#!/usr/bin/env python #encoding:utf-8 from deepdive import * import random from collections import namedtuple from commonutil import * import re Label = namedtuple('Label', 'entity_id, label, type') @tsv_extractor @returns(lambda entity_id = "text", label = "int", rule_id = "text", :[]) # heuristic rules for finding positive/negative examples of transaction relationship mentions def supervise( entity_id="text", entity_begin="int", entity_end="int", doc_id="text", sentence_index="int", sentence_text="text", tokens="text[]", pos_tags="text[]", ner_tags="text[]", ): # Constants label = Label(entity_id=entity_id,label=None,type=None) MAX_DIST = 10 TYPE_MENTION = frozenset(["org","company"]) # Common data objects if entity_begin>MAX_DIST: begin = entity_begin-MAX_DIST else: begin = 0 if len(tokens)-entity_end>MAX_DIST: end = entity_end+MAX_DIST else: end = -1 front_tokens = tokens[begin:entity_begin] end_tokens = tokens[entity_end:end] front_ner = ner_tags[begin:entity_begin] end_ner = ner_tags[end:entity_end] pattern_person = re.compile("联(\s*|,|,)?系(\s*|,|,)?(人|方式)|项目(经理|负责人)|经办人") if re.search(pattern_person,"".join(front_tokens)) is not None: yield label._replace(label=0,type="match") else: yield label._replace(label=1,type="not match")