{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:No training configuration found in save file: the model was *not* compiled. Compile it manually.\n", " * Serving Flask app \"__main__\" (lazy loading)\n", " * Environment: production\n", " WARNING: Do not use the development server in a production environment.\n", " Use a production WSGI server instead.\n", " * Debug mode: on\n" ] }, { "ename": "OSError", "evalue": "[Errno 99] Cannot assign requested address", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m'验证码文件未上传'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 52\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m__name__\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'__main__'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 53\u001b[0;31m \u001b[0mapp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"192.168.2.101\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mport\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5000\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdebug\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m~/anaconda3/envs/dl_nlp/lib/python3.5/site-packages/flask/app.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, host, port, debug, load_dotenv, **options)\u001b[0m\n\u001b[1;32m 941\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 942\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 943\u001b[0;31m \u001b[0mrun_simple\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhost\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mport\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 944\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 945\u001b[0m \u001b[0;31m# reset the first request information if the development server\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/envs/dl_nlp/lib/python3.5/site-packages/werkzeug/serving.py\u001b[0m in \u001b[0;36mrun_simple\u001b[0;34m(hostname, port, application, use_reloader, use_debugger, use_evalex, extra_files, reloader_interval, reloader_type, threaded, processes, request_handler, static_files, passthrough_errors, ssl_context)\u001b[0m\n\u001b[1;32m 793\u001b[0m \u001b[0ms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msocket\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msocket\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maddress_family\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msocket\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSOCK_STREAM\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 794\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetsockopt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msocket\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSOL_SOCKET\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msocket\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSO_REUSEADDR\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 795\u001b[0;31m \u001b[0ms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mget_sockaddr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhostname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mport\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maddress_family\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 796\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'set_inheritable'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 797\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_inheritable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mOSError\u001b[0m: [Errno 99] Cannot assign requested address" ] } ], "source": [ "from tensorflow.keras import models \n", "import tensorflow.keras.backend as K\n", "from flask import request, Flask\n", "from PIL import Image\n", "from io import BytesIO\n", "import numpy as np\n", "import base64\n", "import string\n", "\n", "characters = string.digits\n", "base_model = models.load_model('digit_base_model.h5')\n", "app = Flask(__name__)\n", "\n", "\n", "def predit_img(img):\n", " img_arr = np.array(img.resize((100,50), Image.BILINEAR))/255.0\n", " if img_arr.shape != (50,100,3):\n", " return '图片必须为rgb格式'\n", " X_test = np.array([img_arr])\n", " print(X_test.shape) \n", " y_pred = base_model.predict(X_test)\n", " print('y_pred',y_pred)\n", " out_pre = K.get_value(K.ctc_decode(y_pred, input_length=np.ones(y_pred.shape[0])*y_pred.shape[1])[0][0])[:, :6]\n", " print('out_pre', out_pre.shape)\n", " out = ''.join([characters[x] for x in out_pre[0]]) \n", " print('out',out.shape)\n", " return out\n", " \n", "@app.route(\"/upload\", methods=[\"POST\"])\n", "def upload():\n", " \"\"\"接受前端传送来的文件\"\"\"\n", " code_type = request.form.get('code')\n", " base64pic = request.form.get('base64pic')\n", " file_obj = request.files.get(\"pic\")\n", " if base64pic is not None:\n", " try:\n", " src = base64.b64decode(base64pic.split(',')[-1])\n", " img = Image.open(BytesIO(src))\n", " pre = predit_img(img)\n", " return \"上传文件成功 ,验证码结果为 %s\" % pre\n", " except:\n", " return '文件格式错误,请检查是否为base64文件'\n", " if file_obj is not None:\n", " try:\n", " img = Image.open(file_obj)\n", " pre = predit_img(img)\n", " return \"上传文件成功 ,验证码结果为 %s\" % pre\n", " except:\n", " return '文件格式错误,请检查是否为验证码图片'\n", "\n", " return '验证码文件未上传'\n", "if __name__ == '__main__':\n", " app.run(\"192.168.2.101\", port=5000, debug=True)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:No training configuration found in save file: the model was *not* compiled. Compile it manually.\n" ] } ], "source": [ "from tensorflow.keras import models \n", "import tensorflow.keras.backend as K\n", "from flask import request, Flask\n", "from PIL import Image\n", "from io import BytesIO\n", "import tensorflow as tf\n", "import numpy as np\n", "import base64\n", "import string\n", "import os\n", "os.environ['CUDA_DEVICE_ORDER'] = \"PIC_BUS_ID\"\n", "os.environ['CUDA_VISIBLE_DEVICES'] = \"-1\"\n", "\n", "characters = string.digits\n", "\n", "english_characters = string.ascii_lowercase + string.digits # 20200728 更新为全部小写多种验证码\n", "english_base_model = models.load_model('gru_DigitAndEnglist_base_model1014.h5') # 20200518 新增 20200728 更新为全部小写多种验证码\n", "english_input = english_base_model.output\n", "english_input_length = tf.keras.Input(batch_shape=[None], dtype='int32')\n", "english_decode = K.ctc_decode(y_pred=english_input, input_length=english_input_length * K.shape(english_input)[1])\n", "english_decode = K.function([english_base_model.input, english_input_length], [english_decode[0][0]])\n", "app = Flask(__name__)\n", "width = 200\n", "height = 70\n", "\n", "def predict_english(img):\n", " img_arr = np.array(img.resize((200, 70), Image.NEAREST)) / 255.0\n", " X_test = np.array([img_arr])\n", " with graph.as_default():\n", " out_pre = english_decode([X_test, np.ones(X_test.shape[0])])[0]\n", " out = ''.join([english_characters[x] for x in out_pre[0]])\n", " return out\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " * Serving Flask app \"__main__\" (lazy loading)\n", " * Environment: production\n", " WARNING: Do not use the development server in a production environment.\n", " Use a production WSGI server instead.