model.py 2.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. from keras import Input, Model
  2. from keras.layers import Lambda, Dense, Conv2D, Reshape, GlobalAveragePooling2D, BatchNormalization, \
  3. LeakyReLU, MaxPooling2D, Dropout, Flatten
  4. def cnn_net_tiny(input_shape, output_shape=6270):
  5. _input = Input(input_shape)
  6. use_bias = False
  7. down0 = Conv2D(32, (3, 3), padding='same', use_bias=use_bias)(_input)
  8. down0 = BatchNormalization()(down0)
  9. down0 = LeakyReLU(alpha=0.1)(down0)
  10. down0 = Conv2D(32, (3, 3), padding='same', use_bias=use_bias)(down0)
  11. down0 = BatchNormalization()(down0)
  12. down0 = LeakyReLU(alpha=0.1)(down0)
  13. down0_pool = MaxPooling2D((2, 2), strides=(2, 2))(down0)
  14. down1 = Conv2D(32, (3, 3), padding='same', use_bias=use_bias)(down0_pool)
  15. down1 = BatchNormalization()(down1)
  16. down1 = LeakyReLU(alpha=0.1)(down1)
  17. down1 = Conv2D(32, (3, 3), padding='same', use_bias=use_bias)(down1)
  18. down1 = BatchNormalization()(down1)
  19. down1 = LeakyReLU(alpha=0.1)(down1)
  20. down1_pool = MaxPooling2D((2, 2), strides=(2, 2))(down1)
  21. down2 = Conv2D(64, (3, 3), padding='same', use_bias=use_bias)(down1_pool)
  22. down2 = BatchNormalization()(down2)
  23. down2 = LeakyReLU(alpha=0.1)(down2)
  24. down2 = Conv2D(64, (3, 3), padding='same', use_bias=use_bias)(down2)
  25. down2 = BatchNormalization()(down2)
  26. down2 = LeakyReLU(alpha=0.1)(down2)
  27. down2_pool = MaxPooling2D((2, 2), strides=(2, 2))(down2)
  28. conv = Conv2D(64, (3, 3))(down2_pool)
  29. bn = BatchNormalization()(conv)
  30. rl = LeakyReLU(alpha=0.1)(bn)
  31. conv = Conv2D(64, (3, 3))(rl)
  32. bn = BatchNormalization()(conv)
  33. rl = LeakyReLU(alpha=0.1)(bn)
  34. # conv = Conv2D(output_shape, (1, 1), activation='softmax')(rl)
  35. # pool = GlobalAveragePooling2D()(conv)
  36. # x = Reshape((output_shape,))(pool)
  37. rl = Flatten()(rl)
  38. dense = Dense(16, activation="relu")(rl)
  39. drop = Dropout(0.2)(dense)
  40. dense = Dense(output_shape, activation="softmax")(drop)
  41. drop = Dropout(0.2)(dense)
  42. x = Reshape((output_shape,))(drop)
  43. model = Model(_input, x)
  44. model.summary()
  45. return model