train.py 2.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. import os
  2. import random
  3. import sys
  4. from glob import glob
  5. os.environ["CUDA_VISIBLE_DEVICES"] = "0"
  6. sys.path.append(os.path.dirname(os.path.abspath(__file__)))
  7. sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../")
  8. from keras.callbacks import ReduceLROnPlateau, ModelCheckpoint
  9. from keras.losses import BinaryCrossentropy, mse, CategoricalCrossentropy
  10. from keras.metrics import Precision, Recall
  11. from keras.optimizer_v2.adam import Adam
  12. import keras.backend as K
  13. from click_captcha.metrics import precision, recall, f1
  14. from click_captcha.loss import focal_loss, contrastive_loss, l2_focal_loss, l1_focal_loss
  15. from click_captcha.model import siamese_net, mobile_net, cnn_net
  16. from click_captcha.pre_process import gen_mobile
  17. PRETRAINED = True
  18. random.seed(42)
  19. image_shape = (40, 40, 3)
  20. project_root = os.path.dirname(os.path.abspath(__file__)) + "/../"
  21. if __name__ == "__main__":
  22. model = cnn_net(input_shape=image_shape)
  23. if PRETRAINED:
  24. _path = "./models/e14-f10.71.h5"
  25. model.load_weights(_path, skip_mismatch=True, by_name=True)
  26. print("read pretrained model", _path)
  27. else:
  28. print("no pretrained")
  29. # with open(project_root + "data/click/map.txt", "r") as f:
  30. # paths = f.readlines()
  31. # print("len(paths)", len(paths))
  32. paths = glob("../data/click/*.jpg")
  33. # data path split into train,test
  34. testP = random.sample(paths, int(len(paths)*0.1))
  35. trainP = []
  36. for p in paths:
  37. if p not in testP:
  38. trainP.append(p)
  39. random.shuffle(trainP)
  40. print('total:', len(paths), 'train:', len(trainP), 'test:', len(testP))
  41. # batch num
  42. batch_size = 32
  43. steps_per_epoch = max(1, len(trainP) // batch_size)
  44. validation_steps = max(1, len(testP) // batch_size)
  45. # 模型权重存放位置
  46. filepath = 'models/e{epoch:02d}-f1{val_f1:.2f}.h5'
  47. check_pointer = ModelCheckpoint(filepath=filepath, monitor='val_acc', verbose=0,
  48. save_weights_only=True, save_best_only=False,
  49. mode="max", save_freq='epoch')
  50. rlu = ReduceLROnPlateau(monitor='val_f1', factor=0.5, patience=10,
  51. verbose=1, mode='max', cooldown=0, min_lr=0)
  52. model.compile(optimizer=Adam(lr=0.0003), loss=CategoricalCrossentropy(),
  53. metrics=['acc', f1])
  54. # data loader
  55. train_loader = gen_mobile(trainP, batch_size=batch_size, shape=image_shape)
  56. test_loader = gen_mobile(testP, batch_size=batch_size, shape=image_shape)
  57. # train
  58. model.fit_generator(train_loader,
  59. steps_per_epoch=steps_per_epoch,
  60. callbacks=[check_pointer, rlu],
  61. validation_data=test_loader,
  62. validation_steps=validation_steps,
  63. epochs=1000)