\n", " * Debug mode: on\n" ] }, { "ename": "OSError", "evalue": "[Errno 98] Address already in use", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 81\u001b[0m \u001b[0;31m# handler.setFormatter(logging_format)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 82\u001b[0m \u001b[0;31m# app.logger.addHandler(handler)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 83\u001b[0;31m \u001b[0mapp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"127.0.0.1\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mport\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5011\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdebug\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m#http://192.168.2.102\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 84\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'flash running'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/envs/dl_nlp/lib/python3.5/site-packages/flask/app.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, host, port, debug, load_dotenv, **options)\u001b[0m\n\u001b[1;32m 941\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 942\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 943\u001b[0;31m \u001b[0mrun_simple\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhost\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mport\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 944\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 945\u001b[0m \u001b[0;31m# reset the first request information if the development server\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/envs/dl_nlp/lib/python3.5/site-packages/werkzeug/serving.py\u001b[0m in \u001b[0;36mrun_simple\u001b[0;34m(hostname, port, application, use_reloader, use_debugger, use_evalex, extra_files, reloader_interval, reloader_type, threaded, processes, request_handler, static_files, passthrough_errors, ssl_context)\u001b[0m\n\u001b[1;32m 793\u001b[0m \u001b[0ms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msocket\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msocket\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maddress_family\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msocket\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSOCK_STREAM\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 794\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetsockopt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msocket\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSOL_SOCKET\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msocket\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSO_REUSEADDR\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 795\u001b[0;31m \u001b[0ms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mget_sockaddr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhostname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mport\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maddress_family\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 796\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'set_inheritable'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 797\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_inheritable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mOSError\u001b[0m: [Errno 98] Address already in use" ] } ], "source": [ "# from predict_model import *\n", "from flask import request, Flask, jsonify\n", "from PIL import Image\n", "from io import BytesIO\n", "import base64\n", "import time\n", "import logging\n", "\n", "coun_dic = {'shuzi':{'total_num':0, 'neg_num':0}, 'suanshu':{'total_num':0, 'neg_num':0}\n", " ,'yingwen':{'total_num':0, 'neg_num':0},'hanzi':{'total_num':0, 'neg_num':0}}\n", "\n", "app = Flask(__name__)\n", "\n", "@app.route(\"/upload\", methods=[\"POST\"])\n", "def upload():\n", " start_time = time.time()\n", " \"\"\"receive image and predict \"\"\"\n", " code_type = request.form.get('code')\n", " base64pic = request.form.get('base64pic')\n", " file_obj = request.files.get(\"pic\")\n", " data = {'success':False}\n", " if code_type is None or str(code_type) not in ['shuzi', 'suanshu','yingwen','hanzi']:\n", " data = {'errorinfo':'please check you param:code, code must be in shuzi/suanshu/yingwen/hanzi'}\n", " return jsonify(data)\n", " if base64pic is not None:\n", " try:\n", " src = base64.b64decode(base64pic.split(',')[-1])\n", " img = Image.open(BytesIO(src))\n", " if img.mode != \"RGB\":\n", " img = img.convert(\"RGB\")\n", "# if code_type == 'shuzi':\n", "# pre = predict_digit(img)\n", "# elif code_type == 'suanshu':\n", "# pre = predict_arith(img)\n", "# pre = str(eval(pre))\n", "# elif code_type == 'hanzi':\n", "# pre = predict_chinese(img)\n", "# elif code_type == 'yingwen':\n", " pre = predict_english(img)\n", " data['predict'] = pre\n", " data['success'] = True\n", " coun_dic[code_type]['total_num'] +=1\n", " app.logger.info(\"success ,use time:%.4f\" %(time.time() - start_time))\n", " return jsonify(data)\n", " except:\n", " app.logger.info(\"except error,use time:%.4f\" %(time.time() - start_time))\n", " return jsonify(data)\n", " if file_obj is not None:\n", " try:\n", " img = Image.open(file_obj)\n", " if img.mode != \"RGB\":\n", " img = img.convert(\"RGB\")\n", "# if code_type == 'shuzi':\n", "# pre = predict_digit(img)\n", "# elif code_type == 'suanshu':\n", "# pre = predict_arith(img)\n", "# pre = str(eval(pre))\n", "# elif code_type == 'hanzi':\n", "# pre = predict_chinese(img)\n", "# elif code_type == 'yingwen':\n", " pre = predict_english(img)\n", " data['success'] = True\n", " data['predict'] = pre\n", " coun_dic[code_type]['total_num'] += 1\n", " app.logger.info(\"success ,use time:%.4f\" %(time.time() - start_time))\n", " # print('graph_node_num',len(tf.get_default_graph().as_graph_def().node))\n", " return jsonify(data)\n", " except:\n", " app.logger.info(\"except error, use time:%.4f\" %(time.time() - start_time))\n", " return jsonify(data)\n", "\n", " return 'please check you post '\n", "\n", "\n", "if __name__ == '__main__':\n", "# handler = logging.FileHandler('flask.log', encoding='UTF-8')\n", "# app.logger.setLevel(\"INFO\")\n", "# logging_format = logging.Formatter(\n", "# '%(asctime)s - %(levelname)s - %(filename)s -%(lineno)s - %(message)s'\n", "# )\n", "# handler.setFormatter(logging_format)\n", "# app.logger.addHandler(handler)\n", " app.run(\"127.0.0.1\", port=5011, debug=True) #http://192.168.2.102\n", " print('flash running')" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " * Serving Flask app \"__main__\" (lazy loading)\n", " * Environment: production\n", " WARNING: Do not use the development server in a production environment.\n", " Use a production WSGI server instead.