123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- import base64
- import json
- import logging
- import os
- import time
- import traceback
- from glob import glob
- import cv2
- import numpy as np
- from PIL import Image
- os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
- import tensorflow as tf
- from flask import Flask, request
- from border_recognize.model import u_net_drag
- from border_recognize.inference_drag import recognize
- from utils import pil_resize, np2bytes, request_post, bytes2np
- tf.compat.v1.disable_eager_execution()
- sess = tf.compat.v1.Session(graph=tf.Graph())
- # 接口配置
- app = Flask(__name__)
- @app.route('/bdr', methods=['POST'])
- def bdr():
- start_time = time.time()
- logging.info("into bdr_interface bdr")
- try:
- # 接收网络数据
- if not request.form:
- logging.info("bdr no data!")
- return json.dumps({"data": "", "success": 0})
- data = request.form.get("data")
- logging.info("bdr_interface get data time" + str(time.time()-start_time))
- # 加载模型
- bdr_model = globals().get("global_bdr_model")
- if bdr_model is None:
- print("=========== init bdr model ===========")
- bdr_model = BdrModels().get_model()
- globals().update({"global_bdr_model": bdr_model})
- # 数据转换
- data = base64.b64decode(data)
- image_np = bytes2np(data)
- # 预测
- w = recognize(image_np, bdr_model, sess)
- return json.dumps({"data": w, "success": 1})
- except:
- traceback.print_exc()
- return json.dumps({"data": "", "success": 0})
- finally:
- logging.info("bdr interface finish time " + str(time.time()-start_time))
- class BdrModels:
- def __init__(self):
- # python文件所在目录
- _dir = os.path.abspath(os.path.dirname(__file__))
- # detect
- model_path = _dir + "/models/drag_f1_0.42.h5"
- image_shape = (128, 256, 3)
- with sess.as_default():
- with sess.graph.as_default():
- self.model = u_net_drag(input_shape=image_shape)
- self.model.load_weights(model_path)
- def get_model(self):
- return self.model
- def test_bdr_model(from_remote=True):
- paths = glob("D:/Project/captcha/data/test/yolo_18.jpg")
- for file_path in paths:
- img_np = cv2.imread(file_path)
- h, w = img_np.shape[:2]
- file_bytes = np2bytes(img_np)
- file_base64 = base64.b64encode(file_bytes)
- if from_remote:
- file_json = {"data": file_base64}
- # _url = "http://192.168.2.102:17000/ocr"
- _url = "http://127.0.0.1:17000/bdr"
- result = json.loads(request_post(_url, file_json))
- if result.get("success"):
- w = int(result.get("data"))
- print("w", w)
- img_new = np.concatenate([img_np[:, w:, :], img_np[:, :w, :]], axis=1)
- cv2.imshow("img_np", img_np)
- cv2.imshow("img_new", img_new)
- cv2.waitKey(0)
- else:
- print("failed!")
- if __name__ == "__main__":
- # app.run(host='127.0.0.1', port=17000, debug=False)
- test_bdr_model()
|