buffer(self): return [[]] def iterate(self, buffer,is_exists,counts,_type): buffer[0].append({"is_exists":is_exists,"counts":counts,"_type":_type}) def merge(self, buffer, pbuffer): buffer[0].extend(pbuffer[0]) def terminate(self, buffer): list_dict = buffer[0] list_dict = list_dict[:10000] return json.dumps(list_dict) @annotate("string -> bigint,bigint,bigint") class f_merge_getLabel(BaseUDTF): def __init__(self): import logging import json global logging,json def process(self,str_docids): if str_docids is not None: list_docids = [int(i) for i in str_docids.split(",")] list_docids.sort(key=lambda x:x) _len = min(100,len(list_docids)) for index_i in range(_len): docid_less = list_docids[index_i] for index_j in range(index_i+1,_len): docid_greater = list_docids[index_j] self.forward(docid_less,docid_greater,1) def getSimilarityOfString(str1,str2): _set1 = set() _set2 = set() if str1 is not None: for i in range(1,len(str1)): _set1.add(str1[i-1:i+1]) if str2 is not None: for i in range(1,len(str2)): _set2.add(str2[i-1:i+1]) _len = max(1,min(len(_set1),len(_set2))) return len(_set1&_set2)/_len def check_columns(tenderee_less,tenderee_greater, agency_less,agency_greater,project_code_less,project_code_greater,project_name_less,project_name_greater, win_tenderer_less,win_tenderer_greater,win_bid_price_less,win_bid_price_greater, bidding_budget_less,bidding_budget_greater,doctitle_refine_less,doctitle_refine_greater): flag = True _set_tenderee = set() if tenderee_less is not None and tenderee_less!="": _set_tenderee.add(tenderee_less) if tenderee_greater is not None and tenderee_greater!="": _set_tenderee.add(tenderee_greater) if len(_set_tenderee)>1: return False code_sim = getSimilarityOfString(project_code_less,project_code_greater) if code_sim>0.6 and code_sim<1: return False _set_win_tenderer = set() if win_tenderer_less is not None and tenderee_less!="": _set_win_tenderer.add(win_tenderer_less) if win_tenderer_greater is not None and win_tenderer_greater!="": _set_win_tenderer.add(win_tenderer_greater) if len(_set_win_tenderer)>1: return False _set_win_bid_price = set() if win_bid_price_less is not None and win_bid_price_less!="": _set_win_bid_price.add(win_bid_price_less) if win_bid_price_greater is not None and win_bid_price_greater!="": _set_win_bid_price.add(win_bid_price_greater) if len(_set_win_bid_price)>1: return False _set_bidding_budget = set() if bidding_budget_less is not None and bidding_budget_less!="": _set_bidding_budget.add(bidding_budget_less) if bidding_budget_greater is not None and bidding_budget_greater!="": _set_bidding_budget.add(bidding_budget_greater) if len(_set_bidding_budget)>1: return False return True def getSimLevel(str1,str2): str1_null = False str2_null = False _v = 0 if str1 is None or str1=="": str1_null = True if str2 is None or str2=="": str2_null = True if str1_null and str2_null: _v = 2 elif str1_null and not str2_null: _v = 4 elif not str1_null and str2_null: _v = 6 elif not str1_null and not str2_null: if str1==str2: _v = 10 else: _v = 0 return _v import math def featurnCount(_count,max_count=100): return max(0,min(1,_count))*(1/math.sqrt(max(1,_count-1))) @annotate("string,string,string,string,string,string,string,string,string,string,string,string,string,string,string,string,string->string") class f_merge_featureMatrix(BaseUDTF): def __init__(self): import logging import json global logging,json def process(self,json_context,tenderee_less,tenderee_greater, agency_less,agency_greater,project_code_less,project_code_greater,project_name_less,project_name_greater, win_tenderer_less,win_tenderer_greater,win_bid_price_less,win_bid_price_greater, bidding_budget_less,bidding_budget_greater,doctitle_refine_less,doctitle_refine_greater): # if