# -*- coding: utf-8 -*- from bs4 import BeautifulSoup, Comment import copy import sys import os import time import codecs from BiddingKG.dl.ratio.re_ratio import extract_ratio from BiddingKG.dl.table_head.predict import predict sys.setrecursionlimit(1000000) sys.path.append(os.path.abspath("../..")) sys.path.append(os.path.abspath("..")) from BiddingKG.dl.common.Utils import * from BiddingKG.dl.interface.Entitys import * from BiddingKG.dl.interface.predictor import getPredictor, TableTag2List from BiddingKG.dl.common.nerUtils import * from BiddingKG.dl.money.moneySource.ruleExtra import extract_moneySource from BiddingKG.dl.time.re_servicetime import extract_servicetime from BiddingKG.dl.relation_extraction.re_email import extract_email from BiddingKG.dl.bidway.re_bidway import extract_bidway,bidway_integrate from BiddingKG.dl.fingerprint.documentFingerprint import getFingerprint from BiddingKG.dl.entityLink.entityLink import * # def tableToText(soup): ''' @param: soup:网页html的soup @return:处理完表格信息的网页text ''' def getTrs(tbody): #获取所有的tr trs = [] objs = tbody.find_all(recursive=False) for obj in objs: if obj.name=="tr": trs.append(obj) if obj.name=="tbody": for tr in obj.find_all("tr",recursive=False): trs.append(tr) return trs def fixSpan(tbody): # 处理colspan, rowspan信息补全问题 #trs = tbody.findChildren('tr', recursive=False) trs = getTrs(tbody) ths_len = 0 ths = list() trs_set = set() #修改为先进行列补全再进行行补全,否则可能会出现表格解析混乱 # 遍历每一个tr for indtr, tr in enumerate(trs): ths_tmp = tr.findChildren('th', recursive=False) #不补全含有表格的tr if len(tr.findChildren('table'))>0: continue if len(ths_tmp) > 0: ths_len = ths_len + len(ths_tmp) for th in ths_tmp: ths.append(th) trs_set.add(tr) # 遍历每行中的element tds = tr.findChildren(recursive=False) for indtd, td in enumerate(tds): # 若有colspan 则补全同一行下一个位置 if 'colspan' in td.attrs: if str(re.sub("[^0-9]","",str(td['colspan'])))!="": col = int(re.sub("[^0-9]","",str(td['colspan']))) if col<100 and len(td.get_text())<1000: td['colspan'] = 1 for i in range(1, col, 1): td.insert_after(copy.copy(td)) for indtr, tr in enumerate(trs): ths_tmp = tr.findChildren('th', recursive=False) #不补全含有表格的tr if len(tr.findChildren('table'))>0: continue if len(ths_tmp) > 0: ths_len = ths_len + len(ths_tmp) for th in ths_tmp: ths.append(th) trs_set.add(tr) # 遍历每行中的element tds = tr.findChildren(recursive=False) for indtd, td in enumerate(tds): # 若有rowspan 则补全下一行同样位置 if 'rowspan' in td.attrs: if str(re.sub("[^0-9]","",str(td['rowspan'])))!="": row = int(re.sub("[^0-9]","",str(td['rowspan']))) td['rowspan'] = 1 for i in range(1, row, 1): # 获取下一行的所有td, 在对应的位置插入 if indtr+i= (indtd) and len(tds1)>0: if indtd > 0: tds1[indtd - 1].insert_after(copy.copy(td)) else: tds1[0].insert_before(copy.copy(td)) elif indtd-2>0 and len(tds1) > 0 and len(tds1) == indtd - 1: # 修正某些表格最后一列没补全 tds1[indtd-2].insert_after(copy.copy(td)) def getTable(tbody): #trs = tbody.findChildren('tr', recursive=False) trs = getTrs(tbody) inner_table = [] for tr in trs: tr_line = [] tds = tr.findChildren(['td','th'], recursive=False) if len(tds)==0: tr_line.append([re.sub('\xa0','',segment(tr,final=False)),0]) # 2021/12/21 修复部分表格没有td 造成数据丢失 for td in tds: tr_line.append([re.sub('\xa0','',segment(td,final=False)),0]) #tr_line.append([td.get_text(),0]) inner_table.append(tr_line) return inner_table #处理表格不对齐的问题 def fixTable(inner_table,fix_value="~~"): maxWidth = 0 for item in inner_table: if len(item)>maxWidth: maxWidth = len(item) if maxWidth > 100: # log('表格列数大于100,表格异常不做处理。') return [] for i in range(len(inner_table)): if len(inner_table[i]) 0 or last_0-len(line)+1 < 0 or last_1 == len(line)-1 or count_1-count_0 >= 3: return True return False def getsimilarity(line, line1): same_count = 0 for item, item1 in zip(line,line1): if item[1] == item1[1]: same_count += 1 return same_count/len(line) def selfrepair(inner_table,index,dye_set,key_set): """ @summary: 计算每个节点受到的挤压度来判断是否需要染色 """ #print("B",inner_table[index]) min_presure = 3 list_dye = [] first = None count = 0 temp_set = set() _index = 0 for item in inner_table[index]: if first is None: first = item[1] if item[0] not in temp_set: count += 1 temp_set.add(item[0]) else: if first == item[1]: if item[0] not in temp_set: temp_set.add(item[0]) count += 1 else: list_dye.append([first,count,_index]) first = item[1] temp_set.add(item[0]) count = 1 _index += 1 list_dye.append([first,count,_index]) if len(list_dye)>1: begin = 0 end = 0 for i in range(len(list_dye)): end = list_dye[i][2] dye_flag = False # 首尾要求压力减一 if i==0: if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure-1: dye_flag = True dye_type = list_dye[i+1][0] elif i==len(list_dye)-1: if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure-1: dye_flag = True dye_type = list_dye[i-1][0] else: if list_dye[i][1]>1: if list_dye[i+1][1]-list_dye[i][1]+1>=min_presure: dye_flag = True dye_type = list_dye[i+1][0] if list_dye[i-1][1]-list_dye[i][1]+1>=min_presure: dye_flag = True dye_type = list_dye[i-1][0] else: if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure: dye_flag = True dye_type = list_dye[i+1][0] if list_dye[i+1][1]+list_dye[i-1][1]-list_dye[i][1]+1>=min_presure: dye_flag = True dye_type = list_dye[i-1][0] if dye_flag: for h in range(begin,end): inner_table[index][h][1] = dye_type dye_set.add((inner_table[index][h][0],dye_type)) key_set.add(inner_table[index][h][0]) begin = end #print("E",inner_table[index]) def otherrepair(inner_table,index,dye_set,key_set): list_provide_repair = [] if index==0 and len(inner_table)>1: list_provide_repair.append(index+1) elif index==len(inner_table)-1: list_provide_repair.append(index-1) else: list_provide_repair.append(index+1) list_provide_repair.append(index-1) for provide_index in list_provide_repair: if not repairNeeded(inner_table[provide_index]): same_prob = getsimilarity(inner_table[index], inner_table[provide_index]) if same_prob>=0.8: for i in range(len(inner_table[provide_index])): if inner_table[index][i][1]!=inner_table[provide_index][i][1]: dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1])) key_set.add(inner_table[index][i][0]) inner_table[index][i][1] = inner_table[provide_index][i][1] elif same_prob<=0.2: for i in range(len(inner_table[provide_index])): if inner_table[index][i][1]==inner_table[provide_index][i][1]: dye_set.add((inner_table[index][i][0],inner_table[provide_index][i][1])) key_set.add(inner_table[index][i][0]) inner_table[index][i][1] = 0 if inner_table[provide_index][i][1] ==1 else 1 len_dye_set = len(dye_set) height = len(inner_table) for i in range(height): if repairNeeded(inner_table[i]): selfrepair(inner_table, i, dye_set, key_set) #otherrepair(inner_table,i,dye_set,key_set) for h in range(len(inner_table)): for w in range(len(inner_table[0])): if inner_table[h][w][0] in key_set: for item in dye_set: if inner_table[h][w][0] == item[0]: inner_table[h][w][1] = item[1] # 如果两个set长度不相同,则有同一个key被反复染色,将导致无限迭代 if len(dye_set) != len(key_set): for i in range(height): if repairNeeded(inner_table[i]): selfrepair(inner_table,i,dye_set,key_set) #otherrepair(inner_table,i,dye_set,key_set) return if len(dye_set) == len_dye_set: ''' for i in range(height): if repairNeeded(inner_table[i]): otherrepair(inner_table,i,dye_set,key_set) ''' return repairTable(inner_table, dye_set, key_set) def repair_table2(inner_table): """ @summary: 修复表头识别,将明显错误的进行修正 """ # 修复第一第二第三中标候选人作为列表头 if len(inner_table) >= 2 and len(inner_table[0]) >= 3: for i in range(len(inner_table[:3])): for j in range(len(inner_table[i])-2): if inner_table[i][j][0] == '第一中标候选人' \ and inner_table[i][j+1][0] == '第二中标候选人' \ and inner_table[i][j+2][0] == '第三中标候选人' \ and i+1 < len(inner_table) \ and inner_table[i+1][j][1] == 0 \ and inner_table[i+1][j+1][1] == 0 \ and inner_table[i+1][j+2][1] == 0: inner_table[i][j][1] = 1 inner_table[i][j+1][1] = 1 inner_table[i][j+2][1] = 1 break # 修复姓名被作为表头 # 2023-02-10 取消修复,避免项目名称、编号,单位、单价等作为了非表头 # surname = [ # "赵", "钱", "孙", "李", "周", "吴", "郑", "王", "冯", "陈", "褚", "卫", "蒋", "沈", "韩", "杨", "朱", "秦", "尤", "许", "何", "吕", "施", "张", "孔", "曹", "严", "华", "金", "魏", "陶", "姜", "戚", "谢", "邹", "喻", "柏", "水", "窦", "章", "云", "苏", "潘", "葛", "奚", "范", "彭", "郎", "鲁", "韦", "昌", "马", "苗", "凤", "花", "方", "俞", "任", "袁", "柳", "酆", "鲍", "史", "唐", "费", "廉", "岑", "薛", "雷", "贺", "倪", "汤", "滕", "殷", "罗", "毕", "郝", "邬", "安", "常", "乐", "于", "时", "傅", "皮", "卞", "齐", "康", "伍", "余", "元", "卜", "顾", "孟", "平", "黄", "和", "穆", "萧", "尹", "姚", "邵", "湛", "汪", "祁", "毛", "禹", "狄", "米", "贝", "明", "臧", "计", "伏", "成", "戴", "谈", "宋", "茅", "庞", "熊", "纪", "舒", "屈", "项", "祝", "董", "梁", "杜", "阮", "蓝", "闵", "席", "季", "麻", "强", "贾", "路", "娄", "危", "江", "童", "颜", "郭", "梅", "盛", "林", "刁", "钟", "徐", "邱", "骆", "高", "夏", "蔡", "田", "樊", "胡", "凌", "霍", "虞", "万", "支", "柯", "昝", "管", "卢", "莫", "经", "房", "裘", "缪", "干", "解", "应", "宗", "丁", "宣", "贲", "邓", "郁", "单", "杭", "洪", "包", "诸", "左", "石", "崔", "吉", "钮", "龚", "程", "嵇", "邢", "滑", "裴", "陆", "荣", "翁", "荀", "羊", "於", "惠", "甄", "麴", "家", "封", "芮", "羿", "储", "靳", "汲", "邴", "糜", "松", "井", "段", "富", "巫", "乌", "焦", "巴", "弓", "牧", "隗", "山", "谷", "车", "侯", "宓", "蓬", "全", "郗", "班", "仰", "秋", "仲", "伊", "宫", "宁", "仇", "栾", "暴", "甘", "钭", "厉", "戎", "祖", "武", "符", "刘", "景", "詹", "束", "龙", "叶", "幸", "司", "韶", "郜", "黎", "蓟", "薄", "印", "宿", "白", "怀", "蒲", "邰", "从", "鄂", "索", "咸", "籍", "赖", "卓", "蔺", "屠", "蒙", "池", "乔", "阴", "欎", "胥", "能", "苍", "双", "闻", "莘", "党", "翟", "谭", "贡", "劳", "逄", "姬", "申", "扶", "堵", "冉", "宰", "郦", "雍", "舄", "璩", "桑", "桂", "濮", "牛", "寿", "通", "边", "扈", "燕", "冀", "郏", "浦", "尚", "农", "温", "别", "庄", "晏", "柴", "瞿", "阎", "充", "慕", "连", "茹", "习", "宦", "艾", "鱼", "容", "向", "古", "易", "慎", "戈", "廖", "庾", "终", "暨", "居", "衡", "步", "都", "耿", "满", "弘", "匡", "国", "文", "寇", "广", "禄", "阙", "东", "殴", "殳", "沃", "利", "蔚", "越", "夔", "隆", "师", "巩", "厍", "聂", "晁", "勾", "敖", "融", "冷", "訾", "辛", "阚", "那", "简", "饶", "空", "曾", "毋", "沙", "乜", "养", "鞠", "须", "丰", "巢", "关", "蒯", "相", "查", "後", "荆", "红", "游", "竺", "权", "逯", "盖", "益", "桓", "公", "万俟", "司马", "上官", "欧阳", "夏侯", "诸葛", "闻人", "东方", "赫连", "皇甫", "尉迟", "公羊", "澹台", "公冶", "宗政", "濮阳", "淳于", "单于", "太叔", "申屠", "公孙", "仲孙", "轩辕", "令狐", "钟离", "宇文", "长孙", "慕容", "鲜于", "闾丘", "司徒", "司空", "亓官", "司寇", "仉", "督", "子车", "颛孙", "端木", "巫马", "公西", "漆雕", "乐正", "壤驷", "公良", "拓跋", "夹谷", "宰父", "谷梁", "晋", "楚", "闫", "法", "汝", "鄢", "涂", "钦", "段干", "百里", "东郭", "南门", "呼延", "归", "海", "羊舌", "微生", "岳", "帅", "缑", "亢", "况", "后", "有", "琴", "梁丘", "左丘", "东门", "西门", "商", "牟", "佘", "佴", "伯", "赏", "南宫", "墨", "哈", "谯", "笪", "年", "爱", "阳", "佟", "第五", "言", "福", # ] # for i in range(len(inner_table)): # for j in range(len(inner_table[i])): # if inner_table[i][j][1] == 1 \ # and 2 <= len(inner_table[i][j][0]) <= 4 \ # and (inner_table[i][j][0][0] in surname or inner_table[i][j][0][:2] in surname) \ # and re.search("[^\u4e00-\u9fa5]", inner_table[i][j][0]) is None: # inner_table[i][j][1] = 0 return inner_table def sliceTable(inner_table,fix_value="~~"): #进行分块 height = len(inner_table) width = len(inner_table[0]) head_list = [] head_list.append(0) last_head = None last_is_same_value = False for h in range(height): is_all_key = True#是否是全表头行 is_all_value = True#是否是全属性值 is_same_with_lastHead = True#和上一行的结构是否相同 is_same_value=True#一行的item都一样 #is_same_first_item = True#与上一行的第一项是否相同 same_value = inner_table[h][0][0] for w in range(width): if last_head is not None: if inner_table[h-1][w][0] != fix_value and inner_table[h-1][w][0] != "" and inner_table[h-1][w][1] == 0: is_all_key = False if inner_table[h][w][0]==1: is_all_value = False if inner_table[h][w][1]!= inner_table[h-1][w][1]: is_same_with_lastHead = False if inner_table[h][w][0]!=fix_value and inner_table[h][w][0]!=same_value: is_same_value = False else: if re.search("\d+",same_value) is not None: is_same_value = False if h>0 and inner_table[h][0][0]!