12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- from __future__ import print_function
- from itertools import count
- import matplotlib.pyplot as plt
- import numpy as np
- import torch
- import torch.autograd
- import torch.nn.functional as F
- from torch.autograd import Variable
- random_state = 5000
- torch.manual_seed(random_state)
- POLY_DEGREE = 4
- W_target = torch.randn(POLY_DEGREE, 1) * 5
- b_target = torch.randn(1) * 5
- def make_features(x):
- """创建一个特征矩阵结构为[x, x^2, x^3, x^4]."""
- x = x.unsqueeze(1)
- return torch.cat([x ** i for i in range(1, POLY_DEGREE + 1)], 1)
- def f(x):
- """近似函数."""
- return x.mm(W_target) + b_target[0]
- def poly_desc(W, b):
- """生成多向式描述内容."""
- result = 'y = '
- for i, w in enumerate(W):
- result += '{:+.2f} x^{} '.format(w, len(W) - i)
- result += '{:+.2f}'.format(b[0])
- return result
- def get_batch(batch_size=32):
- """创建类似 (x, f(x))的批数据."""
- random = torch.from_numpy(np.sort(torch.randn(batch_size)))
- x = make_features(random)
- y = f(x)
- return Variable(x), Variable(y)
- # 声明模型
- fc = torch.nn.Linear(W_target.size(0), 1)
- for batch_idx in count(1):
- # 获取数据
- batch_x, batch_y = get_batch()
- print(len(batch_x))
- # 重置求导
- fc.zero_grad()
- # 前向传播
- output = F.smooth_l1_loss(fc(batch_x), batch_y)
- loss = output.data.item()
- # 后向传播
- output.backward()
- # 应用导数
- for param in fc.parameters():
- param.data.add_(-0.1 * param.grad.data)
- # 停止条件
- if loss < 1e-3:
- plt.cla()
- plt.scatter(batch_x.data.numpy()[:, 0], batch_y.data.numpy()[:, 0], label='real curve', color='b')
- plt.plot(batch_x.data.numpy()[:, 0], fc(batch_x).data.numpy()[:, 0], label='fitting curve', color='r')
- plt.legend()
- plt.show()
- break
- print('Loss: {:.6f} after {} batches'.format(loss, batch_idx))
- print('==> Learned function:\t' + poly_desc(fc.weight.data.view(-1), fc.bias.data))
- print('==> Actual function:\t' + poly_desc(W_target.view(-1), b_target))
|