|
@@ -248,7 +248,8 @@ class CodeNamePredict():
|
|
|
_LEN = MAX_AREA//MAX_LEN
|
|
|
#预测
|
|
|
|
|
|
- x = [[self.word2index.get(word,index_unk)for word in sentence.sentence_text[:MAX_AREA]]for sentence in list_sentence[_begin_index:_begin_index+_LEN]]
|
|
|
+ # x = [[self.word2index.get(word,index_unk)for word in sentence.sentence_text[:MAX_AREA]]for sentence in list_sentence[_begin_index:_begin_index+_LEN]]
|
|
|
+ x = [[getIndexOfWord(word) for word in sentence.sentence_text[:MAX_AREA]]for sentence in list_sentence[_begin_index:_begin_index+_LEN]]
|
|
|
x_len = [len(_x) if len(_x) < MAX_LEN else MAX_LEN for _x in x]
|
|
|
x = pad_sequences(x,maxlen=MAX_LEN,padding="post",truncating="post")
|
|
|
|
|
@@ -273,6 +274,7 @@ class CodeNamePredict():
|
|
|
t_input_length:x_len,
|
|
|
t_keepprob:1.0})
|
|
|
predict_y = self.decode(_logits,_trans,x_len,7)
|
|
|
+ # print('==========',_logits)
|
|
|
|
|
|
'''
|
|
|
for item11 in np.argmax(predict_y,-1):
|
|
@@ -339,7 +341,7 @@ class CodeNamePredict():
|
|
|
|
|
|
if the_code not in code_set:
|
|
|
code_set.add(the_code)
|
|
|
- item[1]['code'] = list(code_set)
|
|
|
+ item['code'] = list(code_set)
|
|
|
for iter in re.finditer(self.PN_pattern,join_predict):
|
|
|
_name = self.fitDataByRule(pad_sentence[iter.span()[0]:iter.span()[1]])
|
|
|
|
|
@@ -1421,6 +1423,8 @@ def save_codename_model():
|
|
|
# model.load_weights(filepath)
|
|
|
saver = tf.train.Saver()
|
|
|
saver.restore(sess, filepath)
|
|
|
+
|
|
|
+ print("logits",sess.run(logits))
|
|
|
|
|
|
# print("#",sess.run("time_distributed_1/kernel:0"))
|
|
|
|