=inner_table[h-1][0][0]: is_same_first_item = False last_head = h if last_is_same_value: last_is_same_value = is_same_value continue if is_same_value: # 该块只有表头一行不合法 if h - head_list[-1] > 1: head_list.append(h) last_is_same_value = is_same_value continue if not is_all_key: if not is_same_with_lastHead: # 该块只有表头一行不合法 if h - head_list[-1] > 1: head_list.append(h) head_list.append(height) return head_list def setHead_initem(inner_table,pat_head,fix_value="~~",prob_min=0.5): set_item = set() height = len(inner_table) width = len(inner_table[0]) empty_set = set() for i in range(height): for j in range(width): item = inner_table[i][j][0] if item.strip()=="": empty_set.add(item) else: set_item.add(item) list_item = list(set_item) if list_item: x = [] for item in list_item: x.append(getPredictor("form").encode(item)) predict_y = getPredictor("form").predict(np.array(x),type="item") _dict = dict() for item,values in zip(list_item,list(predict_y)): _dict[item] = values[1] # print("##",item,values) #print(_dict) for i in range(height): for j in range(width): item = inner_table[i][j][0] if item not in empty_set: inner_table[i][j][1] = 1 if _dict[item]>prob_min else (1 if re.search(pat_head,item) is not None and len(item)<8 else 0) # print("=====") # for item in inner_table: # print(item) # print("======") repairTable(inner_table) head_list = sliceTable(inner_table) return inner_table,head_list def set_head_model(inner_table): origin_inner_table = copy.deepcopy(inner_table) for i in range(len(inner_table)): for j in range(len(inner_table[i])): # 删掉单格前后符号,以免影响表头预测 col = inner_table[i][j][0] col = re.sub("^[^\u4e00-\u9fa5a-zA-Z0-9]+", "", col) col = re.sub("[^\u4e00-\u9fa5a-zA-Z0-9]+$", "", col) inner_table[i][j] = col # 模型预测表头 predict_list = predict(inner_table) # 组合结果 for i in range(len(inner_table)): for j in range(len(inner_table[i])): inner_table[i][j] = [origin_inner_table[i][j][0], int(predict_list[i][j])] # print("table_head before repair", inner_table) # 表头修正 repairTable(inner_table) inner_table = repair_table2(inner_table) # 按表头分割表格 head_list = sliceTable(inner_table) return inner_table, head_list def setHead_incontext(inner_table,pat_head,fix_value="~~",prob_min=0.5): data_x,data_position = getPredictor("form").getModel("context").encode(inner_table) predict_y = getPredictor("form").getModel("context").predict(data_x) for _position,_y in zip(data_position,predict_y): _w = _position[0] _h = _position[1] if _y[1]>prob_min: inner_table[_h][_w][1] = 1 else: inner_table[_h][_w][1] = 0 _item = inner_table[_h][_w][0] if re.search(pat_head,_item) is not None and len(_item)<8: inner_table[_h][_w][1] = 1 # print("=====") # for item in inner_table: # print(item) # print("======") height = len(inner_table) width = len(inner_table[0]) for i in range(height): for j in range(width): if re.search("[::]$", inner_table[i][j][0]) and len(inner_table[i][j][0])<8: inner_table[i][j][1] = 1 repairTable(inner_table) head_list = sliceTable(inner_table) # print("inner_table:",inner_table) return inner_table,head_list #设置表头 def setHead_inline(inner_table,prob_min=0.64): pad_row = "@@" pad_col = "##" removePadding(inner_table, pad_row, pad_col) pad_pattern = re.compile(pad_row+"|"+pad_col) height = len(inner_table) width = len(inner_table[0]) head_list = [] head_list.append(0) #行表头 is_head_last = False for i in range(height): is_head = False is_long_value = False #判断是否是全padding值 is_same_value = True same_value = inner_table[i][0][0] for j in range(width): if inner_table[i][j][0]!=same_value and inner_table[i][j][0]!=pad_row: is_same_value = False break #predict is head or not with model temp_item = "" for j in range(width): temp_item += inner_table[i][j][0]+"|" temp_item = re.sub(pad_pattern,"",temp_item) form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line") if form_prob is not None: if form_prob[0][1]>prob_min: is_head = True else: is_head = False #print(temp_item,form_prob) if len(inner_table[i][0][0])>40: is_long_value = True if is_head or is_long_value or is_same_value: #不把连续表头分开 if not is_head_last: head_list.append(i) if is_long_value or is_same_value: head_list.append(i+1) if is_head: for j in range(width): inner_table[i][j][1] = 1 is_head_last = is_head head_list.append(height) #列表头 for i in range(len(head_list)-1): head_begin = head_list[i] head_end = head_list[i+1] #最后一列不设置为列表头 for i in range(width-1): is_head = False #predict is head or not with model temp_item = "" for j in range(head_begin,head_end): temp_item += inner_table[j][i][0]+"|" temp_item = re.sub(pad_pattern,"",temp_item) form_prob = getPredictor("form").predict(formEncoding(temp_item,expand=True),type="line") if form_prob is not None: if form_prob[0][1]>prob_min: is_head = True else: is_head = False if is_head: for j in range(head_begin,head_end): inner_table[j][i][1] = 2 addPadding(inner_table, pad_row, pad_col) return inner_table,head_list #设置表头 def setHead_withRule(inner_table,pattern,pat_value,count): height = len(inner_table) width = len(inner_table[0]) head_list = [] head_list.append(0) #行表头 is_head_last = False for i in range(height): set_match = set() is_head = False is_long_value = False is_same_value = True same_value = inner_table[i][0][0] for j in range(width): if inner_table[i][j][0]!=same_value: is_same_value = False break for j in range(width): if re.search(pat_value,inner_table[i][j][0]) is not None: is_head = False break str_find = re.findall(pattern,inner_table[i][j][0]) if len(str_find)>0: set_match.add(inner_table[i][j][0]) if len(set_match)>=count: is_head = True if len(inner_table[i][0][0])>40: is_long_value = True if is_head or is_long_value or is_same_value: if not is_head_last: head_list.append(i) if is_head: for j in range(width): inner_table[i][j][1] = 1 is_head_last = is_head head_list.append(height) #列表头 for i in range(len(head_list)-1): head_begin = head_list[i] head_end = head_list[i+1] #最后一列不设置为列表头 for i in range(width-1): set_match = set() is_head = False for j in range(head_begin,head_end): if re.search(pat_value,inner_table[j][i][0]) is not None: is_head = False break str_find = re.findall(pattern,inner_table[j][i][0]) if len(str_find)>0: set_match.add(inner_table[j][i][0]) if len(set_match)>=count: is_head = True if is_head: for j in range(head_begin,head_end): inner_table[j][i][1] = 2 return inner_table,head_list #取得表格的处理方向 def getDirect(inner_table,begin,end): ''' column_head = set() row_head = set() widths = len(inner_table[0]) for height in range(begin,end): for width in range(widths): if inner_table[height][width][1] ==1: row_head.add(height) if inner_table[height][width][1] ==2: column_head.add(width) company_pattern = re.compile("公司") if 0 in column_head and begin not in row_head: return "column" if 0 in column_head and begin in row_head: for height in range(begin,end): count = 0 count_flag = True for width_index in range(width): if inner_table[height][width_index][1]==0: if re.search(company_pattern,inner_table[height][width_index][0]) is not None: count += 1 else: count_flag = False if count_flag and count>=2: return "column" return "row" ''' count_row_keys = 0 count_column_keys = 0 width = len(inner_table[0]) if begin=2: return "column" # if count_column_keys>count_row_keys: #2022/2/15 此项不够严谨,造成很多错误,故取消 # return "column" return "row" #根据表格处理方向生成句子, def getTableText(inner_table,head_list,key_direct=False): # packPattern = "(标包|[标包][号段名])" packPattern = "(标包|标的|[标包][号段名]|((项目|物资|设备|场次|标段|标的|产品)(名称)))" # 2020/11/23 大网站规则,补充采购类包名 rankPattern = "(排名|排序|名次|序号|评标结果|评审结果|是否中标|推荐意见)" # 2020/11/23 大网站规则,添加序号为排序 entityPattern = "((候选|[中投]标|报价)(单位|公司|人|供应商))|供应商名称" moneyPattern = "([中投]标|报价)(金额|价)" height = len(inner_table) width = len(inner_table[0]) text = "" for head_i in range(len(head_list)-1): head_begin = head_list[head_i] head_end = head_list[head_i+1] direct = getDirect(inner_table, head_begin, head_end) #若只有一行,则直接按行读取 if head_end-head_begin==1: text_line = "" for i in range(head_begin,head_end): for w in range(len(inner_table[i])): if inner_table[i][w][1]==1: _punctuation = ":" else: _punctuation = "," #2021/12/15 统一为中文标点,避免 206893924 国际F座1108,1,009,197.49元 if w>0: if inner_table[i][w][0]!= inner_table[i][w-1][0]: text_line += inner_table[i][w][0]+_punctuation else: text_line += inner_table[i][w][0]+_punctuation text_line = text_line+"。" if text_line!="" else text_line text += text_line else: #构建一个共现矩阵 table_occurence = [] for i in range(head_begin,head_end): line_oc = [] for j in range(width): cell = inner_table[i][j] line_oc.append({"text":cell[0],"type":cell[1],"occu_count":0,"left_head":"","top_head":"","left_dis":0,"top_dis":0}) table_occurence.append(line_oc) occu_height = len(table_occurence) occu_width = len(table_occurence[0]) if len(table_occurence)>0 else 0 #为每个属性值寻找表头 for i in range(occu_height): for j in range(occu_width): cell = table_occurence[i][j] #是属性值 if cell["type"]==0 and cell["text"]!="": left_head = "" top_head = "" find_flag = False temp_head = "" for loop_i in range(1,i+1): if not key_direct: key_values = [1,2] else: key_values = [1] if table_occurence[i-loop_i][j]["type"] in key_values: if find_flag: if table_occurence[i-loop_i][j]["text"]!=temp_head: top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head else: top_head = table_occurence[i-loop_i][j]["text"]+":"+top_head find_flag = True temp_head = table_occurence[i-loop_i][j]["text"] table_occurence[i-loop_i][j]["occu_count"] += 1 else: #找到表头后遇到属性值就返回 if find_flag: break cell["top_head"] += top_head find_flag = False temp_head = "" for loop_j in range(1,j+1): if not key_direct: key_values = [1,2] else: key_values = [2] if table_occurence[i][j-loop_j]["type"] in key_values: if find_flag: if table_occurence[i][j-loop_j]["text"]!=temp_head: left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head else: left_head = table_occurence[i][j-loop_j]["text"]+":"+left_head find_flag = True temp_head = table_occurence[i][j-loop_j]["text"] table_occurence[i][j-loop_j]["occu_count"] += 1 else: if find_flag: break cell["left_head"] += left_head if direct=="row": for i in range(occu_height): pack_text = "" rank_text = "" entity_text = "" text_line = "" money_text = "" #在同一句话中重复的可以去掉 text_set = set() for j in range(width): cell = table_occurence[i][j] if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0): cell = table_occurence[i][j] head = (cell["top_head"]+":") if len(cell["top_head"])>0 else "" if re.search("单报标限总]价|金额|成交报?价|报价", head): head = cell["left_head"] + head else: head += cell["left_head"] if str(head+cell["text"]) in text_set: continue if re.search(packPattern,head) is not None: pack_text += head+cell["text"]+"," elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif #排名替换为同一种表达 rank_text += head+cell["text"]+"," #print(rank_text) elif re.search(entityPattern,head) is not None: entity_text += head+cell["text"]+"," #print(entity_text) else: if re.search(moneyPattern,head) is not None and entity_text!="": money_text += head+cell["text"]+"," else: text_line += head+cell["text"]+"," text_set.add(str(head+cell["text"])) text += pack_text+rank_text+entity_text+money_text+text_line text = text[:-1]+"。" if len(text)>0 else text else: for j in range(occu_width): pack_text = "" rank_text = "" entity_text = "" text_line = "" text_set = set() for i in range(occu_height): cell = table_occurence[i][j] if cell["type"]==0 or (cell["type"]==1 and cell["occu_count"]==0): cell = table_occurence[i][j] head = (cell["left_head"]+"") if len(cell["left_head"])>0 else "" if re.search("单报标限总]价|金额|成交报?价|报价", head): head = cell["top_head"] + head else: head += cell["top_head"] if str(head+cell["text"]) in text_set: continue if re.search(packPattern,head) is not None: pack_text += head+cell["text"]+"," elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif #排名替换为同一种表达 rank_text += head+cell["text"]+"," #print(rank_text) elif re.search(entityPattern,head) is not None and \ re.search('业绩|资格|条件',head)==None and re.search('业绩',cell["text"])==None : #2021/10/19 解决包含业绩的行调到前面问题 entity_text += head+cell["text"]+"," #print(entity_text) else: text_line += head+cell["text"]+"," text_set.add(str(head+cell["text"])) text += pack_text+rank_text+entity_text+text_line text = text[:-1]+"。" if len(text)>0 else text # if direct=="row": # for i in range(head_begin,head_end): # pack_text = "" # rank_text = "" # entity_text = "" # text_line = "" # #在同一句话中重复的可以去掉 # text_set = set() # for j in range(width): # cell = inner_table[i][j] # #是属性值 # if cell[1]==0 and cell[0]!="": # head = "" # # find_flag = False # temp_head = "" # for loop_i in range(0,i+1-head_begin): # if not key_direct: # key_values = [1,2] # else: # key_values = [1] # if inner_table[i-loop_i][j][1] in key_values: # if find_flag: # if inner_table[i-loop_i][j][0]!=temp_head: # head = inner_table[i-loop_i][j][0]+":"+head # else: # head = inner_table[i-loop_i][j][0]+":"+head # find_flag = True # temp_head = inner_table[i-loop_i][j][0] # else: # #找到表头后遇到属性值就返回 # if find_flag: # break # # find_flag = False # temp_head = "" # # # # for loop_j in range(1,j+1): # if not key_direct: # key_values = [1,2] # else: # key_values = [2] # if inner_table[i][j-loop_j][1] in key_values: # if find_flag: # if inner_table[i][j-loop_j][0]!