123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- import os
- import sys
- import tensorflow as tf
- import keras.backend as K
- from tensorflow.python.ops.control_flow_ops import while_loop
- sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../")
- sys.path.append(os.path.dirname(os.path.abspath(__file__)))
- from utils import box_iou
- from chinese_detect.post_process import yolo_head
- def contrastive_loss(y_true, y_pred):
- """Contrastive loss from Hadsell-et-al.'06
- http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
- """
- margin = 1
- square_pred = K.square(y_pred)
- margin_square = K.square(K.maximum(margin - y_pred, 0))
- return K.mean(y_true * square_pred + (1 - y_true) * margin_square)
- def focal_loss(gamma=3., alpha=.5, only_tf=True):
- def focal_loss_fixed(y_true, y_pred):
- pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred))
- pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred))
- if only_tf:
- return - tf.reduce_sum(alpha * tf.pow(1. - pt_1, gamma) * tf.math.log(1e-07 + pt_1)) \
- - tf.reduce_sum((1 - alpha) * tf.pow(pt_0, gamma) * tf.math.log(1. - pt_0 + 1e-07))
- else:
- return - K.sum(alpha * K.pow(1. - pt_1, gamma) * K.log(K.epsilon()+pt_1)) \
- - K.sum((1 - alpha) * K.pow(pt_0, gamma) * K.log(1. - pt_0 + K.epsilon()))
- return focal_loss_fixed
- def l1_loss():
- def mae(y_true, y_pred):
- return tf.reduce_mean(tf.abs(y_pred-y_true)) * 100
- return mae
- def l2_loss():
- def mse(y_true, y_pred):
- return tf.reduce_mean(tf.square(y_true - y_pred))
- return mse
- def l2_focal_loss(threshold=0.2):
- def mse(y_true, y_pred):
- y_minus = tf.where(tf.abs(y_pred-y_true) <= threshold, tf.abs(y_pred-y_true), 1000*tf.abs(y_pred-y_true))
- return tf.reduce_mean(tf.square(y_minus))
- return mse
- def l1_focal_loss(threshold=0.2):
- def mae(y_true, y_pred):
- y_minus = tf.where(tf.abs(y_pred-y_true) <= threshold, 0., tf.abs(y_pred-y_true))
- return tf.reduce_sum(tf.abs(y_minus))
- return mae
- def l3_loss():
- def l3_loss_fixed(y_true, y_pred):
- return tf.reduce_mean(tf.abs(tf.pow(y_pred-y_true, 3)))
- return l3_loss_fixed
- def yolo_loss(args, anchors, num_classes, ignore_thresh=.5, print_loss=False):
- """Return yolo_loss tensor
- Parameters
- ----------
- yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_body
- y_true: list of array, the output of preprocess_true_boxes
- anchors: array, shape=(N, 2), wh
- num_classes: integer
- ignore_thresh: float, the iou threshold whether to ignore object confidence loss
- Returns
- -------
- loss: tensor, shape=(1,)
- """
- from keras import backend as K
- # default setting
- num_layers = len(anchors)//3
- yolo_outputs = args[:num_layers]
- y_true = args[num_layers:]
- anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] if num_layers == 3 else [[3, 4, 5], [1, 2, 3]]
- input_shape = K.cast(K.shape(yolo_outputs[0])[1:3] * 32, K.dtype(y_true[0]))
- grid_shapes = [K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0])) for l in range(num_layers)]
- loss = 0
- # batch size, tensor
- m = K.shape(yolo_outputs[0])[0]
- mf = K.cast(m, K.dtype(yolo_outputs[0]))
- for l in range(num_layers):
- object_mask = y_true[l][..., 4:5]
- true_class_probs = y_true[l][..., 5:]
- grid, raw_pred, pred_xy, pred_wh = yolo_head(yolo_outputs[l],
- anchors[anchor_mask[l]], num_classes, input_shape, calc_loss=True)
- pred_box = K.concatenate([pred_xy, pred_wh])
- # Darknet raw box to calculate loss.
- raw_true_xy = y_true[l][..., :2]*grid_shapes[l][::-1] - grid
- raw_true_wh = K.log(y_true[l][..., 2:4] / anchors[anchor_mask[l]] * input_shape[::-1])
- # avoid log(0)=-inf
- raw_true_wh = K.switch(object_mask, raw_true_wh, K.zeros_like(raw_true_wh))
- box_loss_scale = 2 - y_true[l][..., 2:3]*y_true[l][..., 3:4]
- # Find ignore mask, iterate over each of batch.
- ignore_mask = tf.TensorArray(K.dtype(y_true[0]), size=1, dynamic_size=True)
- object_mask_bool = K.cast(object_mask, 'bool')
- def loop_body(b, ignore_mask):
- true_box = tf.boolean_mask(y_true[l][b, ..., 0:4], object_mask_bool[b,...,0])
- iou = box_iou(pred_box[b], true_box)
- best_iou = K.max(iou, axis=-1)
- ignore_mask = ignore_mask.write(b, K.cast(best_iou<ignore_thresh, K.dtype(true_box)))
- return b+1, ignore_mask
- _, ignore_mask = while_loop(lambda b, *args: b < m, loop_body, [0, ignore_mask])
- ignore_mask = ignore_mask.stack()
- ignore_mask = K.expand_dims(ignore_mask, -1)
- # K.binary_crossentropy is helpful to avoid exp overflow.
- xy_loss = object_mask * box_loss_scale * K.binary_crossentropy(raw_true_xy, raw_pred[..., 0:2], from_logits=True)
- wh_loss = object_mask * box_loss_scale * 0.5 * K.square(raw_true_wh-raw_pred[..., 2:4])
- confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True) + \
- (1-object_mask) * K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True) * ignore_mask
- class_loss = object_mask * K.binary_crossentropy(true_class_probs, raw_pred[..., 5:], from_logits=True)
- xy_loss = K.sum(xy_loss) / mf
- wh_loss = K.sum(wh_loss) / mf
- confidence_loss = K.sum(confidence_loss) / mf
- class_loss = K.sum(class_loss) / mf
- loss += xy_loss * 10 + wh_loss * 10 + confidence_loss
- # if print_loss:
- # loss = tf.Print(loss, [loss, xy_loss, wh_loss, confidence_loss, class_loss, K.sum(ignore_mask)], message='loss: ')
- return loss
|