123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- import os
- import sys
- import tensorflow as tf
- import cv2
- from keras.layers import Lambda, Input
- from keras.models import Model
- import numpy as np
- sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../")
- from chinese_detect.model_260 import tiny_yolo_body
- from chinese_detect.post_process import yolo_eval
- from utils import get_classes, get_colors, draw_boxes, get_anchors, pil_resize, np2pil
- package_dir = os.path.abspath(os.path.dirname(__file__))
- model_path = package_dir + "/models/char_yolo_loss_39.90.h5"
- anchors = get_anchors(package_dir + "/yolo_data/my_anchors.txt")
- classes = get_classes(package_dir + "/yolo_data/my_classes.txt")
- colors = get_colors(len(classes))
- image_shape = (160, 256, 3)
- tips_shape = (40, 160, 3)
- def detect(image_np, model=None, sess=None, draw=False, is_tips=0):
- if sess is None:
- sess = tf.compat.v1.Session(graph=tf.Graph())
- if model is None:
- with sess.as_default():
- with sess.graph.as_default():
- model = get_tiny_inference_model(anchors, len(classes), weights_path=model_path)
- # create image input
- h, w = image_np.shape[:2]
- # print("h, w", h, w)
- best_h, best_w = image_shape[:2]
- # 如是提示图片需paste
- if is_tips:
- image_tips = pil_resize(image_np, tips_shape[0], tips_shape[1])
- image_resize = np.zeros(image_shape, dtype=np.uint8)
- image_resize[:tips_shape[0], :tips_shape[1], :] = image_tips[:, :, :]
- else:
- image_resize = pil_resize(image_np, best_h, best_w)
- # image_pil = np2pil(image_resize)
- image_resize = np.array(image_resize, dtype='float32')
- image_resize = image_resize.astype('float32') / 255.
- image_resize = np.expand_dims(image_resize, 0)
- # create image shape input
- need_shape = np.array([best_h, best_w])
- need_shape = np.expand_dims(need_shape, 0)
- # inference data
- with sess.as_default():
- with sess.graph.as_default():
- out_boxes, out_scores, out_classes = model.predict([image_resize, need_shape], steps=1)
- # print("image_size", need_shape)
- print("out_boxes", out_boxes)
- print("out_scores", out_scores)
- # print("out_classes", out_classes)
- out_boxes = out_boxes.astype(np.int32)
- out_classes = out_classes.astype(np.int32)
- # 还原
- if is_tips:
- out_boxes[:, 0] = h * out_boxes[:, 0] / tips_shape[0]
- out_boxes[:, 2] = h * out_boxes[:, 2] / tips_shape[0]
- out_boxes[:, 1] = w * out_boxes[:, 1] / tips_shape[1]
- out_boxes[:, 3] = w * out_boxes[:, 3] / tips_shape[1]
- else:
- out_boxes[:, 0] = h * out_boxes[:, 0] / best_h
- out_boxes[:, 2] = h * out_boxes[:, 2] / best_h
- out_boxes[:, 1] = w * out_boxes[:, 1] / best_w
- out_boxes[:, 3] = w * out_boxes[:, 3] / best_w
- image_pil = np2pil(image_np)
- if draw:
- # draw
- class_names = get_classes("yolo_data/my_classes.txt")
- colors = get_colors(len(class_names))
- image_resize, out_boxes = draw_boxes(image_pil, out_boxes, out_classes, out_scores, class_names, colors)
- image_np_result = cv2.cvtColor(np.array(image_resize), cv2.COLOR_RGB2BGR)
- cv2.imshow("result", image_np_result)
- cv2.waitKey(0)
- else:
- temp_boxes = []
- for i, c in reversed(list(enumerate(out_classes))):
- top, left, bottom, right = out_boxes[i]
- top = max(0, np.floor(top + 0.5).astype('int32'))
- left = max(0, np.floor(left + 0.5).astype('int32'))
- bottom = min(image_pil.size[1], np.floor(bottom + 0.5).astype('int32'))
- right = min(image_pil.size[0], np.floor(right + 0.5).astype('int32'))
- temp_boxes.append([(left, top), (right, bottom)])
- out_boxes = temp_boxes
- # 加大box
- threshold = 2
- out_boxes = [[max(int(x[0][0]-threshold), 0),
- max(int(x[0][1]-threshold), 0),
- min(int(x[1][0]+threshold), w),
- min(int(x[1][1]+threshold), h)] for x in out_boxes]
- out_boxes.sort(key=lambda x: (x[0], x[1], x[2], x[3]))
- return image_np, out_boxes, out_classes
- def get_tiny_inference_model(anchors, num_classes, weights_path='models/tiny_yolo_weights.h5'):
- """create the inference model, for Tiny YOLOv3"""
- image_input = Input(shape=(None, None, 3))
- need_shape = Input(shape=(2,), dtype='int64', name='image_shape')
- num_anchors = len(anchors)
- model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)
- print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
- model_body.load_weights(weights_path)
- print('Load weights {}.'.format(weights_path))
- boxes, scores, classes = Lambda(yolo_eval,
- name='yolo_eval',
- arguments={'anchors': anchors,
- 'num_classes': num_classes}
- )([model_body.output, need_shape])
- model = Model([model_body.input, need_shape], [boxes, scores, classes])
- # model.summary(120)
- return model
- if __name__ == '__main__':
- image_path = "D:/Project/captcha/data/test/yolo_3.jpg"
- _img = cv2.imread(image_path)
- cv2.imshow("origin_image", _img)
- _, boxes, _ = detect(_img, is_tips=1, draw=False)
- for box in boxes:
- cv2.imshow("sub", _img[box[1]:box[3], box[0]:box[2], :])
- cv2.waitKey(0)
|