\n", " * Debug mode: off\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " * Running on http://192.168.2.101:5025/ (Press CTRL+C to quit)\n", "[2019-12-19 17:54:13,477] ERROR in app: Exception on /upload [POST]\n", "Traceback (most recent call last):\n", " File \"/home/python/anaconda3/envs/dl_nlp/lib/python3.5/site-packages/flask/app.py\", line 2292, in wsgi_app\n", " response = self.full_dispatch_request()\n", " File \"/home/python/anaconda3/envs/dl_nlp/lib/python3.5/site-packages/flask/app.py\", line 1815, in full_dispatch_request\n", " rv = self.handle_user_exception(e)\n", " File \"/home/python/anaconda3/envs/dl_nlp/lib/python3.5/site-packages/flask/app.py\", line 1718, in handle_user_exception\n", " reraise(exc_type, exc_value, tb)\n", " File \"/home/python/anaconda3/envs/dl_nlp/lib/python3.5/site-packages/flask/_compat.py\", line 35, in reraise\n", " raise value\n", " File \"/home/python/anaconda3/envs/dl_nlp/lib/python3.5/site-packages/flask/app.py\", line 1813, in full_dispatch_request\n", " rv = self.dispatch_request()\n", " File \"/home/python/anaconda3/envs/dl_nlp/lib/python3.5/site-packages/flask/app.py\", line 1799, in dispatch_request\n", " return self.view_functions[rule.endpoint](**req.view_args)\n", " File \"\", line 100, in upload\n", " pre = predict_chinese(img)\n", "NameError: name 'predict_chinese' is not defined\n", "192.168.2.2 - - [19/Dec/2019 17:54:13] \"\u001b[1m\u001b[35mPOST /upload HTTP/1.1\u001b[0m\" 500 -\n" ] } ], "source": [ "from predict_model import *\n", "from flask import request, Flask, jsonify\n", "from PIL import Image\n", "from io import BytesIO\n", "import base64\n", "import time\n", "\n", "total_num = 0\n", "neg_num = 0\n", "\n", "app = Flask(__name__)\n", "\n", "@app.route(\"/getlog\", methods=[\"POST\"])\n", "def get_acc():\n", " global total_num\n", " global neg_num\n", " data = {'total_num':total_num, 'neg_numative':neg_num}\n", " clear = request.form.get('clear_log', 'no')\n", " if clear == 'yes':\n", " with open('upload_num_log.txt', 'a', encoding='utf=8') as f:\n", " f.write('total_number:%d,\\t error_number:%d\\n'%(total_num, neg_num))\n", " total_num = 0\n", " neg_num = 0\n", " return jsonify(data)\n", "\n", "@app.route(\"/errorlog\", methods=[\"POST\"])\n", "def save_error():\n", " \"\"\"receive not success image and save \"\"\"\n", " global total_num\n", " global neg_num\n", " code_type = request.form.get('code', 'unknow')\n", " base64pic = request.form.get('base64pic')\n", " file_obj = request.files.get(\"pic\")\n", " data = {'save_success':False}\n", " if base64pic is not None:\n", " try:\n", " src = base64.b64decode(base64pic.split(',')[-1])\n", " img = Image.open(BytesIO(src))\n", " time_tr = time.strftime(\"%Y-%m-%d-%H-%M-%S\", time.localtime())\n", " img.save('pic/'+str(code_type)+'_'+time_tr+'.jpg')\n", " data['save_success'] = True\n", " neg_num += 1\n", " return jsonify(data)\n", " except:\n", " return jsonify(data)\n", " if file_obj is not None:\n", " try:\n", " img = Image.open(file_obj)\n", " time_tr = time.strftime(\"%Y-%m-%d-%H-%M-%S\", time.localtime())\n", " img.save('pic/'+str(code_type)+'_'+time_tr+'.jpg')\n", " data['save_success'] = True\n", " neg_num += 1\n", " return jsonify(data)\n", " except:\n", " return jsonify(data)\n", "\n", "@app.route(\"/upload\", methods=[\"POST\"])\n", "def upload():\n", " global total_num\n", " global neg_num\n", " \"\"\"receive image and predict \"\"\"\n", " code_type = request.form.get('code')\n", " base64pic = request.form.get('base64pic')\n", " file_obj = request.files.get(\"pic\")\n", " data = {'success':False}\n", "# print(type(code_type))\n", " if code_type is None or str(code_type) not in ['shuzi', 'suanshu','yingwen','hanzi']:\n", " data = {'errorinfo':'please check you param:code, code must be in shuzi/suanshu/yingwen/hanzi'}\n", " return jsonify(data)\n", " if base64pic is not None:\n", " try:\n", " src = base64.b64decode(base64pic.split(',')[-1])\n", " img = Image.open(BytesIO(src))\n", " if img.mode != \"RGB\":\n", " img = img.convert(\"RGB\")\n", " if code_type == 'shuzi':\n", " pre = predict_digit(img)\n", " elif code_type == 'suanshu':\n", " pre = predict_arith(img)\n", " pre = str(eval(pre))\n", " elif code_type == 'hanzi':\n", " pre = predict_chinese(img)\n", " data['predict'] = pre\n", " data['success'] = True\n", " total_num += 1\n", " return jsonify(data)\n", " except:\n", " return jsonify(data)\n", " if file_obj is not None:\n", "# try:\n", " img = Image.open(file_obj)\n", " if img.mode != \"RGB\":\n", " img = img.convert(\"RGB\")\n", " if code_type == 'shuzi':\n", " pre = predict_digit(img)\n", " elif code_type == 'suanshu':\n", " pre = predict_arith(img)\n", " pre = str(eval(pre))\n", " elif code_type == 'hanzi':\n", " pre = predict_chinese(img)\n", " data['success'] = True\n", " data['predict'] = pre\n", " total_num += 1\n", " return jsonify(data)\n", "# except:\n", "# return jsonify(data)\n", "\n", " return 'please check you post '\n", "\n", "\n", "if __name__ == '__main__':\n", " app.run(\"192.168.2.101\", port=5025, debug=False)\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "abcdefghijklmnopqrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ\n", "25 latin2/ARIALNI.TTF\n" ] } ], "source": [ "from PIL import Image, ImageFont, ImageDraw\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import random\n", "import uuid\n", "import math\n", "import glob\n", "\n", "%matplotlib inline\n", "%config InlineBackend.figure_format = 'retina'\n", "\n", "import string\n", "characters = string.ascii_lowercase + string.digits + string.ascii_uppercase # 验证码字符集合数字+英文\n", "print(characters)\n", "\n", "# width, height, n_len, n_class = 200, 70, 6, len(characters) + 1 #图片宽、高,验证码最大长度,分类\n", "width, height, n_len, n_class = 128, 64, 6, len(characters) + 1 #图片宽、高,验证码最大长度,分类\n", "# fonts=glob.glob('fonts/english/*')\n", "fonts = glob.glob('latin2/*')\n", "print(len(fonts), fonts[0])" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "image size (100, 26) (128, 64)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAEdAAAAIvCAYAAABqh06aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XuspOddH/DfMzPnfs7ed20SkthxvDYCRGIHCKSCGiSTgmhBUBpIAEUVEhdxKxehJi0JJQS1oYTQAlHVNFJSBSqgoKoFotIUVAKVMCoUSOJcSGLHa3u967O3s+cyc97+scdVsDzjZP3NmTPrz0eyJjtP3u/5zTvP+7zP+54zz7Su6woAAAAAAAAAAAAAAAAAAAAAAGZNb9oFAAAAAAAAAAAAAAAAAAAAAADA9bCADgAAAAAAAAAAAAAAAAAAAAAAM8kCOgAAAAAAAAAAAAAAAAAAAAAAzCQL6AAAAAAAAAAAAAAAAAAAAAAAMJMsoAMAAAAAAAAAAAAAAAAAAAAAwEyygA4AAAAAAAAAAAAAAAAAAAAAADPJAjoAAAAAAAAAAAAAAAAAAAAAAMwkC+gAAAAAAAAAAAAAAAAAAAAAADCTLKADAAAAAAAAAAAAAAAAAAAAAMBMsoAOAAAAAAAAAAAAAAAAAAAAAAAzyQI6AAAAAAAAAAAAAAAAAAAAAADMJAvoAAAAAAAAAAAAAAAAAAAAAAAwkyygAwAAAAAAAAAAAAAAAAAAAADATLKADgAAAAAAAAAAAAAAAAAAAAAAM2mqC+i01j63tfb21tpDrbWt1trHWmtvaa0dnWZdAAAAAAAAAAAAAAAAAAAAAAAcfK3ruun84NZuq6r3VdWpqvrtqvpAVX1JVd1TVR+sqpd3XXfuOrP/pqoOVdXHIsUCAAAAVVW3VNXFrutunXYhAAAAAAAAz5S/NQQAAAAAAACYqlsq9Hm1wTOv5br9Ul1bPOcHuq77xSeebK3966r64ap6Y1V993VmH6qqY71+/9gzrhIAAACoqqrd0aiqNdfaAAAAAADAjeLQ3NzcsZtOnYr8/mM0HCViqqpqt9uNZfUHuT8V3Q1+aWPrtVjWaJTb99VydVUwKqnX68Wyovs+qN/vx7K63dzxmDS/m3uNyXexy5VVO8H+1YLH9iB4DFXw3DFoubqSX9K7GxwLd4O7frflXmPyK417wbB+MCu4u2o32Fej+ys53Ad32Ch4DA0P6DGUnDIl38dkv69+budvB68VkmP0oJebBLRRbuf3gn1irsvtsC559gheW22PhrGsZF29Qa5/DYOvsR/s91VVXfD4To5hyXE6mnVAX2N2dpjTgteQyftWc3O5+1Zb29uxrF6wrp3g/uoF5xTJ+3zJ69E2Co6FwTlFPzqABecUg9y+3xzuxLIqeO6uYP+qYP/qB88eyWvbZFbyjDbqcvfAuuC9uS54cI+Ck5PkGN0P7q/kuJoc7xeSvwfbyV0vjILn7aTk70+2Q/Ov8+fP13CY2fcteXP70/6hrd1WVR+ua9/aclv3KVd3rbW1qjpT1647TnVdd+U68u/r9ft3rR4+FKoYAAAAuHzhYlVVjYbDA/qnvgAAAAAAAJ++1tp9n/vc5971Y9//Q5G8c+uPR3Kqqja3t2JZR04cj2VtBOuaW16MZT1+KbfvW/ADUi34QZGu5f6YfGlpKZZ1+eKlWFbS4bXVWNbmxtVYVtLzN47Gsi73ch9g2VrLHUOfvHAuljU/PxfLumkp9zfqu2dz49ephVy/3xrmxvvN4Ff+XlzMjYUbc7ms4HoKtRhct2BtO/dZkcXg5yivDHJ9dWU79z4m91cFz9vrwX5/bvlgHkPzu7l9v7aZy1oI/olUb3UllvWJnc/4Y1ZjXZnPfZjv6PLhWNbc+mYs69Bm7jU+ZyeXtVW5gbVbmo9lPXgxN//aXc5NAhaP5uZf54PXj4dWcue0qqrd5DV38MPNg+BCVPPBBUqTi6ZFFx6sg7kI68Jmrr9evZq7Tr7pc26OZX3kgY/HslafeyKWdWbzYixr/shaLCv1gfeqqmPzuft88xdy84CFi7lxda0fXJxhPnfPcOd4bp75/vWHY1ntWG7M6fdzr3H38kYs61CX6xNrwdVOF3aCi7gEz9uPb1+OZY0O5cacrUMLsawLvdxNnY1hbiw8upI7d7SLuTlAcrw/ffRULOvimbOxrMvHlmNZSYcO5a6vHnjggUjOu971rnr00Uf/rOu6u59p1rSWLbpn7/E93ZOWRu267lJV/VFVLVfVy/a7MAAAAAAAAAAAAAAAAAAAAAAAZkNwPffPyB17j/ePaf9QVd1bVaer6vfHhbTW7hvTdOf1lwYAAAAAAAAAAAAAAAAAAAAAwCzoTennHt57vDCm/Ynnj+xDLQAAAAAAAAAAAMAB1Vr73Nba21trD7XWtlprH2utvaW1dnTatQEAAAAAAAAwfYNpF/BMdF1391M931q7r6ru2udyAAAAAAAAAAAAgKDW2m1V9b6qOlVVv11VH6iqL6mqH6yqV7TWXt513bkplggAAAAAAADAlPWm9HMv7D0eHtP+xPPr+1ALAAAAAAAAAAAAcDD9Ul1bPOcHuq77hq7rfqLruq+qqp+vqjuq6o1TrQ4AAAAAAACAqZvWAjof3Hs8Pab99r3H+/ehFgAAAAAAAAAAAOCAaa3dVlX3VtXHqurfPqn5J6vqSlV9e2ttZZ9LAwAAAAAAAOAAGUzp57537/He1lqv67rdJxpaa2tV9fKq2qiqP/lsFXDs6LGxbYtLi5+tHwsAADCzNq9eve5tF5eWgpWQsHl1c2zb+cfP72MlAAAAAAAAY92z9/ieT/07w6qqrusutdb+qK4tsPOyqvr9/S4OAAAAAAAAgIOhN40f2nXdR6rqPVV1S1V935Oa31BVK1X1zq7rruxzaQAAAAAAAAAAAMDBcMfe4/1j2j+093h6Ukhr7b6n+q+q7kwVCgAAAAAAAMD0DKb4s7+3qt5XVW9trX11Vb2/qr60rn1jzP1V9dop1gYAAAAAAAAAAABM1+G9xwtj2p94/sg+1AIAAAAAAADAATW1BXS6rvtIa+2lVfVTVfWKqvraqjpTVb9QVW/ouu7xadUGAAAAAAAAAAAA3Bi6rrv7qZ5vrd1XVXftczkAAAAAAAAAhE1tAZ2qqq7rHqiq10yzBgAAAAAAAAAAAOBAurD3eHhM+xPPr+9DLQAAAAAAAAAcUL1pFwAAAAAAAAAAAADwFD6493h6TPvte4/370MtAAAAAAAAABxQFtABAAAAAAAAAAAADqL37j3e21r7W3/v2Fpbq6qXV9VGVf3JfhcGAAAAAAAAwMExmHYB0/JV99wztu3OO+/cx0oAAABmwwff/1fXve0dn/f5wUpI+MAHPjC27dd/8zf2sRIAAAAAAICn1nXdR1pr76mqe6vq+6rqFz+l+Q1VtVJVb+u67so06gMAAAAAAADgYHjWLqADAAAAAAAAAAAAHHjfW1Xvq6q3tta+uqreX1VfWlX3VNX9VfXaKdYGAAAAAAAAwAHQm3YBAAAAAAAAAAAAAE+l67qPVNVLq+oddW3hnB+pqtuq6heq6mVd152bXnUAAAAAAAAAHASDaRcAAAAAAAAAAAAAME7XdQ9U1WumXQcAAAAAAAAAB5MFdAAAAAAAAAAAAIBnpZ3hsM6sn4tkvelNb4rkVFV1saSq0e4omJbT6/VyWdE9lrNzdTOWNbc4H8vavnApljW/uhbLqt1cVF28mMtKvsbNXJ+oudVY1FY3jGW11blY1lYsqSo34mT/AL+7uBHLWlxajmVFh9V+LmrUzw0Uyf7VBQew3BFUlTtzVFVwOrHdzx1F88lzR24ozB5DwU6x1cvtsGGw3y8Ed1j/Su5c2+aWYlm7l6/EsnpHDseyuuAJ8uqFq7Gs5YXcvq/LwQFsKddXh7u5QWewuhjLGrVYVO3komoYHCcu7uSuh1aDc/Kqqn5wbA1OwaLX3Mm5TrC7VnXJSUVQck6xu5DLCs6bNh7N3Jerqvqt3/zPsayHHn80ltUf5d7Io0eOxLIefPThWNb6Tm4eMBc8g7zx534mllXbwY6/E7wiXchN6LaXc+NE8A5YHUpOWpO3yq8Gw/rBM3fylPZYboz+L//992JZX/+ab4tlndu4EMtaXMtdq20HO+vVK7n573NWDsWyohcMV4JhLThjPZwbv0ajXJ84e/ZsLOvd7353JGd+PncnM/m7AAAAAAAAAAAAAAAAAAAAAAAA2DcW0AEAAAAAAAAAAAAAAAAAAAAAYCZZQAcAAAAAAAAAAAAAAAAAAAAAgJk0mHYB03LPPfeMbft7X/M1+1gJAADAbHjP7/7X69723ld8XbASEn7n935vbNuv/+Zv7GMlAAAAAAAAAAAAAAAAAHD9etMuAAAAAAAAAAAAAAAAAAAAAAAArocFdAAAAAAAAAAAAAAAAAAAAAAAmEkW0AEAAAAAAAAAAAAAAAAAAAAAYCZZQAcAAAAAAAAAAAAAAAAAAAAAgJlkAR0AAAAAAAAAAAAAAAAAAAAAAGaSBXQAAAAAAAAAAAAAAAAAAAAAAJhJFtABAAAAAAAAAAAAAAAAAAAAAGAmDaZdwLSsra6ObTt+/Pg+VgIAADAbTp++Y2zb+uOPT9z2wvr5ie233HrbxPZez/qvaZOuiwEAAAAAAAAAAAAAAABgVvgEIgAAAAAAAAAAAAAAAAAAAAAAM8kCOgAAAAAAAAAAAAAAAAAAAAAAzCQL6AAAAAAAAAAAAAAAAAAAAAAAMJMsoAMAAAAAAAAAAAAAAAAAAAAAwEyygA4AAAAAAAAAAAAAAAAAAAAAADPJAjoAAAAAAAAAAAAAAAAAAAAAAMykwbQLAAAAAAAAAAAAAJiGruvq6s52JGsUSblmO1RTVVXt7sailhYWY1ndKFdXVS6r29qJZc0F91dt5frE/PJaLCva8btg1mrwNe4Mc1nzwWNoucWyRtu572SdjyVVLQSzRsEO1q/cvm+ry7Gs3d3cAdnrH8zv6e3v5t7H4CFUXbBPHFi93Lk2ubeGwbB+8tM1yf7Vcv1+LjgWJrN6XXASsBycf23n5gC9Qwdz/tWC05zlxaVcWPByqJb7sajN3Gm7tka5fr8QHHOSY/RusLMOKvc+HplbjWWNohdEVVW5OVj2Ui3XX5N3AnK9oqrfgnP8WFI268wg9z6uDnKVrT3veCzrW77z1bGswWpwThHsrI9uXIpl/eTPvymW9brXvTGW1avcBGWjy2Ut95Jz1uC8KXj5nrwTsHH1YixrZSu3v/rLwbtNC8GDO3ni3tnMZT0nN0Z/7Su/KZb1Yz/+o7Gsn/25N8eytoNv5FpwFnB05VAsK9tXg2HJ36kFryGTI2u/n6vr5MmTsazhMHOu7YL3hiygAwAAwKflBbfcOrZt52luNvz1X/7fie3Pf8H47KqqXu9g/mEWAAAAAAAAAAAAAAAAADBdPoEIAAAAAAAAAAAAAAAAAAAAAMBMsoAOAAAAAAAAAAAAAAAAAAAAAAAzyQI6AAAAAAAAAAAAAAAAAAAAAADMJAvoAAAAAAAAAAAAAAAAAAAAAAAwkyygAwAAAAAAAAAAAAAAAAAAAADATLKADgAAAAAAAAAAAAAAAAAAAAAAM2kw7QIAAACYDSdOnhrb9ugjD0/c9sP33z+x/fy5cxPbjx47NrZtbm5u4rYAAAAAAAAAAAAAAAAAwI2rN+0CAAAAAAAAAAAAAAAAAAAAAADgelhABwAAAAAAAAAAAAAAAAAAAACAmWQBHQAAAAAAAAAAAAAAAAAAAAAAZpIFdAAAAAAAAAAAAAAAAAAAAAAAmEkW0AEAAAAAAAAAAAAAAAAAAAAAYCZZQAcAAAAAAAAAAAAAAAAAAAAAgJlkAR0AAAAAAAAAAAAAAAAAAAAAAGbSYNoFAAAAMPtOnDw1sf3W2140sf0v/s+fTWy/66VfPLbt2PETE7cFAAAAAAAAAAAAAAAAAG5cvWkXAAAAAAAAAAAAAAAAAAAAAAAA18MCOgAAAAAAAAAAAAAAAAAAAAAAzKTBtAsAAAAAAAAAAAAAmIbBYFA3nzgZyepHUq6Z7+XS+nPzsaykzeF2LGtxIfcad5cXclnVxbIuD7diWUvzuT8fXt+8GMvK7a2q1cW1WNbludy+X+7nju3kH4EP5oNjTiypqrZHsahutBPLakuLsaxh8Otwk1lz1WJZ88mDexTsYbu5qNzequhXJHfBgWIn2SdyU4DoYJg8hnKjV9UguO/7u8nemsvqermsjeCM4kJwDrDay81XtzZy86/BKNfxV9ZWY1nne7l935/Lze9zSVWD/lwsK3lkd8PcnKm/kxsNFxaCc4AuOODvJic6VTXIvc4u2DF2s7OdmOA7mX2FyW4RzHqkDWNZo8qNYcFpQC0v5+qqYXDnB689jq3m7nfcfPJULGurcueP+crNmx68eCaW9YLDN8Wy5pL3DC9eimWtHDoUyzq2lMuqpdyInxsJq67sBC9ul3JzgF7wvtWFrdy1x9pqrk8s35o7Hi9Fx6/c+7gdvLNwdXszlrVx+Uos69SxE7GstrwUy1q/sB7LqvXcjasjR47EsloL3tPpwtdEAcnrBAAAAAAAAAAAAAAAAAAAAAAA2DcW0AEAAAAAAAAAAAAAAAAAAAAAYCZZQAcAAAAAAAAAAAAAAAAAAAAAgJlkAR0AAAAAAAAAAAAAAAAAAAAAAGbSYNoFAAAAMPtOnDw1sX00Gk1sf/e73jGx/fbTd4xtO3b8xMRtAQAAAAAAAAAAAAAAAIAbV2/aBQAAAAAAAAAAAAAAAAAAAAAAwPWwgA4AAAAAAAAAAAAAAAAAAAAAADPJAjoAAAAAAAAAAAAAAAAAAAAAAMwkC+gAAAAAAAAAAAAAAAAAAAAAADCTLKADAAAAAAAAAAAAAAAAAAAAAMBMsoAOAAAAAAAAAAAAAAAAAAAAAAAzyQI6AAAAAAAAAAAAAAAAAAAAAADMpMG0CwAAAGD29XqT12cdDCZffu5sb09s393d/YxrAgAAAAAAAAAAAAAAAABufJM/4QgAAAAAAAAAAAAAAAAAAAAAAAeUBXQAAAAAAAAAAAAAAAAAAAAAAJhJFtABAAAAAAAAAAAAAAAAAAAAAGAmWUAHAAAAAAAAAAAAAAAAAAAAAICZZAEdAAAAAAAAAAAAAAAAAAAAAABm0iAR0lr75qr6yqp6cVV9UVWtVdV/7Lru1RO2+fKqel1VvayqlqrqQ1X19qr6xa7rRom6AAAAAAAAAAAAAMbpdrva3Lgaydq6uhnJqapaWFyMZVWXi9razL3GpaXca+xqN5a1ubMVyxrMLcSy5hdWYlkXK/gaFw/FsoaxpKqzleurc/3cvl+PJVUNti/Eso7N515j63Lf7zrotVxWi/zZfFVVdV1uYB223GscVj+WlRtVq+ZzLzFb2E4wK2k+F5XcXVvB726e345FZQX3fVI/+U4m+32wrBbc962fG3Tmernz45Xg/OvY8mosayF4bF/ZyXWw5Dz6ciypqq5eikWtLeX6V/J9rJrLRbXc3KQ2gxe2wflX9DVWRa/fky+z3wv2seTcMCm476OCdc0H38fkh3/Xt6/EslbmcmNr9EUGbVzOnYsef+RsLGslOJn+5CMfi2XdftPzY1m52UlV7eQm0ysLuX2fvPa4vJk7tmvxcCzqoQsPx7JOHL45lrURvF64unsxlnV4IXfvdyfYv773e74nlvXmn/kXsaw3/MRrY1m94KSpzed+F7N0LJd1sXI3iDaDJ+7+4dyYcyJ5fXVAjUaZfZ+85576TcDr6trCOZer6sGqunPS/7m19g+q6jeqarOqfq2qzlfV11fVz1fVy6vqH4bqAgAAAAAAAAAAAAAAAAAAAADgBpVaNvKHq+p0VR2qqonLdrXWDlXVv6trazD+3a7r/nHXdT9WVS+uqj+uqm9urb0yVBcAAAAAAAAAAAAAAAAAAAAAADeoyAI6Xde9t+u6D3Vd130a//dvrqqTVfWrXdf96adkbFbV6/b+OXERHgAAAAAAAAAAAAAAAAAAAAAAGEzhZ37V3uPvPkXbH1bVRlV9eWttoeu6rUlBrbX7xjTd+QzqAwAAAAAAAAAAAAAAAAAAAABgBvSm8DPv2Hu8/8kNXdcNq+pv6trCPi/cz6IAAAAAAAAAAAAAAAAAAAAAAJgtgyn8zMN7jxfGtD/x/JGnC+q67u6ner61dl9V3fWZlwYAAAAAAAAAAAAAAAAAAAAAwKzoTbsAAAAAAAAAAAAAAAAAAAAAAAC4HtNYQOfC3uPhMe1PPL++D7UAAAAAAAAAAAAAAAAAAAAAADCjBlP4mR+sqpdW1emquu9TG1prg6q6taqGVfXR/S8Nbhybm1cntm9tbU5sP3z4aLIcAACe5QaDyZefJ06emti+sXFlfNuV8W1VVcsrKxPbAQAAAAAAAAAAAAAAAIDZ1ZvCz/wfe4+veIq2r6iq5ap6X9d1W/tXEgAAAAAAAAAAAAAAAAAAAAAAs2YaC+j8elU9VlWvbK299IknW2uLVfXTe//85SnUBQAAAAAAAAAAAAAAAAAAAADADBkkQlpr31BV37D3z5v3Hr+stfaOvf/9WNd1P1pV1XXdxdbad9W1hXT+Z2vtV6vqfFX9/aq6Y+/5