=temp_head: # head = inner_table[i][j-loop_j][0]+":"+head # else: # head = inner_table[i][j-loop_j][0]+":"+head # find_flag = True # temp_head = inner_table[i][j-loop_j][0] # else: # if find_flag: # break # # if str(head+inner_table[i][j][0]) in text_set: # continue # if re.search(packPattern,head) is not None: # pack_text += head+inner_table[i][j][0]+"," # elif re.search(rankPattern,head) is not None: # 2020/11/23 大网站规则发现问题,if 改elif # #排名替换为同一种表达 # rank_text += head+inner_table[i][j][0]+"," # #print(rank_text) # elif re.search(entityPattern,head) is not None: # entity_text += head+inner_table[i][j][0]+"," # #print(entity_text) # else: # text_line += head+inner_table[i][j][0]+"," # text_set.add(str(head+inner_table[i][j][0])) # text += pack_text+rank_text+entity_text+text_line # text = text[:-1]+"。" if len(text)>0 else text # else: # for j in range(width): # # rank_text = "" # entity_text = "" # text_line = "" # text_set = set() # for i in range(head_begin,head_end): # cell = inner_table[i][j] # #是属性值 # if cell[1]==0 and cell[0]!="": # find_flag = False # head = "" # temp_head = "" # # for loop_j in range(1,j+1): # if not key_direct: # key_values = [1,2] # else: # key_values = [2] # if inner_table[i][j-loop_j][1] in key_values: # if find_flag: # if inner_table[i][j-loop_j][0]!=temp_head: # head = inner_table[i][j-loop_j][0]+":"+head # else: # head = inner_table[i][j-loop_j][0]+":"+head # find_flag = True # temp_head = inner_table[i][j-loop_j][0] # else: # if find_flag: # break # find_flag = False # temp_head = "" # for loop_i in range(0,i+1-head_begin): # if not key_direct: # key_values = [1,2] # else: # key_values = [1] # if inner_table[i-loop_i][j][1] in key_values: # if find_flag: # if inner_table[i-loop_i][j][0]!=temp_head: # head = inner_table[i-loop_i][j][0]+":"+head # else: # head = inner_table[i-loop_i][j][0]+":"+head # find_flag = True # temp_head = inner_table[i-loop_i][j][0] # else: # if find_flag: # break # if str(head+inner_table[i][j][0]) in text_set: # continue # if re.search(rankPattern,head) is not None: # rank_text += head+inner_table[i][j][0]+"," # #print(rank_text) # elif re.search(entityPattern,head) is not None: # entity_text += head+inner_table[i][j][0]+"," # #print(entity_text) # else: # text_line += head+inner_table[i][j][0]+"," # text_set.add(str(head+inner_table[i][j][0])) # text += rank_text+entity_text+text_line # text = text[:-1]+"。" if len(text)>0 else text return text def removeFix(inner_table,fix_value="~~"): height = len(inner_table) width = len(inner_table[0]) for h in range(height): for w in range(width): if inner_table[h][w][0]==fix_value: inner_table[h][w][0] = "" def trunTable(tbody,in_attachment): # print(tbody.find('tbody')) # 附件中的表格,排除异常错乱的表格 if in_attachment: if tbody.name=='table': _tbody = tbody.find('tbody') if _tbody is None: _tbody = tbody else: _tbody = tbody _td_len_list = [] for _tr in _tbody.find_all(recursive=False): len_td = len(_tr.find_all(recursive=False)) _td_len_list.append(len_td) if _td_len_list: if len(list(set(_td_len_list))) >= 8 or max(_td_len_list) > 100: string_list = [re.sub("\s+","",i)for i in tbody.strings if i and i!='\n'] tbody.string = ",".join(string_list) table_max_len = 30000 tbody.string = tbody.string[:table_max_len] tbody.name = "turntable" return None # fixSpan(tbody) # inner_table = getTable(tbody) # inner_table = fixTable(inner_table) table2list = TableTag2List() inner_table = table2list.table2list(tbody, segment) inner_table = fixTable(inner_table) if inner_table == []: string_list = [re.sub("\s+", "", i) for i in tbody.strings if i and i != '\n'] tbody.string = ",".join(string_list) table_max_len = 30000 tbody.string = tbody.string[:table_max_len] # log('异常表格直接取全文') tbody.name = "turntable" return None if len(inner_table)>0 and len(inner_table[0])>0: for tr in inner_table: for td in tr: if isinstance(td, str): tbody.string = segment(tbody,final=False) table_max_len = 30000 tbody.string = tbody.string[:table_max_len] # log('异常表格,不做表格处理,直接取全文') tbody.name = "turntable" return None #inner_table,head_list = setHead_withRule(inner_table,pat_head,pat_value,3) #inner_table,head_list = setHead_inline(inner_table) # inner_table, head_list = setHead_initem(inner_table,pat_head) inner_table, head_list = set_head_model(inner_table) # inner_table,head_list = setHead_incontext(inner_table,pat_head) # print("table_head", inner_table) # print("head_list", head_list) # for begin in range(len(head_list[:-1])): # for item in inner_table[head_list[begin]:head_list[begin+1]]: # print(item) # print("====") removeFix(inner_table) # print("----") # print(head_list) # for item in inner_table: # print(item) tbody.string = getTableText(inner_table,head_list) table_max_len = 30000 tbody.string = tbody.string[:table_max_len] # print(tbody.string) tbody.name = "turntable" return inner_table return None pat_head = re.compile('^(名称|序号|项目|标项|工程|品目[一二三四1234]|第[一二三四1234](标段|名|候选人|中标)|包段|标包|分包|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理|制造|企业资质|质量目标|工期目标|(需求|服务|项目|施工|采购|招租|出租|转让|出让|业主|询价|委托|权属|招标|竞得|抽取|承建)(人|方|单位)(名称)?|(供应商|供货商|服务商)(名称)?)$') #pat_head = re.compile('(名称|序号|项目|工程|品目[一二三四1234]|第[一二三四1234](标段|候选人|中标)|包段|包号|货物|单位|数量|价格|报价|金额|总价|单价|[招投中]标|供应商|候选|编号|得分|评委|评分|名次|排名|排序|科室|方式|工期|时间|产品|开始|结束|联系|日期|面积|姓名|证号|备注|级别|地[点址]|类型|代理)') pat_value = re.compile("(\d{2,}.\d{1}|\d+年\d+月|\d{8,}|\d{3,}-\d{6,}|有限[责任]*公司|^\d+$)") list_innerTable = [] # 2022/2/9 删除干扰标签 for tag in soup.find_all('option'): #例子: 216661412 if 'selected' not in tag.attrs: tag.extract() for ul in soup.find_all('ul'): #例子 156439663 多个不同channel 类别的标题 if ul.find_all('li') == ul.findChildren(recursive=False) and len(set(re.findall( '招标公告|中标结果公示|中标候选人公示|招标答疑|开标评标|合同履?约?公示|资格评审', ul.get_text(), re.S)))>3: ul.extract() # tbodies = soup.find_all('table') # 遍历表格中的每个tbody tbodies = [] in_attachment = False for _part in soup.find_all(): if _part.name=='table': tbodies.append((_part,in_attachment)) elif _part.name=='div': if 'class' in _part.attrs and "richTextFetch" in _part['class']: in_attachment = True #逆序处理嵌套表格 for tbody_index in range(1,len(tbodies)+1): tbody,_in_attachment = tbodies[len(tbodies)-tbody_index] inner_table = trunTable(tbody,_in_attachment) list_innerTable.append(inner_table) # tbodies = soup.find_all('tbody') # 遍历表格中的每个tbody tbodies = [] in_attachment = False for _part in soup.find_all(): if _part.name == 'tbody': tbodies.append((_part, in_attachment)) elif _part.name == 'div': if 'class' in _part.attrs and "richTextFetch" in _part['class']: in_attachment = True #逆序处理嵌套表格 for tbody_index in range(1,len(tbodies)+1): tbody,_in_attachment = tbodies[len(tbodies)-tbody_index] inner_table = trunTable(tbody,_in_attachment) list_innerTable.append(inner_table) return soup # return list_innerTable re_num = re.compile("[二三四五六七八九]十[一二三四五六七八九]?|十[一二三四五六七八九]|[一二三四五六七八九十]") num_dict = { "一": 1, "二": 2, "三": 3, "四": 4, "五": 5, "六": 6, "七": 7, "八": 8, "九": 9, "十": 10} # 一百以内的中文大写转换为数字 def change2num(text): result_num = -1 # text = text[:6] match = re_num.search(text) if match: _num = match.group() if num_dict.get(_num): return num_dict.get(_num) else: tenths = 1 the_unit = 0 num_split = _num.split("十") if num_dict.get(num_split[0]): tenths = num_dict.get(num_split[0]) if num_dict.get(num_split[1]): the_unit = num_dict.get(num_split[1]) result_num = tenths * 10 + the_unit elif re.search("\d{1,2}",text): _num = re.search("\d{1,2}",text).group() result_num = int(_num) return result_num #大纲分段处理 def get_preprocessed_outline(soup): pattern_0 = re.compile("^(?:[二三四五六七八九]十[一二三四五六七八九]?|十[一二三四五六七八九]|[一二三四五六七八九十])[、.\.]") pattern_1 = re.compile("^[\((]?(?:[二三四五六七八九]十[一二三四五六七八九]?|十[一二三四五六七八九]|[一二三四五六七八九十])[\))]") pattern_2 = re.compile("^\d{1,2}[、.\.](?=[^\d]{1,2}|$)") pattern_3 = re.compile("^[\((]?\d{1,2}[\))]") pattern_list = [pattern_0, pattern_1, pattern_2, pattern_3] body = soup.find("body") if body == None: return soup # 修复 无body的报错 例子:264419050 body_child = body.find_all(recursive=False) deal_part = body # print(body_child[0]['id']) if 'id' in body_child[0].attrs: if len(body_child) <= 2 and body_child[0]['id'] == 'pcontent': deal_part = body_child[0] if len(deal_part.find_all(recursive=False))>2: deal_part = deal_part.parent skip_tag = ['turntable', 'tbody', 'th', 'tr', 'td', 'table','thead','tfoot'] for part in deal_part.find_all(recursive=False): # 查找解析文本的主干部分 is_main_text = False through_text_num = 0 while (not is_main_text and part.find_all(recursive=False)): while len(part.find_all(recursive=False)) == 1 and part.get_text(strip=True) == \ part.find_all(recursive=False)[0].get_text(strip=True): part = part.find_all(recursive=False)[0] max_len = len(part.get_text(strip=True)) is_main_text = True for t_part in part.find_all(recursive=False): if t_part.name not in skip_tag and t_part.get_text(strip=True)!="": through_text_num += 1 if t_part.get_text(strip=True)!="" and len(t_part.get_text(strip=True))/max_len>=0.65: if t_part.name not in skip_tag: is_main_text = False part = t_part break else: while len(t_part.find_all(recursive=False)) == 1 and t_part.get_text(strip=True) == \ t_part.find_all(recursive=False)[0].get_text(strip=True): t_part = t_part.find_all(recursive=False)[0] if through_text_num>2: is_table = True for _t_part in t_part.find_all(recursive=False): if _t_part.name not in skip_tag: is_table = False break if not is_table: is_main_text = False part = t_part break else: is_main_text = False part = t_part break is_find = False for _pattern in pattern_list: last_index = 0 handle_list = [] for _part in part.find_all(recursive=False): if _part.name not in skip_tag and _part.get_text(strip=True) != "": # print('text:', _part.get_text(strip=True)) re_match = re.search(_pattern, _part.get_text(strip=True)) if re_match: outline_index = change2num(re_match.group()) if last_index < outline_index: # _part.insert_before("##split##") handle_list.append(_part) last_index = outline_index if len(handle_list)>1: is_find = True for _part in handle_list: _part.insert_before("##split##") if is_find: break # print(soup) return soup #数据清洗 def segment(soup,final=True): # print("==") # print(soup) # print("====") #segList = ["tr","div","h1", "h2", "h3", "h4", "h5", "h6", "header"] subspaceList = ["td",'a',"span","p"] if soup.name in subspaceList: #判断有值叶子节点数 _count = 0 for child in soup.find_all(recursive=True): if child.get_text().strip()!="" and len(child.find_all())==0: _count += 1 if _count<=1: text = soup.get_text() # 2020/11/24 大网站规则添加 if 'title' in soup.attrs: if '...' in soup.get_text() and soup.get_text().strip()[:-3] in soup.attrs['title']: text = soup.attrs['title'] _list = [] for x in re.split("\s+",text): if x.strip()!="": _list.append(len(x)) if len(_list)>0: _minLength = min(_list) if _minLength>2: _substr = "," else: _substr = "" else: _substr = "" text = text.replace("\r\n",",").replace("\n",",") text = re.sub("\s+",_substr,text) # text = re.sub("\s+","##space##",text) return text segList = ["title"] commaList = ["div","br","td","p","li"] #commaList = [] spaceList = ["span"] tbodies = soup.find_all('tbody') if len(tbodies) == 0: tbodies = soup.find_all('table') # 递归遍历所有节点,插入符号 for child in soup.find_all(recursive=True): # print(child.name,child.get_text()) if child.name in segList: child.insert_after("。") if child.name in commaList: child.insert_after(",") # if child.name == 'div' and 'class' in child.attrs: # # 添加附件"attachment"标识 # if "richTextFetch" in child['class']: # child.insert_before("##attachment##") # print(child.parent) # if child.name in subspaceList: # child.insert_before("#subs"+str(child.name)+"#") # child.insert_after("#sube"+str(child.name)+"#") # if child.name in spaceList: # child.insert_after(" ") text = str(soup.get_text()) #替换英文冒号为中文冒号 text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text) #替换为中文逗号 text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text) #替换为中文分号 text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text) # 感叹号替换为中文句号 text = re.sub("(?<=[\u4e00-\u9fa5])[!!]|[!!](?=[\u4e00-\u9fa5])","。",text) #替换格式未识别的问号为" " ,update:2021/7/20 text = re.sub("[?\?]{2,}|\n"," ",text) #替换"""为"“",否则导入deepdive出错 # text = text.replace('"',"“").replace("\r","").replace("\n",",") text = text.replace('"',"“").replace("\r","").replace("\n","").replace("\\n","") #2022/1/4修复 非分段\n 替换为逗号造成 公司拆分 span \n南航\n上海\n分公司 # print('==1',text) # text = re.sub("\s{4,}",",",text) # 解决公告中的" "空格替换问题 if re.search("\s{4,}",text): _text = "" for _sent in re.split("。