123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051 |
- import os
- import re
- import sys
- from glob import glob
- import cv2
- import numpy as np
- import tensorflow as tf
- sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../")
- from model import u_net_denoise
- from utils import pil_resize
- package_dir = os.path.abspath(os.path.dirname(__file__))
- image_shape = (32, 192, 1)
- model_path = package_dir + "/models/denoise_loss_53.97.h5"
- def denoise(image_np, model=None, sess=None):
- if sess is None:
- sess = tf.compat.v1.Session(graph=tf.Graph())
- if model is None:
- with sess.as_default():
- with sess.graph.as_default():
- model = u_net_denoise(input_shape=image_shape, class_num=image_shape[2])
- model.load_weights(model_path)
- X = []
- img = pil_resize(image_np, image_shape[0], image_shape[1])
- img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- img = np.expand_dims(img, axis=-1)
- img = img / 255.
- X.append(img)
- X = np.array(X)
- with sess.as_default():
- with sess.graph.as_default():
- pred = model.predict(X)
- pred = np.uint8(pred[0]*255.)
- # cv2.imshow("origin", image_np)
- # cv2.imshow("pred", pred)
- # cv2.waitKey(0)
- return pred
- if __name__ == "__main__":
- # _path = "../data/test/char_9.jpg"
- _paths = glob(r"D:\Project\captcha\data\equation\*")
- # _paths = glob("../data/test/FileInfo1021/*")
- for _path in _paths:
- denoise(cv2.imread(_path))
|