import torch import torch.nn as nn import torch.optim as optim # 定义状态类 class DependencyParserState: def __init__(self, sentence): self.sentence = sentence self.buffer = list(range(len(sentence))) # 待分析的词索引列表 self.stack = [] # 用于构建依存树的栈 self.heads = [-1] * len(sentence) # 词的依存头词索引列表 self.transitions = [] # 转移动作序列 def is_terminal(self): return len(self.buffer) == 0 and len(self.stack) == 1 # 定义转移动作类 class TransitionSystem: def __init__(self): self.actions = ['SHIFT', 'LEFT', 'RIGHT'] def legal_actions(self, state): actions = [] if len(state.buffer) > 0: actions.append('SHIFT') if len(state.stack) >= 2: actions.append('LEFT') if len(state.stack) >= 2: actions.append('RIGHT') return actions import torch.nn.functional as F class DependencyParser(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(DependencyParser, self).__init__() self.embedding = nn.Embedding(input_dim, hidden_dim) self.linear = nn.Linear(hidden_dim * 2, output_dim) def forward(self, state): if len(state.stack) < 2: return torch.tensor([0, 0, 1]) # 不执行转移 head_word = state.stack[-1] modifier_word = state.stack[-2] head_embed = self.embedding(torch.tensor(head_word)) modifier_embed = self.embedding(torch.tensor(modifier_word)) combined = torch.cat((head_embed, modifier_embed), dim=0) output = self.linear(combined) return F.softmax(output, dim=0) def train_model(train_data, model, transition_system, optimizer, criterion, num_epochs): for epoch in range(num_epochs): total_loss = 0.0 for sentence in train_data: state = DependencyParserState(sentence) while not state.is_terminal(): legal_actions = transition_system.legal_actions(state) action_scores = model(state) action_index = torch.argmax(action_scores).item() action = transition_system.actions[action_index] print(action,",",legal_actions) if action in legal_actions: if action == 'SHIFT': state.stack.append(state.buffer.pop(0)) elif action == 'LEFT': state.heads[state.stack[-2]] = state.stack[-1] state.stack.pop(-2) elif action == 'RIGHT': state.heads[state.stack[-1]] = state.stack[-2] state.stack.pop() state.transitions.append(action_index) else: state.transitions.append(action_index) print("====") break if len(state.transitions)>0: optimizer.zero_grad() print(action_scores.view(1, -1)) print("===") print(torch.tensor(state.transitions)) loss = criterion(action_scores.view(1, -1), torch.tensor(state.transitions)) loss.backward() optimizer.step() total_loss += loss.item() print(f'Epoch {epoch+1}/{num_epochs}, Loss: {total_loss/len(train_data)}') # 示例数据 train_data = [[('I', 'PRP'), ('love', 'VBP'), ('natural', 'JJ'), ('language', 'NN'), ('processing', 'NN')], [('Dependency', 'NN'), ('syntax', 'NN'), ('analysis', 'NN'), ('is', 'VBZ'), ('important', 'JJ')], [('The', 'DT'), ('cat', 'NN'), ('chased', 'VBD'), ('the', 'DT'), ('mouse', 'NN')]] # 超参数 input_dim = 10 # 输入维度(词汇量大小) hidden_dim = 5 # 隐藏层维度 output_dim = 3 # 输出维度(转移动作数量) num_epochs = 10 learning_rate = 0.01 # 初始化模型、优化器和损失函数 model = DependencyParser(input_dim, hidden_dim, output_dim) optimizer = optim.SGD(model.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() # 训练模型 transition_system = TransitionSystem() train_model(train_data, model, transition_system, optimizer, criterion, num_epochs)