+",text): for _sent2 in re.split(',+',_sent): for _sent3 in re.split(":+",_sent2): for _t in re.split("\s{4,}",_sent3): if len(_t)<3: _text += _t else: _text += ","+_t _text += ":" _text = _text[:-1] _text += "," _text = _text[:-1] _text += "。" _text = _text[:-1] text = _text # print('==2',text) #替换标点 #替换连续的标点 if final: text = re.sub("##space##"," ",text) punc_pattern = "(?P[。,;::,\s]+)" list_punc = re.findall(punc_pattern,text) list_punc.sort(key=lambda x:len(x),reverse=True) for punc_del in list_punc: if len(punc_del)>1: if len(punc_del.strip())>0: if ":" in punc_del.strip(): if "。" in punc_del.strip(): text = re.sub(punc_del, ":。", text) else: text = re.sub(punc_del,":",text) else: text = re.sub(punc_del,punc_del.strip()[0],text) #2021/12/09 修正由于某些标签后插入符号把原来符号替换 else: text = re.sub(punc_del,"",text) #将连续的中文句号替换为一个 text_split = text.split("。") text_split = [x for x in text_split if len(x)>0] text = "。".join(text_split) # #删除标签中的所有空格 # for subs in subspaceList: # patten = "#subs"+str(subs)+"#(.*?)#sube"+str(subs)+"#" # while(True): # oneMatch = re.search(re.compile(patten),text) # if oneMatch is not None: # _match = oneMatch.group(1) # text = text.replace("#subs"+str(subs)+"#"+_match+"#sube"+str(subs)+"#",_match) # else: # break # text过大报错 LOOP_LEN = 10000 LOOP_BEGIN = 0 _text = "" if len(text)<10000000: while(LOOP_BEGIN3 and len(child_text) <50: # 先判断是否字数少于50,成立加逗号,否则加句号 child.insert_after(",") elif len(child_text) >=50: child.insert_after("。") #if child.name in spaceList: #child.insert_after(" ") text = str(soup.get_text()) text = re.sub("\s{5,}",",",text) text = text.replace('"',"“").replace("\r","").replace("\n",",") #替换"""为"“",否则导入deepdive出错 text = text.replace('"',"“") #text = text.replace('"',"“").replace("\r","").replace("\n","") #删除所有空格 text = re.sub("\s+","#nbsp#",text) text_list = text.split('#nbsp#') new_text = '' for i in range(len(text_list)-1): if text_list[i] == '' or text_list[i][-1] in [',','。',';',':']: new_text += text_list[i] elif re.findall('([一二三四五六七八九]、)', text_list[i+1][:4]) != []: new_text += text_list[i] + '。' elif re.findall('([0-9]、)', text_list[i+1][:4]) != []: new_text += text_list[i] + ';' elif text_list[i].isdigit() and text_list[i+1].isdigit(): new_text += text_list[i] + ' ' elif text_list[i][-1] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','¥'] or text_list[i+1][0] in ['-',':','(',')','/','(',')','——','年','月','日','时','分','元','万元']: new_text += text_list[i] elif len(text_list[i]) >= 3 and len(text_list[i+1]) >= 3: new_text += text_list[i] + ',' else: new_text += text_list[i] new_text += text_list[-1] text = new_text #替换英文冒号为中文冒号 text = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])",":",text) #替换为中文逗号 text = re.sub("(?<=[\u4e00-\u9fa5]),|,(?=[\u4e00-\u9fa5])",",",text) #替换为中文分号 text = re.sub("(?<=[\u4e00-\u9fa5]);|;(?=[\u4e00-\u9fa5])",";",text) #替换标点 while(True): #替换连续的标点 punc = re.search(",(?P:|。|,|;)\s*",text) if punc is not None: text = re.sub(","+punc.group("punc")+"\s*",punc.group("punc"),text) punc = re.search("(?P:|。|,|;)\s*,",text) if punc is not None: text = re.sub(punc.group("punc")+"\s*,",punc.group("punc"),text) else: #替换标点之后的空格 punc = re.search("(?P:|。|,|;)\s+",text) if punc is not None: text = re.sub(punc.group("punc")+"\s+",punc.group("punc"),text) else: break #将连续的中文句号替换为一个 text_split = text.split("。") text_split = [x for x in text_split if len(x)>0] text = "。".join(text_split) #替换中文括号为英文括号 text = re.sub("(","(",text) text = re.sub(")",")",text) return text ''' #连续实体合并(弃用) def union_ner(list_ner): result_list = [] union_index = [] union_index_set = set() for i in range(len(list_ner)-1): if len(set([str(list_ner[i][2]),str(list_ner[i+1][2])])&set(["org","company"]))==2: if list_ner[i][1]-list_ner[i+1][0]==1: union_index_set.add(i) union_index_set.add(i+1) union_index.append((i,i+1)) for i in range(len(list_ner)): if i not in union_index_set: result_list.append(list_ner[i]) for item in union_index: #print(str(list_ner[item[0]][3])+str(list_ner[item[1]][3])) result_list.append((list_ner[item[0]][0],list_ner[item[1]][1],'company',str(list_ner[item[0]][3])+str(list_ner[item[1]][3]))) return result_list # def get_preprocessed(articles,useselffool=False): # ''' # @summary:预处理步骤,NLP处理、实体识别 # @param: # articles:待处理的文章list [[id,source,jointime,doc_id,title]] # @return:list of articles,list of each article of sentences,list of each article of entitys # ''' # list_articles = [] # list_sentences = [] # list_entitys = [] # cost_time = dict() # for article in articles: # list_sentences_temp = [] # list_entitys_temp = [] # doc_id = article[0] # sourceContent = article[1] # _send_doc_id = article[3] # _title = article[4] # #表格处理 # key_preprocess = "tableToText" # start_time = time.time() # article_processed = segment(tableToText(BeautifulSoup(sourceContent,"lxml"))) # # # log(article_processed) # # if key_preprocess not in cost_time: # cost_time[key_preprocess] = 0 # cost_time[key_preprocess] += time.time()-start_time # # #article_processed = article[1] # list_articles.append(Article(doc_id,article_processed,sourceContent,_send_doc_id,_title)) # #nlp处理 # if article_processed is not None and len(article_processed)!=0: # split_patten = "。" # sentences = [] # _begin = 0 # for _iter in re.finditer(split_patten,article_processed): # sentences.append(article_processed[_begin:_iter.span()[1]]) # _begin = _iter.span()[1] # sentences.append(article_processed[_begin:]) # # lemmas = [] # doc_offsets = [] # dep_types = [] # dep_tokens = [] # # time1 = time.time() # # ''' # tokens_all = fool.cut(sentences) # #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all) # #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all) # ner_entitys_all = fool.ner(sentences) # ''' # #限流执行 # key_nerToken = "nerToken" # start_time = time.time() # tokens_all,ner_entitys_all = getTokensAndNers(sentences,useselffool=useselffool) # if key_nerToken not in cost_time: # cost_time[key_nerToken] = 0 # cost_time[key_nerToken] += time.time()-start_time # # # for sentence_index in range(len(sentences)): # # # # list_sentence_entitys = [] # sentence_text = sentences[sentence_index] # tokens = tokens_all[sentence_index] # # list_tokenbegin = [] # begin = 0 # for i in range(0,len(tokens)): # list_tokenbegin.append(begin) # begin += len(str(tokens[i])) # list_tokenbegin.append(begin+1) # #pos_tag = pos_all[sentence_index] # pos_tag = "" # # ner_entitys = ner_entitys_all[sentence_index] # # list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys)) # # #识别package # # # #识别实体 # for ner_entity in ner_entitys: # begin_index_temp = ner_entity[0] # end_index_temp = ner_entity[1] # entity_type = ner_entity[2] # entity_text = ner_entity[3] # # for j in range(len(list_tokenbegin)): # if list_tokenbegin[j]==begin_index_temp: # begin_index = j # break # elif list_tokenbegin[j]>begin_index_temp: # begin_index = j-1 # break # begin_index_temp += len(str(entity_text)) # for j in range(begin_index,len(list_tokenbegin)): # if list_tokenbegin[j]>=begin_index_temp: # end_index = j-1 # break # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index) # # #去掉标点符号 # entity_text = re.sub("[,,。:]","",entity_text) # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1]-1)) # # # #使用正则识别金额 # entity_type = "money" # # #money_patten_str = "(([1-9][\d,,]*(?:\.\d+)?[百千万亿]?[\(\)()元整]+)|([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})|(?:[¥¥]+,?|报价|标价)[(\(]?([万])?元?[)\)]?[::]?.{,7}?([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)|([1-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]?)[\((]?([万元]{1,2}))*" # # list_money_pattern = {"cn":"(()()([零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]{3,})())*", # "key_word":"((?:[¥¥]+,?|[报标限]价|金额)(?:[(\(]?\s*([万元]*)\s*[)\)]?)\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*", # "front_m":"((?:[(\(]?\s*([万元]+)\s*[)\)])\s*[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分]{,7}?)([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿元]*)())*", # "behind_m":"(()()([0-9][\d,,]*(?:\.\d+)?(?:,?)[百千万亿]*)[\((]?([万元]+)[\))]?)*"} # # set_begin = set() # for pattern_key in list_money_pattern.keys(): # pattern = re.compile(list_money_pattern[pattern_key]) # all_match = re.findall(pattern, sentence_text) # index = 0 # for i in range(len(all_match)): # if len(all_match[i][0])>0: # # print("===",all_match[i]) # #print(all_match[i][0]) # unit = "" # entity_text = all_match[i][3] # if pattern_key in ["key_word","front_m"]: # unit = all_match[i][1] # else: # unit = all_match[i][4] # if entity_text.find("元")>=0: # unit = "" # # index += len(all_match[i][0])-len(entity_text)-len(all_match[i][4])#-len(all_match[i][1])-len(all_match[i][2])#整个提出来的作为实体->数字部分作为整体,否则会丢失特征 # # begin_index_temp = index # for j in range(len(list_tokenbegin)): # if list_tokenbegin[j]==index: # begin_index = j # break # elif list_tokenbegin[j]>index: # begin_index = j-1 # break # index += len(str(entity_text))+len(all_match[i][4])#+len(all_match[i][2])+len(all_match[i][1])#整个提出来的作为实体 # end_index_temp = index # #index += len(str(all_match[i][0])) # for j in range(begin_index,len(list_tokenbegin)): # if list_tokenbegin[j]>=index: # end_index = j-1 # break # entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index) # # # entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億十百千万亿元角分]","",entity_text) # if len(unit)>0: # entity_text = str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0])) # else: # entity_text = str(getUnifyMoney(entity_text)) # # _exists = False # for item in list_sentence_entitys: # if item.entity_id==entity_id and item.entity_type==entity_type: # _exists = True # if not _exists: # if float(entity_text)>10: # list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,begin_index_temp,end_index_temp)) # # else: # index += 1 # # list_sentence_entitys.sort(key=lambda x:x.begin_index) # list_entitys_temp = list_entitys_temp+list_sentence_entitys # list_sentences.append(list_sentences_temp) # list_entitys.append(list_entitys_temp) # return list_articles,list_sentences,list_entitys,cost_time def get_preprocessed(articles, useselffool=False): ''' @summary:预处理步骤,NLP处理、实体识别 @param: articles:待处理的文章list [[id,source,jointime,doc_id,title]] @return:list of articles,list of each article of sentences,list of each article of entitys ''' cost_time = dict() list_articles = get_preprocessed_article(articles,cost_time) list_sentences,list_outlines = get_preprocessed_sentences(list_articles,True,cost_time) list_entitys = get_preprocessed_entitys(list_sentences,True,cost_time) calibrateEnterprise(list_articles,list_sentences,list_entitys) return list_articles,list_sentences,list_entitys,list_outlines,cost_time def special_treatment(sourceContent, web_source_no): try: if web_source_no == 'DX000202-1': ser = re.search('中标供应商及中标金额:【(([\w()]{5,20}-[\d,.]+,)+)】', sourceContent) if ser: new = "" l = ser.group(1).split(',') for i in range(len(l)): it = l[i] if '-' in it: role, money = it.split('-') new += '标段%d, 中标供应商: ' % (i + 1) + role + ',中标金额:' + money + '。' sourceContent = sourceContent.replace(ser.group(0), new, 1) elif web_source_no == '00753-14': body = sourceContent.find("body") body_child = body.find_all(recursive=False) pcontent = body if 'id' in body_child[0].attrs: if len(body_child) <= 2 and body_child[0]['id'] == 'pcontent': pcontent = body_child[0] # pcontent = sourceContent.find("div", id="pcontent") pcontent = pcontent.find_all(recursive=False)[0] first_table = None for idx in range(len(pcontent.find_all(recursive=False))): t_part = pcontent.find_all(recursive=False)[idx] if t_part.name != "table": break if idx == 0: first_table = t_part else: for _tr in t_part.find("tbody").find_all(recursive=False): first_table.find("tbody").append(_tr) t_part.clear() elif web_source_no == 'DX008357-11': body = sourceContent.find("body") body_child = body.find_all(recursive=False) pcontent = body if 'id' in body_child[0].attrs: if len(body_child) <= 2 and body_child[0]['id'] == 'pcontent': pcontent = body_child[0] # pcontent = sourceContent.find("div", id="pcontent") pcontent = pcontent.find_all(recursive=False)[0] error_table = [] is_error_table = False for part in pcontent.find_all(recursive=False): if is_error_table: if part.name == "table": error_table.append(part) else: break if part.name == "div" and part.get_text(strip=True) == "中标候选单位:": is_error_table = True first_table = None for idx in range(len(error_table)): t_part = error_table[idx] # if t_part.name != "table": # break if idx == 0: for _tr in t_part.find("tbody").find_all(recursive=False): if _tr.get_text(strip=True) == "": _tr.decompose() first_table = t_part else: for _tr in t_part.find("tbody").find_all(recursive=False): if _tr.get_text(strip=True) != "": first_table.find("tbody").append(_tr) t_part.clear() elif web_source_no == '18021-2': body = sourceContent.find("body") body_child = body.find_all(recursive=False) pcontent = body if 'id' in body_child[0].attrs: if len(body_child) <= 2 and body_child[0]['id'] == 'pcontent': pcontent = body_child[0] # pcontent = sourceContent.find("div", id="pcontent") td = pcontent.find_all("td") for _td in td: if str(_td.string).strip() == "报价金额": _td.string = "单价" elif web_source_no == '13740-2': # “xxx成为成交供应商” re_match = re.search("[^,。]