kmeans.py 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. import numpy as np
  2. class YOLO_Kmeans:
  3. def __init__(self, cluster_number, filename):
  4. self.cluster_number = cluster_number
  5. self.filename = filename
  6. def iou(self, boxes, clusters): # 1 box -> k clusters
  7. n = boxes.shape[0]
  8. k = self.cluster_number
  9. box_area = boxes[:, 0] * boxes[:, 1]
  10. box_area = box_area.repeat(k)
  11. box_area = np.reshape(box_area, (n, k))
  12. cluster_area = clusters[:, 0] * clusters[:, 1]
  13. cluster_area = np.tile(cluster_area, [1, n])
  14. cluster_area = np.reshape(cluster_area, (n, k))
  15. box_w_matrix = np.reshape(boxes[:, 0].repeat(k), (n, k))
  16. cluster_w_matrix = np.reshape(np.tile(clusters[:, 0], (1, n)), (n, k))
  17. min_w_matrix = np.minimum(cluster_w_matrix, box_w_matrix)
  18. box_h_matrix = np.reshape(boxes[:, 1].repeat(k), (n, k))
  19. cluster_h_matrix = np.reshape(np.tile(clusters[:, 1], (1, n)), (n, k))
  20. min_h_matrix = np.minimum(cluster_h_matrix, box_h_matrix)
  21. inter_area = np.multiply(min_w_matrix, min_h_matrix)
  22. result = inter_area / (box_area + cluster_area - inter_area)
  23. return result
  24. def avg_iou(self, boxes, clusters):
  25. accuracy = np.mean([np.max(self.iou(boxes, clusters), axis=1)])
  26. return accuracy
  27. def kmeans(self, boxes, k, dist=np.median):
  28. box_number = boxes.shape[0]
  29. distances = np.empty((box_number, k))
  30. last_nearest = np.zeros((box_number,))
  31. np.random.seed()
  32. clusters = boxes[np.random.choice(
  33. box_number, k, replace=False)] # init k clusters
  34. while True:
  35. distances = 1 - self.iou(boxes, clusters)
  36. current_nearest = np.argmin(distances, axis=1)
  37. if (last_nearest == current_nearest).all():
  38. break # clusters won't change
  39. for cluster in range(k):
  40. clusters[cluster] = dist( # update clusters
  41. boxes[current_nearest == cluster], axis=0)
  42. last_nearest = current_nearest
  43. return clusters
  44. def result2txt(self, data):
  45. f = open("yolo_anchors.txt", 'w')
  46. row = np.shape(data)[0]
  47. for i in range(row):
  48. if i == 0:
  49. x_y = "%d,%d" % (data[i][0], data[i][1])
  50. else:
  51. x_y = ", %d,%d" % (data[i][0], data[i][1])
  52. f.write(x_y)
  53. f.close()
  54. def txt2boxes(self):
  55. f = open(self.filename, 'r')
  56. dataSet = []
  57. for line in f:
  58. infos = line.split(" ")
  59. length = len(infos)
  60. for i in range(1, length):
  61. width = int(infos[i].split(",")[2]) - \
  62. int(infos[i].split(",")[0])
  63. height = int(infos[i].split(",")[3]) - \
  64. int(infos[i].split(",")[1])
  65. dataSet.append([width, height])
  66. result = np.array(dataSet)
  67. f.close()
  68. return result
  69. def txt2clusters(self):
  70. all_boxes = self.txt2boxes()
  71. result = self.kmeans(all_boxes, k=self.cluster_number)
  72. result = result[np.lexsort(result.T[0, None])]
  73. self.result2txt(result)
  74. print("K anchors:\n {}".format(result))
  75. print("Accuracy: {:.2f}%".format(
  76. self.avg_iou(all_boxes, result) * 100))
  77. if __name__ == "__main__":
  78. cluster_number = 6
  79. filename = "../../data/detect2/map.txt"
  80. kmeans = YOLO_Kmeans(cluster_number, filename)
  81. kmeans.txt2clusters()