not check_columns(tenderee_less,tenderee_greater, # agency_less,agency_greater,project_code_less,project_code_greater,project_name_less,project_name_greater, # win_tenderer_less,win_tenderer_greater,win_bid_price_less,win_bid_price_greater, # bidding_budget_less,bidding_budget_greater,doctitle_refine_less,doctitle_refine_greater) # return _context = json.loads(json_context) dict_context = {} for item in _context: dict_context[item["_type"]] = [item["is_exists"],item["counts"]] context_key = ["tenderee","agency","project_code","project_name","win_tenderer","win_bid_price","bidding_budget","doctitle_refine"] list_matrix = [] for index_i in range(len(context_key)): for index_j in range(index_i+1,len(context_key)): _key = "%s&%s"%(context_key[index_i],context_key[index_j]) _v = featurnCount(dict_context.get(_key,[0,0])[1]) list_matrix.append(_v) context3_key = ["tenderee","agency","win_tenderer","win_bid_price","bidding_budget"] for index_i in range(len(context3_key)): for index_j in range(index_i+1,len(context3_key)): for index_k in range(index_j+1,len(context3_key)): _key = "%s&%s&%s"%(context3_key[index_i],context3_key[index_j],context3_key[index_k]) _v = featurnCount(dict_context.get(_key,[0,0])[1]) list_matrix.append(_v) list_matrix.append(getSimLevel(tenderee_less,tenderee_greater)/10) list_matrix.append(getSimLevel(agency_less,agency_greater)/10) list_matrix.append(getSimilarityOfString(project_code_less,project_code_greater)) list_matrix.append(getSimilarityOfString(project_name_less,project_name_greater)) list_matrix.append(getSimLevel(win_tenderer_less,win_tenderer_greater)/10) list_matrix.append(getSimLevel(win_bid_price_less,win_bid_price_greater)/10) list_matrix.append(getSimLevel(bidding_budget_less,bidding_budget_greater)/10) list_matrix.append(getSimilarityOfString(doctitle_refine_less,doctitle_refine_greater)) self.forward(json.dumps(list_matrix)) @annotate('string -> bigint,bigint') class f_check_remerge(BaseUDTF): ''' 将多个组拆解成多条记录 ''' def __init__(self): import logging import json global json,logging logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s') def process(self,json_remerge): if json_remerge is not None: list_group = json.loads(json_remerge) for _group in list_group: for _docid in _group: self.forward(_group[-1],_docid) def getConfidence(rule_id): if rule_id >=1 and rule_id <=20: return 30 elif rule_id>=31 and rule_id<=50: return 20 else: return 10 @annotate('string,bigint -> bigint,bigint,bigint') class f_arrange_group_single(BaseUDTF): ''' 将多个组拆解成多条记录 ''' def __init__(self): import logging import json global json,logging logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s') def process(self,json_set_docid,rule_id): if json_set_docid is not None: list_group = json.loads(json_set_docid) for _group in list_group: for index_i in range(len(_group)): for index_j in range(len(_group)): # if index_i!=index_j and _group[index_i]!=_group[index_j]: if index_i!=index_j: self.forward(_group[index_i],_group[index_j],getConfidence(rule_id)) @annotate('bigint,bigint->string') class f_get_merge_docids(BaseUDAF): ''' 合并组为一条记录 ''' def __init__(self): import json global json def new_buffer(self): return [set()] def iterate(self, buffer,docid1,docid2): buffer[0].add(docid1) buffer[0].add(docid2) def merge(self, buffer, pbuffer): buffer[0] |= pbuffer[0] def terminate(self, buffer): set_docid = buffer[0] list_docid = list(set_docid) list_docid.sort(key=lambda x:x) list_docid_str = [] for _docid in list_docid: list_docid_str.append(str(_docid)) return ",".join(list_docid_str)