+成为[^,。]*成交供应商", sourceContent) if re_match: sourceContent = sourceContent.replace(re_match.group(), "成交人:" + re_match.group()) elif web_source_no == '03786-10': ser1 = re.search('中标价:([\d,.]+)', sourceContent) ser2 = re.search('合同金额[((]万元[))]:([\d,.]+)', sourceContent) if ser1 and ser2: m1 = ser1.group(1).replace(',', '') m2 = ser2.group(1).replace(',', '') if float(m1) < 100000 and (m1.split('.')[0] == m2.split('.')[0] or m2 == '0'): new = '中标价(万元):' + m1 sourceContent = sourceContent.replace(ser1.group(0), new, 1) elif web_source_no=='00076-4': ser = re.search('主要标的数量:([0-9一]+)\w{,3},主要标的单价:([\d,.]+)元?,合同金额:(.00),', sourceContent) if ser: num = ser.group(1).replace('一', '1') try: num = 1 if num == '0' else num unit_price = ser.group(2).replace(',', '') total_price = str(int(num) * float(unit_price)) new = '合同金额:' + total_price sourceContent = sourceContent.replace('合同金额:.00', new, 1) except Exception as e: log('preprocessing.py special_treatment exception') elif web_source_no=='DX000105-2': if re.search("成交公示", sourceContent) and re.search(',投标人:', sourceContent) and re.search(',成交人:', sourceContent)==None: sourceContent = sourceContent.replace(',投标人:', ',成交人:') elif web_source_no in ['03795-1', '03795-2']: if re.search('中标单位如下', sourceContent) and re.search(',投标人:', sourceContent) and re.search(',中标人:', sourceContent)==None: sourceContent = sourceContent.replace(',投标人:', ',中标人:') elif web_source_no in ['04080-3', '04080-4']: ser = re.search('合同金额:([0-9,]+.[0-9]{3,})(.{,4})', sourceContent) if ser and '万' not in ser.group(2): sourceContent = sourceContent.replace('合同金额:', '合同金额(万元):') elif web_source_no=='03761-3': ser = re.search('中标价,([0-9]+)[.0-9]*%', sourceContent) if ser and int(ser.group(1))>100: sourceContent = sourceContent.replace(ser.group(0), ser.group(0)[:-1]+'元') elif web_source_no=='00695-7': ser = re.search('支付金额:', sourceContent) if ser: sourceContent = sourceContent.replace('支付金额:', '合同金额:') elif web_source_no=='00811-8': if re.search('是否中标:是', sourceContent) and re.search('排名:\d,', sourceContent): sourceContent = re.sub('排名:\d,', '候选', sourceContent) elif web_source_no=='DX000726-6': sourceContent = re.sub('卖方[::\s]+宝山钢铁股份有限公司', '招标单位:宝山钢铁股份有限公司', sourceContent) return sourceContent except Exception as e: log('特殊数据源: %s 预处理特别修改抛出异常: %s'%(web_source_no, e)) return sourceContent def article_limit(soup,limit_words=30000): sub_space = re.compile("\s+") def soup_limit(_soup,_count,max_count=30000,max_gap=500): """ :param _soup: soup :param _count: 当前字数 :param max_count: 字数最大限制 :param max_gap: 超过限制后的最大误差 :return: """ _gap = _count - max_count _is_skip = False next_soup = None while len(_soup.find_all(recursive=False)) == 1 and \ _soup.get_text(strip=True) == _soup.find_all(recursive=False)[0].get_text(strip=True): _soup = _soup.find_all(recursive=False)[0] if len(_soup.find_all(recursive=False)) == 0: _soup.string = str(_soup.get_text())[:max_count-_count] _count += len(re.sub(sub_space, "", _soup.string)) _gap = _count - max_count next_soup = None else: for _soup_part in _soup.find_all(recursive=False): if not _is_skip: _count += len(re.sub(sub_space, "", _soup_part.get_text())) if _count >= max_count: _gap = _count - max_count if _gap <= max_gap: _is_skip = True else: _is_skip = True next_soup = _soup_part _count -= len(re.sub(sub_space, "", _soup_part.get_text())) continue else: _soup_part.decompose() return _count,_gap,next_soup text_count = 0 have_attachment = False attachment_part = None for child in soup.find_all(recursive=True): if child.name == 'div' and 'class' in child.attrs: if "richTextFetch" in child['class']: child.insert_before("##attachment##。") # 句号分开,避免项目名称等提取 attachment_part = child have_attachment = True break if not have_attachment: # 无附件 if len(re.sub(sub_space, "", soup.get_text())) > limit_words: text_count,gap,n_soup = soup_limit(soup,text_count,max_count=limit_words,max_gap=500) while n_soup: text_count, gap, n_soup = soup_limit(n_soup, text_count, max_count=limit_words, max_gap=500) else: # 有附件 _text = re.sub(sub_space, "", soup.get_text()) _text_split = _text.split("##attachment##") if len(_text_split[0])>limit_words: main_soup = attachment_part.parent main_text = main_soup.find_all(recursive=False)[0] text_count, gap, n_soup = soup_limit(main_text, text_count, max_count=limit_words, max_gap=500) while n_soup: text_count, gap, n_soup = soup_limit(n_soup, text_count, max_count=limit_words, max_gap=500) if len(_text_split[1])>limit_words: # attachment_html纯文本,无子结构 if len(attachment_part.find_all(recursive=False))==0: attachment_part.string = str(attachment_part.get_text())[:limit_words] else: attachment_text_nums = 0 attachment_skip = False for part in attachment_part.find_all(recursive=False): if not attachment_skip: last_attachment_text_nums = attachment_text_nums attachment_text_nums = attachment_text_nums + len(re.sub(sub_space, "", part.get_text())) if attachment_text_nums>=limit_words: part.string = str(part.get_text())[:limit_words-last_attachment_text_nums] attachment_skip = True else: part.decompose() return soup def attachment_filelink(soup): have_attachment = False attachment_part = None for child in soup.find_all(recursive=True): if child.name == 'div' and 'class' in child.attrs: if "richTextFetch" in child['class']: attachment_part = child have_attachment = True break if not have_attachment: return soup else: # 附件类型:图片、表格 attachment_type = re.compile("\.(?:png|jpg|jpeg|tif|bmp|xlsx|xls)$") attachment_dict = dict() for _attachment in attachment_part.find_all(recursive=False): if _attachment.name == 'div' and 'filemd5' in _attachment.attrs: # print('filemd5',_attachment['filemd5']) attachment_dict[_attachment['filemd5']] = _attachment # print(attachment_dict) for child in soup.find_all(recursive=True): if child.name == 'div' and 'class' in child.attrs: if "richTextFetch" in child['class']: break if "filelink" in child.attrs and child['filelink'] in attachment_dict: if re.search(attachment_type,str(child.string).strip()) or \ ('original' in child.attrs and re.search(attachment_type,str(child['original']).strip())) or \ ('href' in child.attrs and re.search(attachment_type,str(child['href']).strip())): # 附件插入正文标识 child.insert_before("。##attachment_begin##") child.insert_after("。##attachment_end##") child.replace_with(attachment_dict[child['filelink']]) # print('格式化输出',soup.prettify()) return soup def del_achievement(text): if re.search('中标|成交|入围|结果|评标|开标|候选人', text[:500]) == None or re.search('业绩', text) == None: return text p0 = '[,。;]((\d{1,2})|\d{1,2}、)[\w、]{,8}:|((\d{1,2})|\d{1,2}、)|。' # 例子 264392818 p1 = '业绩[:,](\d、[-\w()、]{6,30}(工程|项目|勘察|设计|施工|监理|总承包|采购|更新)[\w()]{,10}[,;])+' # 例子 257717618 p2 = '(类似业绩情况:|业绩:)(\w{,20}:)?(((\d)|\d、)项目名称:[-\w(),;、\d\s:]{5,100}[;。])+' # 例子 264345826 p3 = '(投标|类似|(类似)?项目|合格|有效|企业|工程)?业绩(名称|信息|\d)?:(项目名称:)?[-\w()、]{6,50}(项目|工程|勘察|设计|施工|监理|总承包|采购|更新)' l = [] tmp = [] for it in re.finditer(p0, text): if it.group(0)[-3:] in ['业绩:', '荣誉:']: if tmp != []: del_text = text[tmp[0]:it.start()] l.append(del_text) tmp = [] tmp.append(it.start()) elif tmp != []: del_text = text[tmp[0]:it.start()] l.append(del_text) tmp = [] if tmp != []: del_text = text[tmp[0]:] l.append(del_text) for del_text in l: text = text.replace(del_text, '') # print('删除业绩信息:', del_text) for rs in re.finditer(p1, text): # print('删除业绩信息:', rs.group(0)) text = text.replace(rs.group(0), '') for rs in re.finditer(p2, text): # print('删除业绩信息:', rs.group(0)) text = text.replace(rs.group(0), '') for rs in re.finditer(p3, text): # print('删除业绩信息:', rs.group(0)) text = text.replace(rs.group(0), '') return text def del_tabel_achievement(soup): if re.search('中标|成交|入围|结果|评标|开标|候选人', soup.text[:800]) == None or re.search('业绩', soup.text)==None: return None p1 = '(中标|成交)(单位|候选人)的?(企业|项目|项目负责人|\w{,5})?业绩|类似(项目)?业绩|\w{,10}业绩$|业绩(公示|情况|荣誉)' '''删除前面标签 命中业绩规则;当前标签为表格且公布业绩相关信息的去除''' for tag in soup.find_all('table'): pre_text = tag.findPreviousSibling().text.strip() if tag.findPreviousSibling() != None else "" tr_text = tag.find('tr').text.strip() if tag.find('tr') != None else "" # print(re.search(p1, pre_text),pre_text, len(pre_text), re.findall('序号|中标候选人名称|项目名称|工程名称|合同金额|建设单位|业主', tr_text)) if re.search(p1, pre_text) and len(pre_text) < 20 and tag.find('tr') != None and len(tr_text)<100: _count = 0 for td in tag.find('tr').find_all('td'): td_text = td.text.strip() if len(td_text) > 25: break if len(td_text) < 25 and re.search('中标候选人|(项目|业绩|工程)名称|\w{,10}业绩$|合同金额|建设单位|采购单位|业主|甲方', td_text): _count += 1 if _count >=2: pre_tag = tag.findPreviousSibling().extract() del_tag = tag.extract() # print('删除表格业绩内容', pre_tag.text + del_tag.text) break elif re.search('业绩名称', tr_text) and re.search('建设单位|采购单位|业主', tr_text) and len(tr_text)<100: del_tag = tag.extract() # print('删除表格业绩内容', del_tag.text) del_trs = [] '''删除表格某些行公布的业绩信息''' for tag in soup.find_all('table'): text = tag.text if re.search('业绩', text) == None: continue # for tr in tag.find_all('tr'): trs = tag.find_all('tr') i = 0 while i < len(trs): tr = trs[i] if len(tr.find_all('td'))==2 and tr.td!=None and tr.td.findNextSibling()!=None: td1_text =tr.td.text td2_text =tr.td.findNextSibling().text if re.search('业绩', td1_text)!=None and len(td1_text)<10 and len(re.findall('(\d、|(\d))?[-\w()、]+(工程|项目|勘察|设计|施工|监理|总承包|采购|更新)', td2_text))>=2: # del_tag = tr.extract() # print('删除表格业绩内容', del_tag.text) del_trs.append(tr) elif tr.td != None and re.search('^业绩|业绩$', tr.td.text.strip()) and len(tr.td.text.strip())<25: rows = tr.td.attrs.get('rowspan', '') cols = tr.td.attrs.get('colspan', '') if rows.isdigit() and int(rows)>2: for j in range(int(rows)): if i+j < len(trs): del_trs.append(trs[i+j]) i += j elif cols.isdigit() and int(cols)>3 and len(tr.find_all('td'))==1 and i+2 < len(trs): next_tr_cols = 0 td_num = 0 for td in trs[i+1].find_all('td'): td_num += 1 if td.attrs.get('colspan', '').isdigit(): next_tr_cols += int(td.attrs.get('colspan', '')) if next_tr_cols == int(cols): del_trs.append(tr) for j in range(1,len(trs)-i): if len(trs[i+j].find_all('td')) == 1: break elif len(trs[i+j].find_all('td')) >= td_num-1: del_trs.append(trs[i+j]) else: break i += j i += 1 for tr in del_trs: del_tag = tr.extract() # print('删除表格业绩内容', del_tag.text) def split_header(soup): ''' 处理 空格分割多个表头的情况 : 主要标的名称 规格型号(或服务要求) 主要标的数量 主要标的单价 合同金额(万元) :param soup: bs4 soup 对象 :return: ''' header = [] attrs = [] flag = 0 tag = None for p in soup.find_all('p'): text = p.get_text() if re.search('主要标的数量\s+主要标的单价((万?元))?\s+合同金额', text): header = re.split('\s{3,}', text) if re.search('\s{3,}', text) else re.split('\s+', text) flag = 1 tag = p tag.string = '' continue if flag: attrs = re.split('\s{3,}', text) if re.search('\s{3,}', text) else re.split('\s+', text) if header and len(header) == len(attrs) and tag: s = "" for head, attr in zip(header, attrs): s += head + ':' + attr + ',' # tag.string = s # p.extract() p.string = s else: break def get_preprocessed_article(articles,cost_time = dict(),useselffool=True): ''' :param articles: 待处理的article source html :param useselffool: 是否使用selffool :return: list_articles ''' list_articles = [] for article in articles: doc_id = article[0] sourceContent = article[1] sourceContent = re.sub("|||","",sourceContent) sourceContent = re.sub("##attachment##","",sourceContent) sourceContent = sourceContent.replace('
', '
') sourceContent = re.sub("
(\s{0,}
)+","
",sourceContent) # for br_match in re.findall("[^>]+?
",sourceContent): # _new = re.sub("
","",br_match) # #
标签替换为

标签 # if not re.search("^\s+$",_new): # _new = '

'+_new + '

' # # print(br_match,_new) # sourceContent = sourceContent.replace(br_match,_new,1) _send_doc_id = article[3] _title = article[4] page_time = article[5] web_source_no = article[6] '''特别数据源对 html 做特别修改''' if web_source_no in ['DX000202-1']: sourceContent = special_treatment(sourceContent, web_source_no) #表格处理 key_preprocess = "tableToText" start_time = time.time() # article_processed = tableToText(BeautifulSoup(sourceContent,"lxml")) article_processed = BeautifulSoup(sourceContent,"lxml") if re.search('主要标的数量( |\s)+主要标的单价((万?元))?( |\s)+合同金额', sourceContent): #处理 空格分割多个表头的情况 split_header(article_processed) '''表格业绩内容删除''' del_tabel_achievement(article_processed) '''特别数据源对 BeautifulSoup(html) 做特别修改''' if web_source_no in ["00753-14","DX008357-11","18021-2"]: article_processed = special_treatment(article_processed, web_source_no) for _soup in article_processed.descendants: # 识别无标签文本,添加标签 if not _soup.name and not _soup.parent.string and _soup.string.strip()!="": # print(_soup.parent.string,_soup.string.strip()) _soup.wrap(article_processed.new_tag("span")) # print(article_processed) # 正文和附件内容限制字数30000 article_processed = article_limit(article_processed, limit_words=30000) # 把每个附件识别对应的html放回原来出现的位置 article_processed = attachment_filelink(article_processed) article_processed = get_preprocessed_outline(article_processed) # print('article_processed') article_processed = tableToText(article_processed) article_processed = segment(article_processed) article_processed = article_processed.replace('(', '(').replace(')', ')') #2022/8/10 统一为中文括号 # article_processed = article_processed.replace(':', ':') #2023/1/5 统一为中文冒号 article_processed = re.sub("(?<=[\u4e00-\u9fa5]):|:(?=[\u4e00-\u9fa5])", ":", article_processed) article_processed = article_processed.replace('.','.').replace('-', '-') # 2021/12/01 修正OCR识别PDF小数点错误问题 article_processed = article_processed.replace('报价限价', '招标限价') #2021/12/17 由于报价限价预测为中投标金额所以修改 article_processed = article_processed.replace('成交工程价款', '成交工程价') # 2021/12/21 修正为中标价 article_processed = re.sub('任务(?=编号[::])', '项目',article_processed) # 2022/08/10 修正为项目编号 article_processed = article_processed.replace('招标(建设)单位', '招标单位') #2022/8/10 修正预测不到表达 article_processed = re.sub("采购商(?=[^\u4e00-\u9fa5]|名称)", "招标人", article_processed) article_processed = re.sub('(招标|采购)人(概况|信息):?[,。]', '采购人信息:', article_processed) # 2022/8/10统一表达 article_processed = article_processed.replace('\(%)', '') # 中标(成交)金额(元)\(%):498888.00, 处理 江西省政府采购网 金额特殊问题 article_processed = re.sub('金额:?((可填写下浮率?、折扣率?或费率|拟签含税总单价总计|[^万元()\d]{8,20})):?', '金额:', article_processed) # 中标(成交)金额:(可填写下浮率、折扣率或费率):29.3万元 金额特殊问题 article_processed = re.sub('(不?含(可抵扣增值|\w{,8})税)', '', article_processed) # 120637247 投标报价(元),(含可抵扣增值税):277,560.00。 article_processed = re.sub('供应商的?(名称[及其、]{1,2}地址|联系方式:名称)', '供应商名称', article_processed) # 18889217, 84422177 article_processed = re.sub(',最高有效报价者:', ',中标人名称:', article_processed) # 224678159 # 2023/7/4 四川站源特殊中标修改 article_processed = re.sub(',最高有效报价:', ',投标报价:', article_processed) # 224678159 # 2023/7/4 四川站源特殊中标修改 article_processed = re.sub('备选中标人', '第二候选人', article_processed) # 341344142 # 2023/7/17 特殊表达修改 ser = re.search('(采购|招标|比选)人(名称)?/(采购|招标|比选)?代理机构(名称)?:(?P[\w()]{4,25}(/[\w()]{4,25})?)/(?P[\w()]{4,25})[,。]', article_processed) if ser: article_processed = article_processed.replace(ser.group(0), '采购人名称:%s,采购代理机构名称:%s,' % (ser.group('tenderee'), ser.group('agency'))) ser2 = re.search('(采购|招标)人(名称)?/(采购|招标)?代理机构(名称)?:(?P[\w()]{4,25})[,。/]', article_processed) if ser2: article_processed = article_processed.replace(ser2.group(0), '采购人名称:%s,采购代理机构名称:,' % ( ser2.group('tenderee'))) if re.search('中标单位名称:[\w()]{5,25},中标候选人名次:\d,', article_processed) and re.search('中标候选人名次:\d,中标单位名称:[\w()]{5,25},', article_processed)==None: # 处理类似 304706608 此篇的数据源正文特殊表达 for it in re.finditer('(?P(中标单位名称:[\w()]{5,25},))(?P(中标候选人名次:\d,))', article_processed): article_processed = article_processed.replace(it.group(0), it.group('rank')+it.group('tenderer')) '''去除业绩内容''' article_processed = del_achievement(article_processed) # 修复OCR金额中“,”、“。”识别错误 article_processed_list = article_processed.split("##attachment##") if len(article_processed_list)>1: attachment_text = article_processed_list[1] for _match in re.finditer("\d。\d{2}",attachment_text): _match_text = _match.group() attachment_text = attachment_text.replace(_match_text,_match_text.replace("。","."),1) # for _match in re.finditer("(\d,\d{3})[,,.]",attachment_text): for _match in re.finditer("\d,(?=\d{3}[^\d])",attachment_text): _match_text = _match.group() attachment_text = attachment_text.replace(_match_text,_match_text.replace(",",","),1) article_processed_list[1] = attachment_text article_processed = "##attachment##".join(article_processed_list) '''特别数据源对 预处理后文本 做特别修改''' if web_source_no in ['03786-10', '00076-4', 'DX000105-2', '04080-3', '04080-4', '03761-3', '00695-7',"13740-2", '00811-8', '03795-1', '03795-2', 'DX000726-6']: article_processed = special_treatment(article_processed, web_source_no) # 提取bidway list_bidway = extract_bidway(article_processed, _title) if list_bidway: bidway = list_bidway[0].get("body") # bidway名称统一规范 bidway = bidway_integrate(bidway) else: bidway = "" # 修正被","逗号分隔的时间 repair_time = re.compile("[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]?,?(?:上午|下午)?,?[0-2]?\d,?:,?[0-6]\d,?:,?[0-6]\d|" "[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]?,?(?:上午|下午)?,?[0-2]?\d,?[:时点],?[0-6]\d分?|" "[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]?,?(?:上午|下午)?,?[0-2]?\d,?[时点]|" "[12]\d,?\d,?\d,?[-—-―/年],?[0-1]?\d,?[-—-―/月],?[0-3]?\d,?[日号]|" "[0-2]?\d,?:,?[0-6]\d,?:,?[0-6]\d" ) for _time in set(re.findall(repair_time,article_processed)): if re.search(",",_time): _time2 = re.sub(",", "", _time) item = re.search("[12]\d{3}[-—-―/][0-1]?\d[-—-―/][0-3]\d(?=\d)", _time2) if item: _time2 = _time2.replace(item.group(),item.group() + " ") article_processed = article_processed.replace(_time, _time2) else: item = re.search("[12]\d{3}[-—-―/][0-1]?\d[-—-―/][0-3]\d(?=\d)", _time) if item: _time2 = _time.replace(item.group(),item.group() + " ") article_processed = article_processed.replace(_time, _time2) # print('re_rtime',re.findall(repair_time,article_processed)) # log(article_processed) if key_preprocess not in cost_time: cost_time[key_preprocess] = 0 cost_time[key_preprocess] += round(time.time()-start_time,2) #article_processed = article[1] _article = Article(doc_id,article_processed,sourceContent,_send_doc_id,_title, bidway=bidway) _article.fingerprint = getFingerprint(_title+sourceContent) _article.page_time = page_time list_articles.append(_article) return list_articles def get_preprocessed_sentences(list_articles,useselffool=True,cost_time=dict()): ''' :param list_articles: 经过预处理的article text :return: list_sentences ''' list_sentences = [] list_outlines = [] for article in list_articles: list_sentences_temp = [] list_entitys_temp = [] doc_id = article.id _send_doc_id = article.doc_id _title = article.title #表格处理 key_preprocess = "tableToText" start_time = time.time() article_processed = article.content if len(_title)<100 and _title not in article_processed: # 把标题放到正文 article_processed = _title + ',' + article_processed # 2023/01/06 标题正文加逗号分割,预防标题后面是产品,正文开头是公司实体,实体识别把产品和公司作为整个角色实体 attachment_begin_index = -1 if key_preprocess not in cost_time: cost_time[key_preprocess] = 0 cost_time[key_preprocess] += time.time()-start_time #nlp处理 if article_processed is not None and len(article_processed)!=0: split_patten = "。" sentences = [] _begin = 0 sentences_set = set() for _iter in re.finditer(split_patten,article_processed): _sen = article_processed[_begin:_iter.span()[1]] if len(_sen)>0 and _sen not in sentences_set: # 标识在附件里的句子 if re.search("##attachment##",_sen): attachment_begin_index = len(sentences) # _sen = re.sub("##attachment##","",_sen) sentences.append(_sen) sentences_set.add(_sen) _begin = _iter.span()[1] _sen = article_processed[_begin:] if re.search("##attachment##", _sen): # _sen = re.sub("##attachment##", "", _sen) attachment_begin_index = len(sentences) if len(_sen)>0 and _sen not in sentences_set: sentences.append(_sen) sentences_set.add(_sen) # 解析outline大纲分段 outline_list = [] if re.search("##split##",article.content): temp_sentences = [] last_sentence_index = (-1,-1) outline_index = 0 for sentence_index in range(len(sentences)): sentence_text = sentences[sentence_index] for _ in re.findall("##split##", sentence_text): _match = re.search("##split##", sentence_text) if last_sentence_index[0] > -1: sentence_begin_index,wordOffset_begin = last_sentence_index sentence_end_index = sentence_index wordOffset_end = _match.start() if sentence_begin_index=attachment_begin_index: outline_list.append(Outline(doc_id,outline_index,'',sentence_begin_index,attachment_begin_index-1,wordOffset_begin,len(sentences[attachment_begin_index-1]))) else: outline_list.append(Outline(doc_id,outline_index,'',sentence_begin_index,sentence_end_index,wordOffset_begin,wordOffset_end)) outline_index += 1 sentence_text = re.sub("##split##,?", "", sentence_text,count=1) last_sentence_index = (sentence_index,_match.start()) temp_sentences.append(sentence_text) if attachment_begin_index>-1 and last_sentence_index[0]= attachment_begin_index and attachment_begin_index!=-1: in_attachment = True tokens = tokens_all[sentence_index] #pos_tag = pos_all[sentence_index] pos_tag = "" ner_entitys = "" list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=sentence_index,sentence_text=sentence_text,tokens=tokens,pos_tags=pos_tag,ner_tags=ner_entitys,in_attachment=in_attachment)) if len(list_sentences_temp)==0: list_sentences_temp.append(Sentences(doc_id=doc_id,sentence_index=0,sentence_text="sentence_text",tokens=[],pos_tags=[],ner_tags="")) list_sentences.append(list_sentences_temp) list_outlines.append(outline_list) article.content = re.sub("##attachment_begin##|##attachment_end##", "", article.content) return list_sentences,list_outlines def get_money_entity(sentence_text, found_yeji, in_attachment=False): money_list = [] # 使用正则识别金额 entity_type = "money" list_money_pattern = {"cn": "(()(?P百分之)?(?P[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]{3,})())", "key_word": "((?P(?:[¥¥]+,?|[单报标限总造]价款?|金额|租金|(中标|成交|合同|承租|投资))?[价额]|价格|预算(金额)?|(监理|设计|勘察)(服务)?费|标的基本情况|CNY|成交结果)(?:[,,\[(\(]*\s*(人民币|单位:)?/?(?P[万亿]?(?:[美日欧]元|元(/(M2|[\u4e00-\u9fa5]{1,3}))?)?(?P[台个只吨]*))\s*(/?费率)?(人民币)?[\])\)]?)\s*[,,::]*(RMB|USD|EUR|JPY|CNY)?[::]?(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元编号时间日期计采a-zA-Z]{,8}?))(第[123一二三]名[::])?(\d+(\*\d+%)+=)?(?P\d{1,3}([,,]\d{3})+(\.\d+)?|\d+(\.\d+)?(?P(E-?\d+))?[百千]{,1})(?:[(\(]?(?P[%%‰折])*\s*,?((金额)?单位[::])?(?P[万亿]?(?:[美日欧]元|元)?(?P[台只吨斤棵株页亩方条天]*))\s*[)\)]?))", "front_m": "((?P(?:[(\(]?\s*(?P[万亿]?(?:[美日欧]元|元))\s*[)\)])\s*[,,::]*(\s*[^壹贰叁肆伍陆柒捌玖拾佰仟萬億分万元编号时间日期计采a-zA-Z]{,7}?))(?P\d{1,3}([,,]\d{3})+(\.\d+)?|\d+(\.\d+)?(?P(E-?\d+))?(?:,?)[百千]*)())", "behind_m": "(()()(?P\d{1,3}([,,]\d{3})+(\.\d+)?|\d+(\.\d+)?(?P(E-?\d+))?(?:,?)[百千]*)(人民币)?[\((]?(?P[万亿]?(?:[美日欧]元|元)(?P[台个只吨斤棵株页亩方条米]*))[\))]?)"} # 2021/7/19 调整金额,单位提取正则,修复部分金额因为单位提取失败被过滤问题。 pattern_money = re.compile("%s|%s|%s|%s" % ( list_money_pattern["cn"], list_money_pattern["key_word"], list_money_pattern["behind_m"], list_money_pattern["front_m"])) if re.search('业绩(公示|汇总|及|报告|\w{,2}(内容|情况|信息)|[^\w])', sentence_text): found_yeji += 1 if found_yeji >= 2: # 过滤掉业绩后面的所有金额 all_match = [] else: ser = re.search('((收费标准|计算[方公]?式):|\w{3,5}\s*=)+\s*[中标投标成交金额招标人预算价格万元\s()()\[\]【】\d\.%%‰\+\-*×/]{20,}[,。]?', sentence_text) # 过滤掉收费标准里面的金额 if ser: all_match = re.finditer(pattern_money, sentence_text.replace(ser.group(0), ' ' * len(ser.group(0)))) else: all_match = re.finditer(pattern_money, sentence_text) for _match in all_match: # print('_match: ', _match.group()) if len(_match.group()) > 0: # print("===",_match.group()) # # print(_match.groupdict()) notes = '' # 2021/7/20 新增备注金额大写或金额单位 if 金额大写 notes=大写 elif 单位 notes=单位 unit = "" entity_text = "" start_index = "" end_index = "" text_beforeMoney = "" filter = "" filter_unit = False notSure = False science = "" if re.search('业绩(公示|汇总|及|报告|\w{,2}(内容|情况|信息)|[^\w])', sentence_text[:_match.span()[0]]): # 2021/7/21过滤掉业绩后面金额 # print('金额在业绩后面: ', _match.group(0)) found_yeji += 1 break for k, v in _match.groupdict().items(): if v != "" and v is not None: if k == 'text_key_word': notSure = True if k.split("_")[0] == "money": entity_text = v # print(_match.group(k), 'entity_text: ', sentence_text[_match.start(k): _match.end(k)]) if entity_text.endswith(',00'): # 金额逗号后面不可能为两个0结尾,应该小数点识别错,直接去掉 entity_text = entity_text[:-3] if k.split("_")[0] == "unit": if v == '万元' or unit == "": # 处理 预算金额(元):160万元 这种出现前后单位不一致情况 unit = v if k.split("_")[0] == "text": # print('text_before: ', _match.group(k)) text_beforeMoney = v if k.split("_")[0] == "filter": filter = v if re.search("filter_unit", k) is not None: filter_unit = True if k.split("_")[0] == 'science': science = v # print("金额:{0} ,单位:{1}, 前文:{2}, filter: {3}, filter_unit: {4}".format(entity_text,unit,text_beforeMoney,filter,filter_unit)) # if re.search('(^\d{2,},\d{4,}万?$)|(^\d{2,},\d{2}万?$)', entity_text.strip()): # 2021/7/19 修正OCR识别小数点为逗号 # if re.search('[幢栋号楼层]', sentence_text[max(0, _match.span()[0] - 2):_match.span()[0]]): # entity_text = re.sub('\d+,', '', entity_text) # else: # entity_text = entity_text.replace(',', '.') # # print(' 修正OCR识别小数点为逗号') if filter != "": continue start_index, end_index = _match.span() start_index += len(text_beforeMoney) '''过滤掉手机号码作为金额''' if re.search('电话|手机|联系|方式|编号|编码|日期|数字|时间', text_beforeMoney): # print('过滤掉手机号码作为金额') continue elif re.search('^1[3-9]\d{9}$', entity_text) and re.search(':\w{1,3}$', text_beforeMoney): # 过滤掉类似 '13863441880', '金额(万元):季勇13863441880' # print('过滤掉手机号码作为金额') continue if unit == "": # 2021/7/21 有明显金额特征的补充单位,避免被过滤 if (re.search('(¥|¥|RMB|CNY)[::]?$', text_beforeMoney) or re.search('[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]{3,}', entity_text)): if entity_text.endswith('万元'): unit = '万元' entity_text = entity_text[:-2] else: unit = '元' # print('1明显金额特征补充单位 元') elif re.search('USD[::]?$', text_beforeMoney): unit = '美元' elif re.search('EUR[::]?$', text_beforeMoney): unit = '欧元' elif re.search('JPY[::]?$', text_beforeMoney): unit = '日元' elif re.search('^[-—]+[\d,.]+万元', sentence_text[end_index:]): # print('两个金额连接后面的有单位,用后面单位') unit = '万元' elif re.search('([单报标限总造]价款?|金额|租金|(中标|成交|合同|承租|投资))?[价额]|价格|预算(金额)?|(监理|设计|勘察)(服务)?费)[::为]*-?$', text_beforeMoney.strip()) and re.search('^0|1[3|4|5|6|7|8|9]\d{9}', entity_text) == None: if re.search('^[\d,,.]+$', entity_text) and float(re.sub('[,,]', '', entity_text))<500 and re.search('万元', sentence_text): unit = '万元' # print('金额较小且句子中有万元的,补充单位为万元') elif re.search('^\d{1,3}\.\d{4,6}$', entity_text) and re.search('0000$', entity_text) == None: unit = '万元' else: unit = '元' # print('金额前面紧接关键词的补充单位 元') elif re.search('(^\d{,3}(,?\d{3})+(\.\d{2,7},?)$)|(^\d{,3}(,\d{3})+,?$)', entity_text): unit = '元' # print('3明显金额特征补充单位 元') else: # print('过滤掉没单位金额: ',entity_text) continue elif unit == '万元': if end_index < len(sentence_text) and sentence_text[end_index] == '元' and re.search('\d$', entity_text): unit = '元' elif re.search('^[5-9]\d{6,}\.\d{2}$', entity_text): # 五百亿以上的万元改为元 unit = '元' if unit.find("万") >= 0 and entity_text.find("万") >= 0: # 2021/7/19修改为金额文本有万,不计算单位 # print('修正金额及单位都有万, 金额:',entity_text, '单位:',unit) unit = "元" if re.search('.*万元万元', entity_text): # 2021/7/19 修正两个万元 # print(' 修正两个万元',entity_text) entity_text = entity_text.replace('万元万元', '万元') else: if filter_unit: continue # symbol = '-' if entity_text.startswith('-') and not entity_text.startswith('--') and re.search('\d+$', sentence_text[:begin_index_temp]) == None else '' # 负值金额前面保留负号 ,后面这些不作为负金额 起拍价:105.29-200.46万元 预 算 --- 350000.0 2023/04/14 取消符号 entity_text = re.sub("[^0-9.零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆十百千万亿元角分]", "", entity_text) # print('转换前金额:', entity_text, '单位:', unit, '备注:',notes, 'text_beforeMoney:',text_beforeMoney) if re.search('总投资|投资总额|总预算|总概算|投资规模|批复概算|投资额', sentence_text[max(0, _match.span()[0] - 10):_match.span()[1]]): # 2021/8/5过滤掉总投资金额 # print('总投资金额: ', _match.group(0)) notes = '总投资' elif re.search('投资|概算|建安费|其他费用|基本预备费', sentence_text[max(0, _match.span()[0] - 8):_match.span()[1]]): # 2021/11/18 投资金额不作为招标金额 notes = '投资' elif re.search('工程造价', sentence_text[max(0, _match.span()[0] - 8):_match.span()[1]]): # 2021/12/20 工程造价不作为招标金额 notes = '工程造价' elif (re.search('保证金', sentence_text[max(0, _match.span()[0] - 5):_match.span()[1]]) or re.search('保证金的?(缴纳)?(金额|金\?|额|\?)?[\((]*(万?元|为?人民币|大写|调整|变更|已?修改|更改|更正)?[\))]*[::为]', sentence_text[max(0, _match.span()[0] - 10):_match.span()[1]]) or re.search('保证金由[\d.,]+.{,3}(变更|修改|更改|更正|调整?)为', sentence_text[max(0, _match.span()[0] - 15):_match.span()[1]])): notes = '保证金' # print('保证金信息:', sentence_text[max(0, _match.span()[0] - 15):_match.span()[1]]) elif re.search('成本(警戒|预警)(线|价|值)[^0-9元]{,10}', sentence_text[max(0, _match.span()[0] - 10):_match.span()[0]]): notes = '成本警戒线' elif re.search('(监理|设计|勘察)(服务)?费(报价)?[约为:]', sentence_text[_match.span()[0]:_match.span()[1]]): cost_re = re.search('(监理|设计|勘察)(服务)?费', sentence_text[_match.span()[0]:_match.span()[1]]) notes = cost_re.group(1) elif re.search('单价|总金额', sentence_text[_match.span()[0]:_match.span()[1]]): notes = '单价' elif re.search('[零壹贰叁肆伍陆柒捌玖拾佰仟萬億圆]', entity_text) != None: notes = '大写' if entity_text[0] == "拾": # 2021/12/16 修正大写金额省略了数字转换错误问题 entity_text = "壹" + entity_text # print("补充备注:notes = 大写") if len(unit) > 0: if unit.find('万') >= 0 and len(entity_text.split('.')[0]) >= 8: # 2021/7/19 修正万元金额过大的情况 # print('修正单位万元金额过大的情况 金额:', entity_text, '单位:', unit) entity_text = str( getUnifyMoney(entity_text) * getMultipleFactor(re.sub("[美日欧]", "", unit)[0]) / 10000) unit = '元' # 修正金额后单位 重置为元 else: # print('str(getUnifyMoney(entity_text)*getMultipleFactor(unit[0])):') entity_text = str(getUnifyMoney(entity_text) * getMultipleFactor(re.sub("[美日欧]", "", unit)[0])) else: if entity_text.find('万') >= 0 and entity_text.split('.')[0].isdigit() and len( entity_text.split('.')[0]) >= 8: entity_text = str(getUnifyMoney(entity_text) / 10000) # print('修正金额字段含万 过大的情况') else: entity_text = str(getUnifyMoney(entity_text)) if science and re.search('^E-?\d+$', science): # 科学计数 entity_text = str(Decimal(entity_text + science)) if Decimal(entity_text + science) > 100 and Decimal( entity_text + science) < 10000000000 else entity_text # 结果大于100及小于100万才使用科学计算 if float(entity_text) > 100000000000: # float(entity_text)<100 or 2022/3/4 取消最小金额限制 # print('过滤掉金额:float(entity_text)<100 or float(entity_text)>100000000000', entity_text, unit) continue if notSure and unit == "" and float(entity_text) > 100 * 10000: # print('过滤掉金额 notSure and unit=="" and float(entity_text)>100*10000:', entity_text, unit) continue # print("金额:{0} ,单位:{1}, 前文:{2}, filter: {3}, filter_unit: {4}".format(entity_text, unit, text_beforeMoney, # filter, filter_unit)) if re.search('[%%‰折]|费率|下浮率', text_beforeMoney) and float(entity_text)<1000: # 过滤掉可能是费率的金额 # print('过滤掉可能是费率的金额') continue money_list.append((entity_text, start_index, end_index, unit, notes)) return money_list, found_yeji def get_preprocessed_entitys(list_sentences,useselffool=True,cost_time=dict()): ''' :param list_sentences:分局情况 :param cost_time: :return: list_entitys ''' list_entitys = [] not_extract_roles = ['黄埔军校', '国有资产管理处'] # 需要过滤掉的企业单位 for list_sentence in list_sentences: sentences = [] list_entitys_temp = [] for _sentence in list_sentence: sentences.append(_sentence.sentence_text) time1 = time.time() ''' tokens_all = fool.cut(sentences) #pos_all = fool.LEXICAL_ANALYSER.pos(tokens_all) #ner_tag_all = fool.LEXICAL_ANALYSER.ner_labels(sentences,tokens_all) ner_entitys_all = fool.ner(sentences) ''' #限流执行 key_nerToken = "nerToken" start_time = time.time() found_yeji = 0 # 2021/8/6 增加判断是否正文包含评标结果 及类似业绩判断用于过滤后面的金额 # found_pingbiao = False ner_entitys_all = getNers(sentences,useselffool=useselffool) if key_nerToken not in cost_time: cost_time[key_nerToken] = 0 cost_time[key_nerToken] += round(time.time()-start_time,2) doctextcon_sentence_len = sum([1 for sentence in list_sentence if not sentence.in_attachment]) company_dict = set() company_index = dict((i,set()) for i in range(len(list_sentence))) for sentence_index in range(len(list_sentence)): list_sentence_entitys = [] sentence_text = list_sentence[sentence_index].sentence_text tokens = list_sentence[sentence_index].tokens doc_id = list_sentence[sentence_index].doc_id in_attachment = list_sentence[sentence_index].in_attachment list_tokenbegin = [] begin = 0 for i in range(0,len(tokens)): list_tokenbegin.append(begin) begin += len(str(tokens[i])) list_tokenbegin.append(begin+1) #pos_tag = pos_all[sentence_index] pos_tag = "" ner_entitys = ner_entitys_all[sentence_index] '''正则识别角色实体 经营部|经销部|电脑部|服务部|复印部|印刷部|彩印部|装饰部|修理部|汽修部|修理店|零售店|设计店|服务店|家具店|专卖店|分店|文具行|商行|印刷厂|修理厂|维修中心|修配中心|养护中心|服务中心|会馆|文化馆|超市|门市|商场|家具城|印刷社|经销处''' for it in re.finditer( '(?P(((单一来源|中标|中选|中价|成交)(供应商|供货商|服务商|候选人|单位|人))|(供应商|供货商|服务商|候选人))(名称)?[为::]+)(?P([()\w]{5,20})(厂|中心|超市|门市|商场|工作室|文印室|城|部|店|站|馆|行|社|处))[,。]', sentence_text): for k, v in it.groupdict().items(): if k == 'text_key_word': keyword = v if k == 'text': entity = v b = it.start() + len(keyword) e = it.end() - 1 if (b, e, 'location', entity) in ner_entitys: ner_entitys.remove((b, e, 'location', entity)) ner_entitys.append((b, e, 'company', entity)) elif (b, e, 'org', entity) not in ner_entitys and (b, e, 'company', entity) not in ner_entitys: ner_entitys.append((b, e, 'company', entity)) for it in re.finditer( '(?P((建设|招租|招标|采购)(单位|人)|业主)(名称)?[为::]+)(?P\w{2,4}[省市县区镇]([()\w]{2,20})(管理处|办公室|委员会|村委会|纪念馆|监狱|管教所|修养所|社区|农场|林场|羊场|猪场|石场|村|幼儿园))[,。]', sentence_text): for k, v in it.groupdict().items(): if k == 'text_key_word': keyword = v if k == 'text': entity = v b = it.start() + len(keyword) e = it.end() - 1 if (b, e, 'location', entity) in ner_entitys: ner_entitys.remove((b, e, 'location', entity)) ner_entitys.append((b, e, 'org', entity)) if (b, e, 'org', entity) not in ner_entitys and (b, e, 'company', entity) not in ner_entitys: ner_entitys.append((b, e, 'org', entity)) for ner_entity in ner_entitys: if ner_entity[2] in ['company','org']: company_dict.add((ner_entity[2],ner_entity[3])) company_index[sentence_index].add((ner_entity[0],ner_entity[1])) #识别package ner_time_list = [] #识别实体 for ner_entity in ner_entitys: begin_index_temp = ner_entity[0] end_index_temp = ner_entity[1] entity_type = ner_entity[2] entity_text = ner_entity[3] if entity_type=='time': ner_time_list.append((begin_index_temp,end_index_temp)) if entity_type in ["org","company"] and not isLegalEnterprise(entity_text): continue # 实体长度限制 if entity_type in ["org","company"] and len(entity_text)>30: continue if entity_type == "person" and len(entity_text) > 20: continue elif entity_type=="person" and len(entity_text)>10 and len(re.findall("[\u4e00-\u9fa5]",entity_text))begin_index_temp: begin_index = j-1 break begin_index_temp += len(str(entity_text)) for j in range(begin_index,len(list_tokenbegin)): if list_tokenbegin[j]>=begin_index_temp: end_index = j-1 break entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index) #去掉标点符号 if entity_type!='time': entity_text = re.sub("[,,。:!&@$\*\s]","",entity_text) entity_text = entity_text.replace("(","(").replace(")",")") if isinstance(entity_text,str) else entity_text # 组织机构实体名称补充 if entity_type in ["org", "company"]: if entity_text in not_extract_roles: # 过滤掉名称在 需要过滤企业单位列表里的 continue if not re.search("有限责任公司|有限公司",entity_text): fix_name = re.search("(有限)([责贵]?任?)(公?司?)",entity_text) if fix_name: if len(fix_name.group(2))>0: _text = fix_name.group() if '司' in _text: entity_text = entity_text.replace(_text, "有限责任公司") else: _text = re.search(_text + "[^司]{0,5}司", entity_text) if _text: _text = _text.group() entity_text = entity_text.replace(_text, "有限责任公司") else: entity_text = entity_text.replace(entity_text[fix_name.start():], "有限责任公司") elif len(fix_name.group(3))>0: _text = fix_name.group() if '司' in _text: entity_text = entity_text.replace(_text, "有限公司") else: _text = re.search(_text + "[^司]{0,3}司", entity_text) if _text: _text = _text.group() entity_text = entity_text.replace(_text, "有限公司") else: entity_text = entity_text.replace(entity_text[fix_name.start():], "有限公司") elif re.search("有限$", entity_text): entity_text = re.sub("有限$","有限公司",entity_text) entity_text = entity_text.replace("有公司","有限公司") '''下面对公司实体进行清洗''' entity_text = re.sub('\s', '', entity_text) if re.search('^(\d{4}年)?[\-\d月日份]*\w{2,3}分公司$', entity_text): # 删除 # print('公司实体不符合规范:', entity_text) continue elif re.match('xx|XX', entity_text): # 删除 # print('公司实体不符合规范:', entity_text) continue elif re.match('\.?(rar|zip|pdf|df|doc|docx|xls|xlsx|jpg|png)', entity_text): entity_text = re.sub('\.?(rar|zip|pdf|df|doc|docx|xls|xlsx|jpg|png)', '', entity_text) elif re.match( '((\d{4}[年-])[\-\d:\s元月日份]*|\d{1,2}月[\d日.-]*(日?常?计划)?|\d{1,2}[.-]?|[A-Za-z](包|标段?)?|[a-zA-Z0-9]+-[a-zA-Z0-9-]*|[a-zA-Z]{1,2}|[①②③④⑤⑥⑦⑧⑨⑩]|\s|title\=|【[a-zA-Z0-9]+】|[^\w])[\u4e00-\u9fa5]+', entity_text): filter = re.match( '((\d{4}[年-])[\-\d:\s元月日份]*|\d{1,2}月[\d日.-]*(日?常?计划)?|\d{1,2}[.-]?|[A-Za-z](包|标段?)?|[a-zA-Z0-9]+-[a-zA-Z0-9-]*|[a-zA-Z]{1,2}|[①②③④⑤⑥⑦⑧⑨⑩]|\s|title\=|【[a-zA-Z0-9]+】|[^\w])[\u4e00-\u9fa5]+', entity_text).group(1) entity_text = entity_text.replace(filter, '') elif re.search('\]|\[|\]|[【】{}「?:∶〔·.\'#~_ΓΙεⅠ]', entity_text): entity_text = re.sub('\]|\[|\]|[【】「?:∶〔·.\'#~_ΓΙεⅠ]', '', entity_text) if len(re.sub('(项目|分|有限)?公司|集团|制造部|中心|医院|学校|大学|中学|小学|幼儿园', '', entity_text))<2: # print('公司实体不符合规范:', entity_text) continue list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1],in_attachment=in_attachment)) # 标记文章末尾的"发布人”、“发布时间”实体 if sentence_index==len(list_sentence)-1 or sentence_index==doctextcon_sentence_len-1: if len(list_sentence_entitys[-2:])==2: second2last = list_sentence_entitys[-2] last = list_sentence_entitys[-1] if (second2last.entity_type in ["company",'org'] and last.entity_type=="time") or ( second2last.entity_type=="time" and last.entity_type in ["company",'org']): if last.wordOffset_begin - second2last.wordOffset_end < 6 and len(sentence_text) - last.wordOffset_end<6: last.is_tail = True second2last.is_tail = True #使用正则识别金额 money_list, found_yeji = get_money_entity(sentence_text, found_yeji, in_attachment) entity_type = "money" for money in money_list: # print('money: ', money) entity_text, begin_index, end_index, unit, notes = money end_index = end_index - 1 if entity_text.endswith(',') else end_index entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index) _exists = False for item in list_sentence_entitys: if item.entity_id==entity_id and item.entity_type==entity_type: _exists = True if (begin_index >=item.wordOffset_begin and begin_indexitem.wordOffset_begin and end_index<=item.wordOffset_end): _exists = True # print('_exists: ',begin_index, end_index, item.wordOffset_begin, item.wordOffset_end, item.entity_text, item.entity_type) if not _exists: if float(entity_text)>1: # if symbol == '-': # 负值金额保留负号 # entity_text = '-'+entity_text # 20230414 取消符号 begin_words = changeIndexFromWordToWords(tokens, begin_index) end_words = changeIndexFromWordToWords(tokens, end_index) # print('金额位置: ', begin_index, begin_words,end_index, end_words) # print('金额召回: ', entity_text, sentence_text[begin_index:end_index], tokens[begin_words:end_words]) list_sentence_entitys.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_words,end_words,begin_index,end_index,in_attachment=in_attachment)) list_sentence_entitys[-1].notes = notes # 2021/7/20 新增金额备注 list_sentence_entitys[-1].money_unit = unit # 2021/7/20 新增金额备注 # print('预处理中的 金额:%s, 单位:%s'%(entity_text,unit)) # print(entity_text,unit,notes) # "联系人"正则补充提取 2021/11/15 新增 list_person_text = [entity.entity_text for entity in list_sentence_entitys if entity.entity_type=='person'] error_text = ['交易','机构','教育','项目','公司','中标','开标','截标','监督','政府','国家','中国','技术','投标','传真','网址','电子邮', '联系','联系电','联系地','采购代','邮政编','邮政','电话','手机','手机号','联系人','地址','地点','邮箱','邮编','联系方','招标','招标人','代理', '代理人','采购','附件','注意','登录','报名','踏勘',"测试",'交货'] list_person_text = set(list_person_text + error_text) re_person = re.compile("联系人[::]([\u4e00-\u9fa5]工)|" "联系人[::]([\u4e00-\u9fa5]{2,3})(?=,?联系)|" "联系人[::]([\u4e00-\u9fa5]{2,3})(?=[,。;、])" ) list_person = [] if not in_attachment: for match_result in re_person.finditer(sentence_text): match_text = match_result.group() entity_text = match_text[4:] wordOffset_begin = match_result.start() + 4 wordOffset_end = match_result.end() # print(text[wordOffset_begin:wordOffset_end]) # 排除一些不为人名的实体 if re.search("^[\u4e00-\u9fa5]{7,}([,。]|$)",sentence_text[wordOffset_begin:wordOffset_begin+20]): continue if entity_text not in list_person_text and entity_text[:2] not in list_person_text: _person = dict() _person['body'] = entity_text _person['begin_index'] = wordOffset_begin _person['end_index'] = wordOffset_end list_person.append(_person) entity_type = "person" for person in list_person: begin_index_temp = person['begin_index'] for j in range(len(list_tokenbegin)): if list_tokenbegin[j] == begin_index_temp: begin_index = j break elif list_tokenbegin[j] > begin_index_temp: begin_index = j - 1 break index = person['end_index'] end_index_temp = index for j in range(begin_index, len(list_tokenbegin)): if list_tokenbegin[j] >= index: end_index = j - 1 break entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index) entity_text = person['body'] list_sentence_entitys.append( Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index, begin_index_temp, end_index_temp,in_attachment=in_attachment)) # 时间实体格式补充 re_time_new = re.compile("20\d{2}-\d{1,2}-\d{1,2}|20\d{2}/\d{1,2}/\d{1,2}|20\d{2}\.\d{1,2}\.\d{1,2}|20\d{2}(?:0[1-9]|1[0-2])(?:0[1-9]|[1-2][0-9]|3[0-1])") entity_type = "time" for _time in re.finditer(re_time_new,sentence_text): entity_text = _time.group() begin_index_temp = _time.start() end_index_temp = _time.end() is_same = False for t_index in ner_time_list: if begin_index_temp>=t_index[0] and end_index_temp<=t_index[1]: is_same = True break if is_same: continue if _time.start()!=0 and re.search("\d",sentence_text[_time.start()-1:_time.start()]): continue # 纯数字格式,例:20190509 if re.search("^\d{8}$",entity_text): if _time.end()!=len(sentence_text) and re.search("[\da-zA-z]",sentence_text[_time.end():_time.end()+1]): continue entity_text = entity_text[:4] + "-" + entity_text[4:6] + "-" + entity_text[6:8] if not timeFormat(entity_text): continue for j in range(len(list_tokenbegin)): if list_tokenbegin[j] == begin_index_temp: begin_index = j break elif list_tokenbegin[j] > begin_index_temp: begin_index = j - 1 break for j in range(begin_index, len(list_tokenbegin)): if list_tokenbegin[j] >= end_index_temp: end_index = j - 1 break entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index) list_sentence_entitys.append( Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index, begin_index_temp, end_index_temp, in_attachment=in_attachment)) # 资金来源提取 2020/12/30 新增 list_moneySource = extract_moneySource(sentence_text) entity_type = "moneysource" for moneySource in list_moneySource: entity_text = moneySource['body'] if len(entity_text)>50: continue begin_index_temp = moneySource['begin_index'] for j in range(len(list_tokenbegin)): if list_tokenbegin[j] == begin_index_temp: begin_index = j break elif list_tokenbegin[j] > begin_index_temp: begin_index = j - 1 break index = moneySource['end_index'] end_index_temp = index for j in range(begin_index, len(list_tokenbegin)): if list_tokenbegin[j] >= index: end_index = j - 1 break entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index) list_sentence_entitys.append( Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index, begin_index_temp, end_index_temp,in_attachment=in_attachment,prob=moneySource['prob'])) # 电子邮箱提取 2021/11/04 新增 list_email = extract_email(sentence_text) entity_type = "email" # 电子邮箱 for email in list_email: begin_index_temp = email['begin_index'] for j in range(len(list_tokenbegin)): if list_tokenbegin[j] == begin_index_temp: begin_index = j break elif list_tokenbegin[j] > begin_index_temp: begin_index = j - 1 break index = email['end_index'] end_index_temp = index for j in range(begin_index, len(list_tokenbegin)): if list_tokenbegin[j] >= index: end_index = j - 1 break entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index) entity_text = email['body'] list_sentence_entitys.append( Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index, begin_index_temp, end_index_temp,in_attachment=in_attachment)) # 服务期限提取 2020/12/30 新增 list_servicetime = extract_servicetime(sentence_text) entity_type = "serviceTime" for servicetime in list_servicetime: entity_text = servicetime['body'] begin_index_temp = servicetime['begin_index'] for j in range(len(list_tokenbegin)): if list_tokenbegin[j] == begin_index_temp: begin_index = j break elif list_tokenbegin[j] > begin_index_temp: begin_index = j - 1 break index = servicetime['end_index'] end_index_temp = index for j in range(begin_index, len(list_tokenbegin)): if list_tokenbegin[j] >= index: end_index = j - 1 break entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index) list_sentence_entitys.append( Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index, begin_index_temp, end_index_temp,in_attachment=in_attachment, prob=servicetime["prob"])) # 2021/12/29 新增比率提取 list_ratio = extract_ratio(sentence_text) entity_type = "ratio" for ratio in list_ratio: # print("ratio", ratio) begin_index_temp = ratio['begin_index'] for j in range(len(list_tokenbegin)): if list_tokenbegin[j] == begin_index_temp: begin_index = j break elif list_tokenbegin[j] > begin_index_temp: begin_index = j - 1 break index = ratio['end_index'] end_index_temp = index for j in range(begin_index, len(list_tokenbegin)): if list_tokenbegin[j] >= index: end_index = j - 1 break entity_id = "%s_%d_%d_%d" % (doc_id, sentence_index, begin_index, end_index) entity_text = ratio['body'] ratio_value = (ratio['value'],ratio['type']) _entity = Entity(doc_id, entity_id, entity_text, entity_type, sentence_index, begin_index, end_index, begin_index_temp, end_index_temp,in_attachment=in_attachment) _entity.ratio_value = ratio_value list_sentence_entitys.append(_entity) list_sentence_entitys.sort(key=lambda x:x.begin_index) list_entitys_temp = list_entitys_temp+list_sentence_entitys # 补充ner模型未识别全的company/org实体 for sentence_index in range(len(list_sentence)): sentence_text = list_sentence[sentence_index].sentence_text tokens = list_sentence[sentence_index].tokens doc_id = list_sentence[sentence_index].doc_id in_attachment = list_sentence[sentence_index].in_attachment list_tokenbegin = [] begin = 0 for i in range(0, len(tokens)): list_tokenbegin.append(begin) begin += len(str(tokens[i])) list_tokenbegin.append(begin + 1) add_sentence_entitys = [] company_dict = sorted(list(company_dict),key=lambda x:len(x[1]),reverse=True) for company_type,company_text in company_dict: begin_index_list = findAllIndex(company_text,sentence_text) for begin_index in begin_index_list: is_continue = False for t_begin,t_end in list(company_index[sentence_index]): if begin_index>=t_begin and begin_index+len(company_text)<=t_end: is_continue = True break if not is_continue: add_sentence_entitys.append((begin_index,begin_index+len(company_text),company_type,company_text)) company_index[sentence_index].add((begin_index,begin_index+len(company_text))) else: continue for ner_entity in add_sentence_entitys: begin_index_temp = ner_entity[0] end_index_temp = ner_entity[1] entity_type = ner_entity[2] entity_text = ner_entity[3] if entity_type in ["org","company"] and not isLegalEnterprise(entity_text): continue for j in range(len(list_tokenbegin)): if list_tokenbegin[j]==begin_index_temp: begin_index = j break elif list_tokenbegin[j]>begin_index_temp: begin_index = j-1 break begin_index_temp += len(str(entity_text)) for j in range(begin_index,len(list_tokenbegin)): if list_tokenbegin[j]>=begin_index_temp: end_index = j-1 break entity_id = "%s_%d_%d_%d"%(doc_id,sentence_index,begin_index,end_index) #去掉标点符号 entity_text = re.sub("[,,。:!&@$\*]","",entity_text) entity_text = entity_text.replace("(","(").replace(")",")") if isinstance(entity_text,str) else entity_text list_entitys_temp.append(Entity(doc_id,entity_id,entity_text,entity_type,sentence_index,begin_index,end_index,ner_entity[0],ner_entity[1],in_attachment=in_attachment)) list_entitys_temp.sort(key=lambda x:(x.sentence_index,x.begin_index)) list_entitys.append(list_entitys_temp) return list_entitys def union_result(codeName,prem): ''' @summary:模型的结果拼成字典 @param: codeName:编号名称模型的结果字典 prem:拿到属性的角色的字典 @return:拼接起来的字典 ''' result = [] assert len(codeName)==len(prem) for item_code,item_prem in zip(codeName,prem): result.append(dict(item_code,**item_prem)) return result def persistenceData(data): ''' @summary:将中间结果保存到数据库-线上生产的时候不需要执行 ''' import psycopg2 conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101") cursor = conn.cursor() for item_index in range(len(data)): item = data[item_index] doc_id = item[0] dic = item[1] code = dic['code'] name = dic['name'] prem = dic['prem'] if len(code)==0: code_insert = "" else: code_insert = ";".join(code) prem_insert = "" for item in prem: for x in item: if isinstance(x, list): if len(x)>0: for x1 in x: prem_insert+="/".join(x1)+"," prem_insert+="$" else: prem_insert+=str(x)+"$" prem_insert+=";" sql = " insert into predict_validation(doc_id,code,name,prem) values('"+doc_id+"','"+code_insert+"','"+name+"','"+prem_insert+"')" cursor.execute(sql) conn.commit() conn.close() def persistenceData1(list_entitys,list_sentences): ''' @summary:将中间结果保存到数据库-线上生产的时候不需要执行 ''' import psycopg2 conn = psycopg2.connect(dbname="BiddingKG",user="postgres",password="postgres",host="192.168.2.101") cursor = conn.cursor() for list_entity in list_entitys: for entity in list_entity: if entity.values is not None: sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index,label,values) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+","+str(entity.label)+",array"+str(entity.values)+")" else: sql = " insert into predict_entity(entity_id,entity_text,entity_type,doc_id,sentence_index,begin_index,end_index) values('"+str(entity.entity_id)+"','"+str(entity.entity_text)+"','"+str(entity.entity_type)+"','"+str(entity.doc_id)+"',"+str(entity.sentence_index)+","+str(entity.begin_index)+","+str(entity.end_index)+")" cursor.execute(sql) for list_sentence in list_sentences: for sentence in list_sentence: str_tokens = "[" for item in sentence.tokens: str_tokens += "'" if item=="'": str_tokens += "''" else: str_tokens += item str_tokens += "'," str_tokens = str_tokens[:-1]+"]" sql = " insert into predict_sentences(doc_id,sentence_index,tokens) values('"+sentence.doc_id+"',"+str(sentence.sentence_index)+",array"+str_tokens+")" cursor.execute(sql) conn.commit() conn.close() def _handle(item,result_queue): dochtml = item["dochtml"] docid = item["docid"] list_innerTable = tableToText(BeautifulSoup(dochtml,"lxml")) flag = False if list_innerTable: flag = True for table in list_innerTable: result_queue.put({"docid":docid,"json_table":json.dumps(table,ensure_ascii=False)}) def getPredictTable(): filename = "D:\Workspace2016\DataExport\data\websouce_doc.csv" import pandas as pd import json from BiddingKG.dl.common.MultiHandler import MultiHandler,Queue df = pd.read_csv(filename) df_data = {"json_table":[],"docid":[]} _count = 0 _sum = len(df["docid"]) task_queue = Queue() result_queue = Queue() _index = 0 for dochtml,docid in zip(df["dochtmlcon"],df["docid"]): task_queue.put({"docid":docid,"dochtml":dochtml,"json_table":None}) _index += 1 mh = MultiHandler(task_queue=task_queue,task_handler=_handle,result_queue=result_queue,process_count=5,thread_count=1) mh.run() while True: try: item = result_queue.get(block=True,timeout=1) df_data["docid"].append(item["docid"]) df_data["json_table"].append(item["json_table"]) except Exception as e: print(e) break df_1 = pd.DataFrame(df_data) df_1.to_csv("../form/websource_67000_table.csv",columns=["docid","json_table"]) if __name__=="__main__": ''' import glob for file in glob.glob("C:\\Users\\User\\Desktop\\test\\*.html"): file_txt = str(file).replace("html","txt") with codecs.open(file_txt,"a+",encoding="utf8") as f: f.write("\n================\n") content = codecs.open(file,"r",encoding="utf8").read() f.write(segment(tableToText(BeautifulSoup(content,"lxml")))) ''' # content = codecs.open("C:\\Users\\User\\Desktop\\2.html","r",encoding="utf8").read() # print(segment(tableToText(BeautifulSoup(content,"lxml")))) # getPredictTable() with open('D:/138786703.html', 'r', encoding='utf-8') as f: sourceContent = f.read() # article_processed = segment(tableToText(BeautifulSoup(sourceContent, "lxml"))) # print(article_processed) list_articles, list_sentences, list_entitys, _cost_time = get_preprocessed([['doc_id', sourceContent, "", "", '', '2021-02-01']], useselffool=True) for entity in list_entitys[0]: print(entity.entity_type, entity.entity_text)