X0vUBQAAAAAAAAAAAAAAAAAAAADAjSuygE5VvbiqvvNJz71w77+qqo9X1Y8+0dB13W+11r6yql5bVd9UVYtV9eGq+idV9dau67pQXQAAAAAAAAAAAAAAAAAAAAAA3KAiC+h0Xff6qnr9Z7jNH1XV1yZ+PgAAAAAAAAAAAAAAAAAAAAAAzz69aRcAAAAAAAAAAAAAAAAAAAAAAADXwwI6AAAAAAAAAAAAAAAAAAAAAADMpMG0CwA+O849dnZi+yMPf3Ji+0vuftnYttbaddUEAMCz1+LS0sT2l9z9xRPbHz5z5rqzb3vR6YntAAAAAAAAAAAAAAAAAMDs6k27AAAAAAAAAAAAAAAAAAAAAAAAuB6DaRcAAAAAAAAAAAAAMBX9Vt3qQiSqLS1GcqqqdrrdWNZwcyuWtTS/FMuqnVxUu7IRy1pZXI5l1aWrsaiF+dyf/K70M32+qqp2tnNZLRdVC8HXuDvKZW3n9tfGoZVY1nwsqWp46VIsa7AQPB77uQ42HObex+25LpaVfCdb8IDsgi+xBQ/H2k0OOkHB/RU81VZwtM+O98GsYXLnJw2DdeWmhVU7wbqCHWx5dzOXtRw8Q3bBucl6cIdt576XfWUxt79WBrn+daIF99fR3PwrOt4H519zS8H5V6+fyxoGz2q7wZ0/n5xJV1XuVkD2fJs8RSbryg1h0bqiM4pgXb3K3aNYrtz9obX54NgaPIZGV3Nziu1hbhJ26NjhWNa//Gc/Fctqo9z59guOPCeWVbm3sSp5Pfr447Go/qljsazkALaymDu2t4MH9/MOn4hlbezk5mAn53L7a9DLjRPzyYH1anBeHry+uvPSXCyr/3Bw0JnL1VWLuaxBl5tPHF7NzaUXerkBbBSdlOfs7OSuiTY3c311ayszz+mCN5GTlwkAAAAAAAAAAAAAAAAAAAAAALBvLKADAAAAAAAAAAAAAAAAAAAAAMBMsoAOAAAAAAAAAAAAAAAAAAAAAAAzyQI6AAAAAAAAAAAAwIHUWvtYa60b89/D064PAAAAAAAAgOkbTLsAAAAAAAAAAAAAgAkuVNVbnuL5y/tdCAAAAAAAAAAHjwV04AZ1/tzZie0f+dAHJ7a/+K4vHdvWWruumgAAePZaWlqe2P7iu146sf3d73rH2LaFxcWJ2972otMT2wEAAAAAADjw1ruue/20iwAAAAAAAADgYOpNuwAAAAAAAAAAAAAAAAAAAAAAALgeg2kXAAAAAAAAAAAAADDBQmvt1VX1/Kq6UlV/UVV/2HXdaLplAQAAAAAAAHAQWEAHAAAAAAAAAAAAOMhurqp3Pum5v2mtvabruj94uo1ba/eNabrzGVcGAAAAAAAAwNT1pl0AAAAAAAAAAAAAwBj/oaq+uq4torNSVV9YVW+rqluq6ndaa180vdIAAAAAAAAAOAgG0y4AAAAAAAAAAAAA4Kl0XfeGJz31l1X13a21y1X1I1X1+qr6xqfJuPupnm+t3VdVdwXKBAAAAAAAAGCKetMuAAAAAAAAAAAAAOAz9Ct7j18x1SoAAAAAAAAAmLrBtAsAPjuOHjs+sf3mz3nuxPb3/9VfjG279bbbJ267vLwysR0AAJ6s15u8vuttLzo9tu34iRPpcgAAAAAAADj4zu49+mMlAAAAAAAAgGe5yZ9QBAAAAAAAAAAAADh4Xrb3+NGpVgEAAAAAAADA1FlABwAAAAAAAAAAADhwWmuf11pbeYrnb6mqf7P3z3ftZ00AAAAAAAAAHDyDaRcAAAAAAAAAAAAA8BT+UVX9SGvtD6vq41V1qapuq6qvq6rFqvpvVfXm6ZUHAAAAAAAAwEFgAR0AAAAAAAAAAADgIHpvVd1RVS+pqpdX1UpVrVfV/6qqd1bVO7uu66ZXHgAAAAAAAAAHgQV0AAAAAAAAAAAAgAOn67o/qKo/mHYdAAAAAAAAABxsFtABAAAAAAAAAAAAnpW2R8N68NL5SNZmJOWa+daLZS0tLcWyaicXVZeCe6wt5rLWh7msLrfv3/4d3xXLuvzY47Gsua7FsnpdLKqq241FHT16NJb1Lb/ytljW1uajsazl4ydjWVW5PlEbV3JZa6uxqLm5fixrMbi/gqNXzQXrCvaIqtzp8VmRlRsJq5JDdC3noraCHWw72FujH9Rp0aMoZzc3FtZWsLe23Pzrra/8nljW8JHc/Ovk1VyfOLQZHHS63EixdDI3/7r37bn51/aVM7Gs+VM3xbIGwevHrc2NWNbC2kosq5ufy2UFz2rJKUBVHdyTd/JUFMwaRucBOcl5+SiYdWvlzpHJLjEYBjtrL1jZXC5rfik3HiaP7fnt5D2w3Dhd67l7hm/81lfFspYHuVl+by13PP7g294Syxou5jrY6FDuwm85OM+sLnf2Xg3e+41eE515LJc1Cl73reTm+P/+218Ty9o4m7tW++0///FY1qMXz8WyHnj8bCzrxB23xrJ+4Jdz49fioeDxmPxFxUJAupQoAAAgAElEQVQuam4ud65NZi0sZF5kC97/il+nAQAAAAAAAAAAAAAAAAAAAADAfogubA0cHMef5ttAtjYnr8T5Z3/6x2Pbbrr5cyZuu7wcXBUVAACq6vY77hzbtjAfXJIXAAAAAAAAAAAAAAAAAJgpvWkXAAAAAAAAAAAAAAAAAAAAAAAA18MCOgAAAAAAAAAAAAAAAAAAAAAAzCQL6AAAAAAAAAAAAAAAAAAAAAAAMJMsoAMAAAAAAAAAAAAAAAAAAAAAwEyygA4AAAAAAAAAAAAAAAAAAAAAADPJAjoAAAAAAAAAAAAAAAAAAAAAAMwkC+gAAAAAAAAAAAAAAAAAAAAAADCTBtMuAGbdxUuXx7btDIcTtz1+9Ei6nP9vaXllYvvaocMT288++vDYtp2d7euqCQ6Srusmtm9dvjS2bfPi+sRtdzY3J7b3+pPXr1tcG398LqyuTdx2sLA4sR0AZtXx4yemXQIAAAAAAAAAAAAAAAAAcABN/gQ/AAAAAAAAAAAAAAAAAAAAAAAcUBbQAQAAAAAAAAAAAAAAAAAAAABgJllABwAAAAAAAAAAAAAAAAAAAACAmWQBHQAAAAAAAAAAAAAAAAAAAAAAZpIFdAAAAAAAAAAAAAAAAAAAAAAAmEkW0AEAAAAAAAAAAAAAAAAAAAAAYCYNpl0AzLoHzzwytu3CpUsTt/2yu1+cLgf4NHWj0cT2Cw89MLbtzF//+cRtLz5yZmL73MLixPab7viCsW2nbr9z4rarJydnAwAAAAAAAAAAAAAAAAAAwI2kN+0CAAAAAAAAAAAAAAAAAAAAAADgegymXQAAAAAAAAAAAADANAz6gzp2+Egkq0VSrrmyeTmWtbiwGsuq7Z1c1sJiLuvKVizqp1/1HbGsld3c91wOL16KZa0tLMWy5nZzPb+XPIiCdZ0/80gs653f9qpY1kdP547tn/zZN8Wy6lhmTK2qquEwl1W7saTRbhfLmuv1c1nBM1FvN7jvh8Hv/O2CWcmvIs69jTUK1jXKRUU93nL966C+xtwoke0T/YVcVnTyGxxy/vm3fXssa+fSlVjWsfnc/GsjufODnyrr5U619ci5M7Gsd73qW2NZZ2/Jzb9++F/l5l/tVG7+NejlDsgrwdFwIzjit+CJey6WtJcXHPMXgsdk8vjugkPYTnAOlrurULURzEpeER0N3tKpUXC20w92ilGwsw5yHaw3lzvh7o5yb2SvnxvF/uk35u53HL+Uex9f2HJzsCuPXYxlra/n7v3W3HIsapCLqlFwHjBswTnFxfVY1qHlw7GsSo7RaydiUf/6W14dy1oLntR2L12NZR1bzs3xHz7zyVhWbyX3+5PjR4/Fsi48fDaW9dbv/6FY1ifO5e7hv/k//Vosayd573cuffWRcfly5py2u5s7/ydv+wIAAAAAAAAAAAAAAAAAAAAAwL6xgA4AAAAAAAAAAAAAAAAAAAAAADPJAjoAAAAAAAAAAAAAAAAAAAAAAMwkC+gAAAAAAAAAAAAAAAAAAAAAADCTLKADAAAAAAAAAAAAAAAAAAAAAMBMGky7AP62ruue0fattVAlN46n3adP0/50mz/40JmxbQ+ffWziti+764smtk/z/ez1xq+v9XT79Ona9VMOgtFoOLH9wpkHx7Z94r7/PXHbsx/+wMT2+eXVie2t1x/btnbq5onbrp68aWI7MNmkc1jX7U7cdtK58xrnv8/UM5/HXf/c+mnnK0/Tbr4DAAAAAAAAAAAAAAAAALA/nu5TvgAAAAAAAAAAAAAAAAAAAAAAcCBZQAcAAAAAAAAAAAAAAAAAAAAAgJlkAR0AAAAAAAAAAAAAAAAAAAAAAGaSBXQAAAAAAAAAAAAAAAAAAAAAAJhJFtABAAAAAAAAAAAAAAAAAAAAAGAmWUAHAAAAAAAAAAAAAAAAAAAAAICZZAEdAAAAAAAAAAAAAAAAAAAAAABm0mDaBfC3feKTD01sH41GE9tf+ILnJ8uZGcPtnbFtG+fXJ2772Ic/PrH96vqFie3n33//2LbR7u7EbR/94Ecnth+/9Xlj2wYL8xO3fTpLyysT2z//C18ytu2RM5P76dzc5NpOnrp5Yjvsh4tnPjmxfXfCeHvq9OdN3PbY82+ZnD2cPJYPtzbHtl146IGJ2x593gsmtg8WFie2w41uuL01sX39kfHnuIc+8v6J295+99+Z2L64ujaxvbU2sf1GtL1xZWL7hYcnzznWP/mJie2bl8bP43qDyZdCK8dOTGw/8pzJ8+4jz3nuhNZn33sNAAAAAAAAAAAAAAAAAPDZ0pt2AQAAAAAAAAAAAAAAAAAAAAAAcD0soAMAAAAAAAAAAAAAAAAAAAAAwEyygA4AAAAAAAAAAAAAAAAAAAAAADPJAjoAAP+PvTsPsiy76wP/Oy9fZr7cs/a9l+pd3RICZA8IEIsjHBgbCVvSjIAQIgY0DASDJaEFoxUsG4HMKMDMyGM2gc2MxMCA7BgFMx4LLCzJLC3JUtOL1Gv1Ul37knvmy7zzh7Ijmqbvya6uX1VWVn8+ER2v633f+eXJ9+4999yb750HAAAAAAAAAAAAAAAAAADAltTd7A4AAAAAAAAAAAAAbIZOEzHaLym1RlKqfFVvYDiv2Fpeqehcod/b2J9PK1X2b0urdXo2r1//9A//MK1Wqn4/r9Zg4tuaZ8/n1ZqcSCv19te/Pq3WxKOn0mrF8GRerdW8UtFL3Ca6OWP9VzVplVLfzL+0nFerM5RW6kM/+/60Wm9+73vSas3NzqTV6m3LGydW0ipFrKzl7ZDDnYG0WgtplSI6iYPOSAym1VpcnkurtTQ0llZrcWgprVZvOG++urqUt1U8MJ43N/md3/vdtFpREufRmXOmxcW8Wp3EfiU+X2967X+XVusl9+fNvz7yI29Lq/WDH/lf02oNbM8bC9cib39cS5w1ZZ4iz6/mnfNFREyt5f2eoyVvPheJ08yls3nnaiN7885j3vW+n02r9VM/mzdnzdxeU4vNzubVSjznzrxuNTef9zuODY6n1Zqby5tnTvby9qHVlbwxf2I47yprr583rp6dy5uzDm9PvJLc5F2jWDlzNq1W2TWdViuvVxHDU1NptZaW886vhgcT/x5wPG/O2p/spdU6Pps3fr3z47+TVitGEp/7TuLBNvNPMTOZ18rzjh3/9A0/kFYrlhL/TlHyzokGB/Nqra7mXQNrEo8dU0nj6sBA3rXHi959Sik7Sik/XEr5g1LK/aWUhVLKuVLKfy6l/FApz37VopTy8lLKJ0opp9fbfLGU8qZSSt5vBwAAAAAAAAAAAAAAAAAAAADAVStj+bzXRsSHI+JoRPxxRByJiD0R8Y8i4tci4u+VUl7bPG0polLKqyLi9yNiMSI+FhGnI+K7I+JDEfFN6zUBAAAAAAAAAAAAAAAAAAAAAKBVxgI6X46IV0bE/900zdpTd5ZSfjoi/jwiXh1fXUzn99fvn4yIX42I1Yj4tqZp/nL9/ndHxCcj4jWllNc1TfPRhL5tOY8+/ng1X1pZruaHr70msztbxupy+/Myc+xkte1Dn7mzmp955LF6fuJUaza0fbra9vh9D1bz6QN7WrPu0FC1bZR6PDIyWs1vf/HXtmZ/9plPVdv2Ruu1d+3eW83hcjh3tD7ervX7rdmem19UbTu+c1c1nzt9upo//Gd/2pqdO1ofk/rLS9W8O9yr5nC161fmDBERJx9/uDX7q0/9UbXtoVteUs2Hx8areSkbHLyvQsvzc9X85MP3V/OH/+LT1fzcE4+2Zt3eSLXt7sO3VPNSBqr51L79lbYvvNcaAAAAAAAAAAAAAAAAAOBS6VxsgaZpPtk0zb9/+uI56/c/GRH/av2f3/a06DURsSsiPvrU4jnrj1+MiHet//NHL7ZfAAAAAAAAAAAAAAAAAAAAAABc3S56AZ0NrKzf9p9233es3/7Rszz+UxExHxEvL6UMX8qOAQAAAAAAAAAAAAAAAAAAAACwtXUvVeFSSjcifmD9n09fLOeW9dsvP7NN0zT9UspDEXF7RByOiHs2+Bl3tkS3XlhvAQAAAAAAAAAAAAAAAAAAAADYajqXsPYHIuKOiPhE0zT/z9Pun1q/PdfS7qn7py9VxwAAAAAAAAAAAAAAAAAAAAAA2Pq6l6JoKeUnIuInI+LeiHj9pfgZERFN03x9y8+/MyK+7lL9XAAAAAAAAAAAAAAAAAAAAAAANl8nu2Ap5ccj4pci4u6I+PamaU4/4yHn1m+nWko8df/Z7L4BAAAAAAAAAAAAAAAAAAAAAHD16GYWK6W8KSI+FBF3RcTfaZrm+LM87L6IeFlE3BwRdz6jfTciro+IfkQ8mNm3raLbrb8kM/Nz1fyJY8eq+d5du1qzTid9PaU0qyv9aj5/5nxrdv7oiYv62d3ecDWfmBhvzUpTr338vvpmvu/2m1qzgcGhattub4N8g21t+472bWV2YbbadmFhvprDlWBgqL6PjExvb82m9u6vtp3cV8+Hxier+eNfvLM16y8vV9uuLCxU895E2/p1cHVYnJup5iceqx97j95/T2t27mR9nrW2tlrNN9OpY09W897IaGs2Nlkfs6KpT3hq49bsBs/p4rn6mpqdgYFqPjQy1pqtrtbnl+ePPVHNTx+pb0u7brixNRuZ2lZtW8qVOy8HAAAAAAAAAAAAAAAAALjSpH0ys5Tyjvjq4jlfiIhvb1k8JyLik+u33/ks2SsiYjQiPtM0zVJW3wAAAAAAAAAAAAAAAAAAAAAAuPqkLKBTSnl3RHwgIu6MiL/TNM3JysN/LyJORsTrSikve1qNXkS8f/2fH87oFwAAAAAAAAAAAAAAAAAAAAAAV6/uxRYopbwhIn42IlYj4k8j4idKKc982MNN03wkIqJpmvOllDfGVxfS+ZNSykcj4nREvDIiblm//2MX2y8AAAAAAAAAAAAAAAAAAAAAAK5uF72ATkRcv347EBFvannMf4qIjzz1j6Zp/rCU8q0R8c6IeHVE9CLi/oh4S0T8ctM0TUK/AAAAAAAAAAAAAAAAAAAAAAC4il30AjpN07wvIt73PNp9OiK+62J/PgAAAAAAAAAAAAAAAAAAAAAAL0ydze4AAAAAAAAAAAAAAAAAAAAAAAA8HxbQAQAAAAAAAAAAAAAAAAAAAABgS+pudgf46645cKCarzZr1fyue++r5ju3bWvNhoaGqm0308rCYjU//+Tx9uzosWrbPbfdWM333XFzNZ85cbo1O/HAI9W2x+59oJqffOBIa9abnqq2He9dutezX+rb4WppLtnPhizbDlxTzZu19u18aHy82rYzUD+89iYmq/nErr2t2Wp/udp2eWGumkezwf5ZSj2HK9z5k09W84e/+BfV/Mg9X2jNhkc32Pe7g9W8bOL+9fC9d1fznfvb56Bjk/Uxq9lgfro4N9OanX704Q1q18esa176t6t5VJ7ys088Vm16/Cv3VvMTD365mu+5+bbWbHi8Po8b6FrnFAAAAAAAAAAAAAAAAADgubKADgAAAAAAAAAAAPDC1DTRXVhJKdXtr6bUiYiIgfqXuFyQ+veiXFiplaW8Yit5z1dnZ/2LTC7Em//5e9NqjU7Vv7TmgnTrX7x1QYYTv6Cvk/dW5H4/Z1+MiBiYnEir9fiJ+hc6XYj3/8G/Sav1r7/hNWm1fv1H/3FarR/6V7+YVisG8krNJn43ZOb3TPbyNvsYGBjJK7aQN0affuJoWq1Mo9vyxonFyNsomtq3hl2g0U7iTpRoLXFysjY/n1ZrrJe3TYyVvGNt4gwg1spwWq1jiT0bH84bv379//xYWq3MrxWeX8sb8E+ttX+x4YUamhhLq7XQzKbV2lfqX3p5IT708X+bVusTt3xvWq3Z1bzXMVYTzx9P5fVrfF/euLqSeHx8crH9S9wv1MHe7rRaERGTid/B2X/0VFqt7rYdabV644nnyXnTgPjFd70nrdY/+bkPpNWaafKOH7/y9nem1YrEuXQsJl5r6uXNdQav0C/FndjgC5IvSD9vtvPzv/MbabWin3jd6rGTaaU+8vZ3pNU6s5a43SduqoMbfFn0hVhu8q4rLJW8WsORd+4xONRLqxVL/bxae/OO22//zQ+n1YrlxO1+Km+8X12aS6s1MJa4TeRNfyPGEo/biRcp3v0bv51W639+9fel1fqlv/+6tFr/+LMfT6u1vJz35I+M5I2Fq6s5Y3TT5M1LrsxZHAAAAAAAAAAAAAAAAAAAAAAAbMACOgAAAAAAAAAAAAAAAAAAAAAAbEkW0AEAAAAAAAAAAAAAAAAAAAAAYEuygA4AAAAAAAAAAAAAAAAAAAAAAFuSBXQAAAAAAAAAAAAAAAAAAAAAANiSLKADAAAAAAAAAAAAAAAAAAAAAMCW1N3sDvDX7d+7p5qfPHO6mn/ui1+q5t/8t/9WazZUbbm5VuYXqvns8VOt2fyZc9W213/Ty6r55L5d1fz80ROt2fLsXLXtg//pz6r5qYcebc1233K42jZ2bqvnF2NwoBqvNmvVfGV5uZp3SmnPuvVhq1TabmXNWv05Xe33W7OBjZ6zztZdS61pmtasv9L+nERETOzeV81L59JtS8Nj49V8dNv21mzh/Nlq2/7i4vPqE1xOtX03IqJZW63mtTHv3Iknq22P3P2Fan70/rtbs2vvqM8ZNhxvN/EYdfSRh6t5re8Hr7+h2najX2txpn0udv740Wrb3vhUNT9w+0ur+cj2Ha3Z0b/6r9W2x77cvi1ERJw68mA1P/fEY63Z7ptuq7Z1mgYAAAAAAAAAAAAAAAAA8Nxt3VUTAAAAAAAAAAAAAAAAAAAAAAB4QbOADgAAAAAAAAAAAAAAAAAAAAAAW5IFdAAAAAAAAAAAAAAAAAAAAAAA2JIsoAMAAAAAAAAAAAAAAAAAAAAAwJZkAR0AAAAAAAAAAAAAAAAAAAAAALYkC+gAAAAAAAAAAAAAAAAAAAAAALAlWUAHAAAAAAAAAAAAAAAAAAAAAIAtqbvZHYDnYvbkmfoDSmmN9r/k1mrTkenJat4dHHze7cd27ai2XesOVPP5s+das5Wl5WrbS+nmw/XndGFutprf9YU/q+bTgyOt2cFbb6+2Hez1qnltW9lMa/1+NV+YmanmR++/rzXbe8NN1bbj27ZX8yv1OYuIWFxYbM3u+9Ld1baHb60/L5NT9bHhYqyu1F/vudMnW7P+8lK17eDI6PPqE1xOK4sL1fzciSer+dEH723NZk6fqLZdXpiv5oO99mPQ1O591bYD3St3an3drS+q5ovzc63Zow98pdr24HXXV/Ozjx9pzSY2eE43es6HxsareWeg/TWZ2L2n2nZs+85qvjjTPk+LiJg/e7o1a9bWqm0BAAAAAAAAAAAAAAAAAHjuOpvdAQAAAAAAAAAAAAAAAAAAAAAAeD4soAMAAAAAAAAAAAAAAAAAAAAAwJZkAR0AAAAAAAAAAAAAAAAAAAAAALak7mZ3AAAAAAAAAAAAAGAzlIjodHK+i7BZXUupExERibVKdzCtVmd0NK1Wf3Y2rVanpJWK0b178oplKonbV5NX6uSjj6fV2nnwQFqtWF5JK3Vw5960Wstz82m1xhLfBv7gvV9JqxWDvbxaw3mlouRtE8ORN66uzeWNhQNDaaXibd/7fWm1XvYN35hWK5aW0kqVwcTjY+QdiFZjNa3WwsxcWq1t45NptXpN4oG7M55Wqrn7kbRab3vb29Nq/YuPfyytVn/pXFqt6YltabWGE78bfO7IE2m1ervz5gBjMZBXqzeWVuv0St7cZNdgXr8Gjp9NqxXDU2mlylDe/Gt8Om9cTTwMRUxOpJXKO6JFLEXeHGBnb2darfNLidtqREwO520X3bHEeXmmlbx5+eKpE2m1eof3p9X6kf/+B9Nqbd+Tdyx634d+Ia3WwGrehYWffvNb02oNJF47GU68npY5TGeOrf2ynFart20krVbikB9xw+60Ug+snk+rNTiSOEav5Y2rUfK2+8HE874DJXH7ytyJ1hL37pW8c6Lo9/Nq9fK2iRjPq3V2aSat1mDi/Hcm8s6vpiNvu+8l/j0gFhMH6YdPppW6tTudVmvhbN4c8+TJvN9x586885jZxL/PDQ3lXJQuJW9MTRxRAQAAAAAAAAAAAAAAAAAAAADg8rGADgAAAAAAAAAAAAAAAAAAAAAAW1J3szsAz8XcydPVvJTSmh14yW3VtiPTk9W80x2o5qOV9mO7d1Tbrm1Qe/7sudasv7RUbXsp3Xz41mp+552fruZ33fv5an7N6HRrtuf6G6ptu8PD1by2rWymtdXVaj5/7mw1f/gLd7Zmkzt2VtuOTW+r5lfqcxYRsbSw2Jrd9fkvVdvu3r+3mk9O1ceGmqZpqvlav1/N50+fag879bXvhkZGq3lcwa8nLxzLSwvV/NTjj1Tzez77H1uz4ZHx+s9enK/mQ732fWh6975q287AlTu1vv7WF1XzL/3ZZ1qzR+//SrXt/oOHqvnZx4+0Zntuvr3adsf1N1bzodGxal4G2udaE7vqx4Gx7fXj5+kjD1Xz+bPt89eNjhMAAAAAAAAAAAAAAAAAADx39U/hAwAAAAAAAAAAACQopbymlPIvSyl/Wko5X0ppSin/doM2Ly+lfKKUcrqUslBK+WIp5U2llPq3lwEAAAAAAADwgtHd7A4AAAAAAAAAAAAALwjvioiviYjZiHgsIm6tPbiU8qqI+P2IWIyIj0XE6Yj47oj4UER8U0S89lJ2FgAAAAAAAICtobPZHQAAAAAAAAAAAABeEN4cETdHxGRE/GjtgaWUyYj41YhYjYhva5rmh5qmeVtEvDQiPhsRrymlvO4S9xcAAAAAAACALcACOgAAAAAAAAAAAMAl1zTNHzdN85WmaZrn8PDXRMSuiPho0zR/+bQaixHxrvV/VhfhAQAAAAAAAOCFwQI6AAAAAAAAAAAAwJXmO9Zv/+hZsk9FxHxEvLyUMnz5ugQAAAAAAADAlai72R0AAAAAAAAAAAAAeIZb1m+//MygaZp+KeWhiLg9Ig5HxD21QqWUO1uiWy+qhwAAAAAAAABcETqb3QEAAAAAAAAAAACAZ5havz3Xkj91//Rl6AsAAAAAAAAAV7DuZneACzM+NlbN9+7eXc0fO3q0NTu4b1+17ejISDW/lIbHR6v54Gh730a3T7VmERGd7sXtBgND7etQDY706j97YKCan5+Za82Wl1fqHbuEJsYnq/n01PZq/sQGv/eJY0+0ZscefKDadu8NN1bz3mT79lBKqba9WKv9fms2e+Z0te3JIw9X89Jp3w5L2WCttEv8e19KnYH2321iqr6dnj5xqpr3V9pfr+GhwWrbyfH6eHnm0Yer+fJC+74/trM+zg/2Lt1Yfer4k9X89Mnj1Xy1v3nj1tVqrDIeT+/YVW07MXUp3z/YVNOFmbb3Nn7VqaNHqnm3274PjmxwjOoODlXz1dX2fX9qV32uNLDB8W0zjU3Wn5fJbe3H7lPH2uePERFPPvZoNR+qvCZj23dW2/bGJ6p56Tz/57w7XJ+nDWywrVzqeQMAAAAAAACQp2mar3+2+0spd0bE113m7gAAAAAAAACQbINVFQAAAAAAAAAAAAAuu6e+naXtG7Oeuv/sZegLAAAAAAAAAFcwC+gAAAAAAAAAAAAAV5r71m9vfmZQSulGxPUR0Y+IBy9npwAAAAAAAAC48lhABwAAAAAAAAAAALjSfHL99jufJXtFRIxGxGeaplm6fF0CAAAAAAAA4EpkAR0AAAAAAAAAAADgSvN7EXEyIl5XSnnZU3eWUnoR8f71f354MzoGAAAAAAAAwJWlu9kdAAAAAAAAAAAAAK5+pZTviYjvWf/n3vXbbyylfGT9/082TfPWiIimac6XUt4YX11I509KKR+NiNMR8cqIuGX9/o9drr4DAAAAAAAAcOWygA4AAAAAAAAAAABwObw0It7wjPsOr/8XEfFIRLz1qaBpmj8spXxrRLwzIl4dEb2IuD8i3hIRv9w0TXPJewwAAAAAAADAFc8COgAAAAAAAAAAAMAl1zTN+yLifRfY5tMR8V2Xoj8AAAAAAAAAXB0soLPF7Ni2rZrfdP111fyu++5rzcbHxqptR0dGqvmlNH1ofzWvfZFQ6XSyu/OcdUqp5oMDA9X87PxCa7bc7z+vPl0O+w9cU83PHz9Wze99/FOt2cNf/Hy17dj0dDUfHp9ozcoGr8fF6i8vtWZnjj5ebXv0y/dW852HDrVmw+P1fbu+lV7ZeiO91uyOr31xte2RBx+u5o888FBrtm2qfTuKiLjxun3V/OG/+HQ1X11Zac3Gtu+stu0Otz8nF+vRB++v5l+687PVfGFuLrM7RMSB629ozW5/6d+qtp2Yqo+XF2Oj7/ebPXuqmp9+4kg133/zHa3Z6ET99zr5WPu+HRGxUhmrp3fX9+3OwNadWu851H7s7lfGpIiIB+6+q5rfctutrdno9PZ6x8rmzeOatbX6Azaa5/Xa585b+dgLAAAAAAAAV6W1Df7Q/RyVwcGUOhERsdHfLC9E5h8pE2t1J8fzikXe87U8M5tWa6iX+F6eZjWxVs42HxGxc/+BtFqxnPi+yMz3WJa894QMDY2m1Ypu3piz92D7exAv2NJiWqn+UN6g0x0eTqu1ljgYvue970mrtXbsbFqt6OeNOZ//bP29hRfi+JkTabV+7Kd+Mq3W8Lb6+0ovSDfv/cyjY3ljTjM7k1arnG5/j/yFyxsLP/yT702rNXk2byz8+df/SFqtd3z4Q2m1InFqEit5x+3RHfXPnlyQvJcxor+cV2s1772V2wcTPyc0n1cqFvN+x9/4oTem1Vo5mPd8HZl5Mq3W3x9K3FhH885hMj89sJY43h/v580n9g/vSKsVETET9fdtX4iJ7Xnz3+gnXqNIvHTSm96bVmt+LW9+smPP7rRaZ5u8OdgP/cT/mFZrx0DeNZ1/8cFfSKsVi3n70Dve8Y60WnlXYSLm+nGPtecAACAASURBVHkH3E7idYXF5bx+DW3wGZYLMToymVbrXOKwun0qcQ6WuE1EyTu33eAjNxdmOfGzRXOJ56OVzw1dsIHE3zHx3GM18Vyt6eVdo1jq5j33s4kntwOR+DumVYoYXMk7XxhYSZwX7sr728L5o/XPq16IkYW8beK3fuu30mr95E/mXcsc22BNkQtx4kTO+VU/8W86m/eJVAAAAAAAAAAAAAAAAAAAAAAAuAgW0AEAAAAAAAAAAAAAAAAAAAAAYEuygA4AAAAAAAAAAAAAAAAAAAAAAFuSBXQAAAAAAAAAAAAAAAAAAAAAANiSLKADAAAAAAAAAAAAAAAAAAAAAMCWZAEdAAAAAAAAAAAAAAAAAAAAAAC2JAvoAAAAAAAAAAAAAAAAAAAAAACwJXU3uwNcmKmJiWp+zYED1fw/fOpPW7M7brnlefXpcpjYs3Ozu9CqWVtrD2tZRAx06mtYnVteac2WN6i9mXbv2lfNz+w/VM3/fGm+NTv20APVtoduu72aT+1p79vw6Gi1bZRSjavbQkQszc22ZueOPVlte/bY0Wp+4zd8Y2s2PDpWbbvR73UlGxoebs1uuPWmatt7vnhXNT9y/0Ot2dz0eLXtzsF+NT/+5Xuq+fTB9n1kfMeuatuBoaFqfjFOnzhWzR+896+q+cz5s5ndISKisvtee/jmy9ePv6GppsuL7eN8RMTifPt4GRGx73D7nKXTHay2HRqpj/Xdwfb2Ezt3V9t2Bgaq+ZVsx569rdns2TPVtnd/7i+q+Uu/6RWt2eAGx6hyCY9Ra6ur9bxfH8s7nfrrPTw+2R4W65gCAAAAAAAAAAAAAAAAAGTxyU0AAAAAAAAAAAAAAAAAAAAAALYkC+gAAAAAAAAAAAAAAAAAAAAAALAlWUAHAAAAAAAAAAAAAAAAAAAAAIAtyQI6AAAAAAAAAAAAAAAAAAAAAABsSRbQAQAAAAAAAAAAAAAAAAAAAABgS7KADgAAAAAAAAAAAAAAAAAAAAAAW1J3szsAW93S7HxrNn/mXLXtar9fzdfGeq1ZM7iFd9+BgWrcmZhozaa376+2Pf3EY9W8NzHZmu27+ZZq24HuYDVfmp+r5scevL81mz93ttr2wG13VPOJ7Ttbs4HBer9fqK674fr6A+ZnWqOlE09Umz52V/31nD54TTXfc8uLWrOJ3XurbS+lQ4dvqubf8O1/t5ovLS5mdoeI2LWvfUzcsWfztpWIUk237TlYzW9+2TdX88md7b/biUcfrLZd7a9U85GJqdZsqDdabVvK1bk25cS27dX88G23V/MH7/mr1uyG219cbTu9c1c1vxjzZ09X86XZ9uNARMRgr32eFhExvf9Qa9YZuDq3FQAAAAAAAAAAAAAAAACAzeCTmwAAAAAAAAAAAAAAAAAAAAAAbEkW0AEAAAAAAAAAAAAAAAAAAAAAYEuygA4AAAAAAAAAAAAAAAAAAAAAAFtSd7M7AAAAAAAAAAAAALAZmrUmVheWcoqt5ZSJiIiS9/2IK0uLabXKYOLbTrt5tVbTKkWsTo2n1VpJqxSxlvidmbMrs2m1JrtDabXOrcyl1RoZG06rNVzSSsVSfyGt1ulmOa3WYr9Jq5W5b3eHBtNqLTZ5e+TMzExarfFd29NqvevnPphW63965WvTauWNqhFnHziSVmugN5VWK/J2x4iZ+bxavbwxugz30mplfozlf/lHedvqxMREWq3x3fvSav3Ae34mrVYMJ+6Ra3lzk/mZc2m1RkfH0mpF08+rNZm4D3USTzwWEsec4bz5V+bz9bnjD6XVmrtmd1qt3/x//11ardXE+eoTs6fziiXOyUvJmxfu7+bNv7qROI+OiE7ied98yZv/rvWTrptExNBQ3vxkZTXvekd3KG/caRKvUkyVvH4NDwyk1Tr+5BNptd7x5rem1cq8nvb+n3lfWq03vunH0mqNb9+ZVitxphNDQ6NptXoDiT1LLDU0krc/rqwmnkQO5h0jYzmxXyN5432TeOG9TI2k1YrEOdhyP/EK90jeOVHekTYi8cwjFiNv+8ocC0+vnkyrdd1A3ng/PJx3HWZgKvFvRHl/poj7V86n1XrxjYfTah07diyt1upq3jgxkDgvHBvLGXM6nbx5XF4lAAAAAAAAAAAAAAAAAAAAAAC4jFIW0Cml/Hwp5T+WUh4tpSyUUk6XUj5fSnlvKWVHS5uXl1I+sf7YhVLKF0spbyql5C1ZBAAAAAAAAAAAAAAAAAAAAADAVStlAZ2IeHNEjEXEf4iIX4qI34mIfkS8LyK+WEo59PQHl1JeFRGfiohXRMQfRMSvRMRQRHwoIj6a1CcAAAAAAAAAAAAAAAAAAAAAAK5i3aQ6k03TLD7zzlLKP4uIn46IfxIRP7Z+32RE/GpErEbEtzVN85fr9787Ij4ZEa8ppbyuaRoL6bAlLM8ttGYLZ85V266u9Ov5WK81awazdt/Lr+kOVPPOxHhrNr3/QLXtmSOPVPOh3khrtufwDdW2A936c740P1fNjz34QGu2OHO+2va2V3x7NR/fvrM1GxgcqrZ9obr2huuqeXPqidbsgYfvqrZ97P7HqvlL/t53V/M9t9zemk3s3ltteykdOnxjNd+9wf65traW2R0iYrCyfw/32o8hl1oppZpv23uwmo9P76jmQyOjrdmRuz9fbbvaX6nmIxPT7T+3cgyJiCidrLUpryyT27ZX88O3tY9ZERF//PHfb812bTBuTO/cVc031DSt0cLZM9WmS3Mz1Xxwg+1h+sCh1qzTqc+FAAAAAAAAAAAAAAAAAAB47lI+5ftsi+es+93125uedt9rImJXRHz0qcVznlbjXev//NGMfgEAAAAAAAAAAAAAAAAAAAAAcPVKWUCn4rvXb7/4tPu+Y/32j57l8Z+KiPmIeHkpZfhSdgwAAAAAAAAAAAAAAAAAAAAAgK2tm1mslPLWiBiPiKmIeFlEfHN8dfGcDzztYbes3375me2bpumXUh6KiNsj4nBE3LPBz7uzJbr1wnoOAAAAAAAAAAAAAAAAAAAAAMBWk7qATkS8NSL2PO3ffxQRP9g0zYmn3Te1fnuupcZT908n9w0AAAAAAAAAAAAAAAAAAAAAgKtI6gI6TdPsjYgopeyJiJdHxAci4vOllH/QNM3nMn/W+s/7+me7v5RyZ0R8XfbPAwAAAAAAAAAAAAAAAAAAAADgytG5FEWbpjnWNM0fRMTfjYgdEfHbT4vPrd9OtTR/6v6zl6JvAAAAAAAAAAAAAAAAAAAAAABcHS7JAjpPaZrmkYi4OyJuL6XsXL/7vvXbm5/5+FJKNyKuj4h+RDx4KfsGAAAAAAAAAAAAAAAAAAAAAMDW1r0MP2P/+u3q+u0nI+L7I+I7I+L/eMZjXxERoxHxqaZpli5D3646g4OD1fyGa69tzcZGR7O7c1VY6/er+fknj7dm86fPVdvuueVwNd/xoptas8mpyWrbK9n4+EQ1P3TtDa3ZTLNSbbs2WB/WFmbPt2bHHri/2nbb/v3V/PiDD1TztdX2bWlq995q24mdu6p5d2ioNSulVNterZqmqeaLp9r33YiItYWZ1mx8g/1vePRvrBH312w7eF01H53e3poNDA1X215KvZH6cWKjHJ4yuMF2vFFeM3v2VP0B9aEhxqfa979OZ+B59Gjr624wvxyfmqrmO/bsa83Ona6/XmdO1Mfq6Q2Oj6vLy63ZqUfqx+2BDeYUU3vr84LeROV56VzSdUwBAAAAAAAAAAAAAAAAAF5QLvqTm6WUm0spf+PToaWUTinln0XE7oj4TNM0Z9aj34uIkxHxulLKy572+F5EvH/9nx++2H4BAAAAAAAAAAAAAAAAAAAAAHB16ybU+K6I+LlSyn+OiIci4lRE7ImIb42IwxHxZES88akHN01zvpTyxvjqQjp/Ukr5aEScjohXRsQt6/d/LKFfAAAAAAAAAAAAAAAAAAAAAABcxTIW0Pn/IuLGiPjmiPjaiJiOiLmI+HJE/JuI+OWmaU4/vUHTNH9YSvnWiHhnRLw6InoRcX9EvGX98U1CvwAAAAAAAAAAAAAAAAAAAAAAuIpd9AI6TdPcFRE//jzafToivutifz4AAAAAAAAAAAAAAAAAAAAAAC9Mnc3uAAAAAAAAAAAAAAAAAAAAAAAAPB8W0AEAAAAAAAAAAAAAAAAAAAAAYEvqbnYHyNUbGqrmX3P7i1qz6cnJ7O5cFfpL/Wp+9tGjrdncmbPVtof/m6+t5uMvvqk127FjW7XtlWx6cns1v+2mO1qzz3/us9W2u6emqnl/abk1e+RLX6i2Ld2Bav7oPXdV89GJ9n1sz43tr3VERG9soppHKfX8atU0zy+LiGP31V+vmWPt+/bU3gPVtjtvvKWab7vmumre7Y1Uc6DdzOmT9QdsMFyObd+R15kXiMGh4Wp+89e8tDV7+N576rUH63Pbqe31OUV/aaE1O/aV+s8eGh2v5rs2GOsHR9rH8hfoURsAAAAAAACuSCUihkr9fUHP2dpaTp2IiIG870fs9up/170QK4nvU6q/M+/CzMdKYrXBtErn12bSao13xtJqDQzW/yZ+Ie4/90RarQNT+9NqRdTfP3Yhzq7NpdX6gR94fVqt79q/L63WO3/x59NqxXDemBOJw2pvIHEsHM0bwX7q3e9Oq/XP3/XetFr/8t//X2m13v+6H0yrNffosbRav/DK/zat1tt/96NptWIwb1vtH3k0rVb32kNptX7jH742rdbE+GharfMlb9/+8d/4cFqtGM6bf80dfSyt1tj116TV6u7K+2xE3uwrYm2s/h7GCzG7VP9syYXY1c2byw1N5L1v/cwTefPCn3rLW9JqDd6wJ63Wz//vv51W63xapYjFhbxqh8br7829IKt5c/LMeWH/xKm0Wt3t02m1virxOevkXVeI7pU5xx+aX8ortpb3fHVObPCZhgswuHtnWq1YSrr+FRGHphPP3+fbP+t3wUreBvaun3lPWq3FxA8QzCZeAyuJn2zopVWK6MwnXudLvAA5dG4+rdZaN3GMHkp89ruJg3Tidn9+KHGMTqsUsZpYa24wb2MdjLzxPvN3PB+LabWGE6/hDyROTq4Z2J1Wq5fYr8GSd267MncurdaPf/8PptU6eMe1abVe9b/lXdN51c68bfVtb3tbWq0PfvCDabXWMv82miRzrAcAAAAAAAAAAAAAAAAAAAAAgMvGAjoAAAAAAAAAAAAAAAAAAAAAAGxJFtABAAAAAAAAAAAAAAAAAAAAAGBLsoAOAAAAAAAAAAAAAAAAAAAAAABbkgV0AAAAAAAAAAAAAAAAAAAAAADYkiygAwAAAAAAAAAAAAAAAAAAAADAlmQBHQAAAAAAAAAAAAAAAAAAAAAAtqTuZneAXIODg9X8hmuvvUw92TqataaaL547X81nT5x63rUPvOTWar77lsOtWXd4qNr2SjY+Nl7NrznU/nv/+X/9L9W2ozt3VvPm2MnW7MRDD1bbju/YUc3PHj1azbfvO9Ca7Th4TbXt0MhINX+hapr2fWxlabHa9twTj1XzWvs9t9xebXvopS+r5gPd+lhdSqnm8ELXrK21ZrNn2o/LERGdUl8/cny6PtbzNw1066cUBw/f2Jo98FdfqradO3+umvdXlqv57Kn24/7syePVtrtvuLmab7/m+mreHRqu5gAAAAAAAAAAAAAAAAAA5Kh/ghgAAAAAAAAAAAAAAAAAAAAAAK5QFtABAAAAAAAAAAAAAAAAAAAAAGBLsoAOAAAAAAAAAAAAAAAAAAAAAABbkgV0AAAAAAAAAAAAAAAAAAAAAADYkiygAwAAAAAAAAAAAAAAAAAAAADAlmQBHQAAAAAAAAAAAAAAAAAAAAAAtiQL6AAAAAAAAAAAAAAAAAAAAAAAsCV1N7sDcKk1a00176+sVPMn7/5KvX7TXn/v7TdV247v2l7NOwMD1fxqNTQ42JrdcetLqm13jk1V85nKsHfm6BPVtg9/4XPVfHrP3mq+be/+1mxwuFdty7Nb7bfvv+efrL+ew+MT1Xxyz77WbNuha6ttO536vltKqebwQtesrVXz5cWF1mzh/Nlq297YeDUf37azmpPr0A31uVK3MieIiFg4c6aaP/qFP2/Nth24ptp2x3U3VPPeRH3OAQAAAAAAAAAAAAAAAADA5dHZ7A4AAAAAAAAAAAAAAAAAAAAAAMDzYQEdAAAAAAAAAAAAAAAAAAAAAAC2JAvoAAAAAAAAAAAAAAAAAAAAAACwJXU3uwMAAAAAAAAAAAAAm2KgEzHRSyk1uziXUiciYnR8LK3WWsn7rsUmrVLuN0CWfj+t1lDiO2sPdibSaq0szKbVGhseTau1e2R/Wq1YyCsV5/Kerw/88P+QVutbhqbSar3lIx9OqxXNWl6t/mpercGBtFL95aW0WiNDeWP08fnTabW60+NptWJ1Ja3Uu37zI2m1fukfvCat1vh8Wqn4tVd/X1qtH/7ob6XV6u47kFbrR77nVWm1XjwymFbrTMl7Id/9734/rVZ0M8fCvMnJ2LV520TmZG458uZy81ESay2m1do9PJlWa6ifeNyeyXvuP/iGn0irtaub9zq+/2O/nVbrfOLH8PJm5BGTi3lzpsw5+a+85vVptRaOHEurddM116TVWljMGyciIs6v5r0A/cTj7dGzx9NqDY+MpNXaPpZ3zr08k3cOef3uvPPk+TPn0mrd30k8Rq4up9X6wCc+nlYrlvNex5gYSit1di1vztrt5B1BhhKv9A0v5Z1DxlLiRHMl7xi5Zymv1mpJvACZ+NRHyTuPmSt540R3cDitVuJMOvX69kTk/Y6Z+mt5G9iByJubjHXy9seymjiXnkm82NTJe75iIK/Wj37vG9Jq7d6xM63Wu3/919JqxULenHxpKW/U+eAHP5hW6x3veEdarV27dqXU6XTyRtXM8RkAAAAAAAAAAAAAAAAAAAAAAC4bC+gAAAAAAAAAAAAAAAAAAAAAALAlWUAHAAAAAAAAAAAAAAAAAAAAAIAtqbvZHYBLrWmaar66vFLNj93zlWreHem1ZntfdFO17fiu7dW8M/DCXONqcHCoNbvjlq+pth3o1J+zo4vL7W0HB6ttH/wvf17Nv+X731DNp/fub80Ge+3bEe3W+v3WbObYE9W2w+MT1XzHdTe0ZtsOXldt+0LddyFL06xV85XFhdZsYeZste3Y1LZqPj69o5qT6+AN9bnSWr8+Tzt75KFq/ujn/6I1u/FbvqPadse17ceBiIjexFQ1BwAAAAAAAAAAAAAAAADg8vAJfwAAAAAAAAAAAAAAAAAAAAAAtiQL6AAAAAAAAAAAAAAAAAAAAAAAsCVZQAcAAAAAAAAAAAAAAAAAAAAAgC3JAjoAAAAAAAAAAAAAAAAAAAAAAGxJFtABAAAAAAAAAAAAAAAAAAAAAGBLsoAOAAAAAAAAAAAAAAAAAAAAAABbUnezOwAZmrW11mxpdq7a9ti9D1TzwZFeNZ88sLc1G9+xrdq207ULPptSSmvW641U2y7OzlbzhfPnW7PV/kq17Y6Dh+q1z52r5zPt+fiO7dW2A4ND1fyFaq26789U23aH6/t27Tlfnq+PK8un6vnErvZxI+LKHRuefPxINT9x9PFqvrKynNkdImJyqv04s3Pv/mrb6e07s7uTZrXfr+bnTx2rtK2P5b2x8Wo+MjFVzcnVHRio5udPtr/WERHnnqyPO1P724/dk3sPVNv2xiereWeDvgMAAAAAAAAAAAAAAAAAcHl0NrsDAAAAAAAAAAAAAAAAAAAAAADwfFhABwAAAAAAAAAAAAAAAAAAAACALckCOgAAAAAAAAAAAAAAAAAAAAAAbEkW0AEAAAAAAAAAAAAAAAAAAAAAYEuygA4AAAAAAAAAAAAAAAAAAAAAAFuSBXQAAAAAAAAAAAAAAAAAAAAAANiSLKADAAAAAAAAAAAA/z97dx4laVrXif73REZmRu5VWXsVXb3Rm93QrOKo1/XqyCzuemfQERzx6iCDIDg6KNooIowogswZZsABAa/oRRj1DOPc44giV7yOqCAo3TT0Vt1de1VWZeWe+d4/OntOn7bfp7ZfVWZUfz7n9Mmu+MbzzScj33jfNyIjngAAAAAAAAAA+lJ3oycAGdZW11qzhZnT1bEH/vLT1XzLvt3VfPt1+1uz3uR4dSz55k6drOYzhw+2ZiuLS9WxV9/+zGp+8uDD9fxQe751777q2IHBoWr+pLXWft9fWpivDh2ZmKx3N01rNHvscHXo6cp2FhExumW6mne6m/Pw/MAX7q7mf/1nH63mZ2ZnM6dDROx/6o2t2e3P/dLq2C3T27Onk2Z1Zbmanzz0YGvWVPYLERG9sYmLysl11t/1wwfq+UMPVPN9tz2jNZvavbc6ttvrVXMAAAAAAADgytCUiPmhktM1PpzSExGx3Mn7fMTVWM3rWllJ6xrt5t1e27ojaV1R/1P2hnUNLY/mlR06k9fVHcvrmsvbvj7wgh9M63reQt596Fvf9860rtQNbCTvdRJvfPVPpHX92Gt/Oq2rN5a3z1lIa4qYGN2S1nXgLK9tPC+9wbyuBw+lVf3w+38rrev/+ubvSOtaWc7bf/37f/5daV0PDeXtJ3ojea9tnd2S97ro17znHWldMVF//eH5WEh8q87y6mJa18RA3jnTynze3nBkNO84tBD19wScj+2Rd54zVnnPy3k7lHfbv/PbXpTW9ZySd6z91nf9alpXHMk7l5uYbH+PwfkqeXftiLXEc/KZvKqr7s173HHLxHVpXbN/dySta21wIK0rIuL4St79e3hv3j5/fyfvvQcDJe8888z9J9K6dozk3Y86n6m/v+x87FjIO8+cf2r9PZLn41RJ3PZPJz7Cms57L+fsXP09qedjeDRv+1qOvGNR6h4s8b4dqe8/y3vsMXiy/l7F89GbTnzv0mLefiKGc54nj4gYHsw7x+/mnc5F4l0o+U6UZ20h77FHZyDxvp24qcaxxOe3e4nn0iuJz+HP5v2Mb37J96V1XRN5+69Xv+ltaV2JfwaLGMp7bDs8nPf80Eri3+fe+MY3pnW94hWvSOlZXs57HjPvL6wAAAAAAAAAAAAAAAAAAAAAAHAZWUAHAAAAAAAAAAAAAAAAAAAAAIC+ZAEdAAAAAAAAAAAA4JIrpXx7KeVXSil/Uko5VUppSinva7nuNet523/vv9zzBwAAAAAAAGBz6m70BAAAAAAAAAAAAIAnhZ+MiNsjYjYiDkTEzecw5pMR8V+e4PJPJ84LAAAAAAAAgD5mAR0AAAAAAAAAAADgcnhFPLJwzt0R8ZUR8ZFzGPPXTdPccSknBQAAAAAAAEB/s4AOAAAAAAAAAAAAcMk1TfO/FswppWzkVAAAAAAAAAC4glhABwAAAAAAAAAAANis9pZSfiAitkXEsYj4eNM0n9rgOQEAAAAAAACwiVhAh77QrK1V86Uzc63ZmSPHq2PnTsxU86ueeWs1n9i9ozUbHOlVx/LEmqZpzVYWF6tjTx85XM3nT59uzXrj49Wxe2+8pZrPHDxYzWePHW3Nzpyob6eDw/VtqdN9ku7OK59E1ukMVIeuLq9U89nj7b+vqGyjERFLc2eq+dn2aZvV/Fl+ruNH6/e/2dOnMqdDRGzd3n4MWlpcuIwzybW6slzNTxx6qDXrDNTv+73xyWo+2Bup5py/tdXV1mz+1Mnq2DPHj1Xzs20r26+9oTUb3TJdHTswOFTNAQAAAAAAgMvm69b/+19KKX8UES9smub+cykopXyiJbr54qYGAAAAAAAAwGbQ2egJAAAAAAAAAAAAADzOXET8bEQ8OyK2rv/3lRHxkYj4qoj4H6WUsQ2bHQAAAAAAAACbRnejJwAAAAAAAAAAAADwWE3THI6In3rcxR8tpXx9RHwsIp4XES+OiLecQ9ezn+jyUsonIuJZFzlVAAAAAAAAADZYZ6MnAAAAAAAAAAAAAHAumqZZiYh3rv/zKzZyLgAAAAAAAABsDhbQAQAAAAAAAAAAAPrJkfWvYxs6CwAAAAAAAAA2BQvoAAAAAAAAAAAAAP3kS9a/fmFDZwEAAAAAAADApmABHQAAAAAAAAAAAGBTKaU8q5Ty917jWEr52oh4xfo/33d5ZwUAAAAAAADAZtTd6AkAAAAAAAAAAAAAV75SyjdHxDev/3P3+td/UEp59/r/H22a5lXr//9LEXFDKeVPI+LA+mVPj4ivWf//1zRN86eXeMoAAAAAAAAA9AEL6NAXVpaWq/mpg4dbs2P3HWjNIiL2Pu2maj6xe0c17w4PVXPOX7O62prNHD5YHXv43nuq+UC3fbd39dOfWR27Zc/ear7vllur+dzMydbs4bvvqo4dmZyq5r2JydaslFId288GuoOt2dSefdWxD3/mk9V89mT772t0elt17P6zbEudyna4mV117VOrefPV/7CaLy0uZE6HiNi2Y3d7tnPPZZxJrtWVlWp+8tCDrdnw6ER1bG+snl/J+8xLpVlbq+bLC3Ot2dF77q6OXVutbwu7bvyiaj5cOz52BqpjAQAAAAAAgEviGRHxwsdddt36fxER90XEowvovDciviUinhsRz4+IwYg4FBG/FRFva5rmTy75bAEAAAAAAADoC/35Dn4AAAAAAAAAAACgrzRNc0dE3HGO1/3ViPjVSzkfAAAAAAAAAK4MnY2eAAAAAAAAAAAAAAAAAAAAAAAAXIjuRk8AAAAAAAAAAAAAYEM0TZTl5ZSq2VMzKT0REVNbtqV1rURJ6zo6dzyta9/kjrSugSatKmIhZ3uIiIiVxJfpHp/N6xodz+s6k7fd/9SLX5jWNbc1b7t/0+9+IK0rBvKqVoaG07pOL6ymdZ3asTWta25sKK1rdTnvZ4yFhbSqibGRtK63vv4X0rpe9+Y3pnW98GUvTuua7K6kdX3nX/16WtfPveBfpnXtv/dMWtc3HFhK67q+GUvr2vvZ96V1xdLmPG6XM6fTukanJtK6dZcAYQAAIABJREFUTkTe7TU3mlYVg4nz6kXe/n4i6XFCRESczLs//uL3/0BaV3dP3vb14v/0K2ldsSXvPGetk7dNPJjWFBHDeQ9iOnk3V6xsW0zr+rIvfDCt68zKqbSu7d28Y1o38wQ/ItZiLa2rE520rtMxl9Y1EnkHkMQz/NSumch7/D4eeY/fv2Qx76dshvMeqz2wmnd7rSXeJRcib1+RaSXyHi8MZ/6MeZtExGTi82l5u8I4eu1UWtdq4rxiNPH2Sny+ozuQN6+DQ3nPBUTkdY0lbviDq4mPiYYG07pidj6vK/OktSRuEwN551+xlvd7fMOPvyyt69Ba3rn0m3/9vWldMdHL68r7c0BEJ3MnnWdgIPexR5bJycmUnsyfb3P+BgEAAAAAAAAAAAAAAAAAAAAA4CwuyQI6pZTvLqU06/894ZLxpZR/Ukr5o1LKTClltpTy/5VS8j46AgAAAAAAAAAAAAAAAAAAAACAK1r6AjqllKsi4m0RMVu5zksj4vci4raIeF9EvCMi9kbEu0spb8qeEwAAAAAAAAAAAAAAAAAAAAAAV55uZlkppUTEuyLiWER8MCJe9QTXuSYi3hQRxyPiOU3T3Lt++c9ExP+MiFeWUn67aZqPZ86N/raytFzNTz18pDU7fv+D1bG3f8vXV/OJnTuq+eDwUDXn/K2trrZmM0cOVccevvcL1Xzb3n2t2f7bn1EdOzo+Wc1Xz7Kdfvoj/09rdvDuO6tj9930RdV8eHyiNXtk13xlGui2H8amdrf/riMi7vyDD1fzA5/9TGu27ak3V8fe9vX/tJp3uoPVfLPaf90N1Xzf1ddW86ZpMqdDRHQ67WshDgyknuZdVqvLK9X85KGHWrPeWPv+MCKiV9lfcmHOdt9eWZhvzY7ee3d17PDYeDXfdWP9+NibqB0f09cSBQAAAAAAAAAAAAAAAABgA2S/a/RlEfE1EfG9EXGm5Tr/MiKGI+Jtjy6eExHRNM2JiHj9+j9/MHleAAAAAAAAAAAAAAAAAAAAAABcYdIW0Cml3BIRb4iItzRN89HKVb9m/evvP0H23x53HQAAAAAAAAAAAAAAAAAAAAAAeELdjJJSSjci3hsR90fEq89y9ZvWv971+KBpmodLKWci4imllNGmaebO8n0/0RLdfJY5AAAAAAAAAAAAAAAAAAAAAADQ51IW0ImIn4qIZ0bElzdNM3+W606tf51pyWciYmz9etUFdAAAAAAAAAAAAAAAAAAAAAAAePK66AV0SinPi4hXR8QvNk3z8Yuf0rlrmubZLXP6REQ863LOBQAAAAAAAAAAAAAAAAAAAACAy6tzMYNLKd2IeE9E3BURrznHYTPrX6da8qnHXQ8AAAAAAAAAAAAAAAAAAAAAAP6ei1pAJyLGI+LGiLglIhZKKc2j/0XET69f5x3rl/3y+r/vXP964+PLSil7ImIsIg40TTN3kXMDAAAAAAAAAAAAAAAAAAAAAOAK1r3I8YsR8ast2bMi4pkR8bF4ZNGcj69f/ocR8WUR8Q2PuexRz3/MdbiSNPV4aW6+ms8ceLiaLy8stmbbr7+6OrY3OVnNBwbPcjcppZ7z9ywv1H/fJw+2/76P3n9fdezEtu3VfNtV+1uz4ZHR6tjOwEA1H53aUv/eT2nfFmcOH6yOffDOv6vm3V6vNRuZOMs23r3YQ8HGKZ32deCGxsarY3fdfFs1705MtX/fsfYsIuLe+w5U8xvGJ6r58Fm2tY1ytm2ln7clLq+mqZ8YrCy3H9cjImaOHGrNdl9/U3Vsb6y+T+TvW11ZqeaLp2eq+dF7P9+a9Sr72oiIqd17q/nQyFg1L+Vi1wsFAAAAAAAAAAAAAAAAAGCzu6h3ujdNMx8RL36irJRyRzyygM6vNU3zzsdE74qIfxMRLy2lvKtpmnvXr781Il69fp23X8y8AAAAAAAAAAAAAAAAAAAAAAC48l3UAjoXommae0opPxoRb42Ivyil/GZELEXEt0fEUyLiF5um+fjlnhcAAAAAAAAAAAAAAAAAAAAAAP3lsi+gExHRNM2vlFLujYhXRcT3REQnIv42In6yaZpf24g5AQAAAAAAAAAAAAAAAAAAAADQXy7ZAjpN09wREXdU8t+LiN+7VN8fAAAAAAAAAAAAAAAAAAAAAIArW2ejJwAAAAAAAAAAAAAAAAAAAAAAABfCAjoAAAAAAAAAAAAAAAAAAAAAAPSl7kZPAAAAAAAAAAAAAGAjlCgxVAZSunZu2ZbSExHx0MkjaV298bG0rl2TO9K6lpcX0rpe/+o70rpe+9qfT+uKIyfzusa35HXNzKZVvfWHXpLWtWVyMq3rZ973rrSuODOf1zWU99mnM52htK6xXs5+MCLilT+Yt0285XW/kNb1Y698ZVpXZyxvvxqdtbSq+bXltK4jx4+lde3s5t23hyPv9orFklZ1759/Oq3r6l3XpXXNT+dtq588fDyta+9S4ttYunldK6dOpXUNTedt93NpTRFNNGld45F37BiIvP1Xb341rStK4rbayztuP7xyJq3r0OH70rpibDivK3F331nL299flbfZRzR581o5lXd+3+2NpnUl7nJi+1refjWO5N1eUfLO7yMiYiTx9l9eSauaHEic1+JiXlcn734UTd6OZ3dvPK0r1UresSiOnE6rumr7RFrX0kre9rWYeFiLGExr6kbeOf5I4n468p7mi+j08rrm884zuyuJN1jm4WMp72eM0cTbPlFJPKnoRd6+MPPUsJt5TrGYuE1E4rE28TF3jCWeG57Je9T9E9/zwrSuJvE8580f+GBaV+qDtcSqOHUir2s88Vyul3pCwTmygA6XRdPUT1AWZ+tP4B2/78FqvlZ5UL/naTdVxw6NjVTzMpD8ZAaxNFf/Y/LRB+5vz+6/tzp2/23PqOY7rmn/o9JA9ywPRkv9hKN3loPizuuub82W5usnWQf+9m+q+fb9V7dmw2d5Am0g8Q9Hl1vptN8/B0fq9+2rnvncar7zpltbs8PH6i9suevOL1Tzq294ajUf7m3OB5uQpTnLk8srS/VnzmaOHmzNrrn9OdWxvbG8J1efLNZW6k+czJ2svzDi8Ofvas22Xd1+bIyImH7KNdW8O+RBJAAAAAAAAAAAAAAAAADAk52VQQAAAAAAAAAAAAAAAAAAAAAA6EsW0AEAAAAAAAAAAAAAAAAAAAAAoC9ZQAcAAAAAAAAAAAAAAAAAAAAAgL5kAR0AAAAAAAAAAAAAAAAAAAAAAPqSBXQAAAAAAAAAAAAAAAAAAAAAAOhLFtABAAAAAAAAAAAAAAAAAAAAAKAvWUAHAAAAAAAAAAAAAAAAAAAAAIC+1N3oCXDlaNbWWrPl+cXq2DPHTlTzpbn5aj66ZbI127J3V3Vsd2iomnP+attCRMTC3Gw1nzl8sDUrpb7u15Zdu6v5xLbtrVlnYKA69my6w8PVfGpn+9xOPvxQdezBz3+ums8cPtSa1X7miIjBXq+ab2ZrlW1t8Ux9O4tO/fc9uXtva3amU7/NDv7ZX1fzQ8cOV/O5lfZ93ujwSHXsxNhENYfNYHV5uZovzJ6u5vOzp1qz0ckt1bG9cfeRJ7K60v47WTzL72PuxLFqvray0pqNTdePUWfLO10PZwAAAAAAAAAAAAAAAAAAnuzqK1EAAAAAAAAAAAAAAAAAAAAAAMAmZQEdAAAAAAAAAAAAAAAAAAAAAAD6kgV0AAAAAAAAAAAAAAAAAAAAAADoSxbQAQAAAAAAAAAAAAAAAAAAAACgL1lABwAAAAAAAAAAAAAAAAAAAACAvmQBHQAAAAAAAAAAAAAAAAAAAAAA+lJ3oyfAlWN1abk1mz16rDr2xAMPVfOx6S3VfOv+va1ZpztQHUu+leWlaj5/+lQ9PzXTmu2/9enVsRPbd1Tz0tm47WFweLg127p3X3XsnhtuquZH77+3Ndux/+rq2JHJqWpeSqnmG2llcaE1O3znZ6pjD91zTzXfc/Ot7eH4dH1eKyvV/FOf+5tqPtgbbM2u2XtNdezTnlqZN2wSSwtz1fz08SPVfG2t/T42NrW1OrY3Nl7Nn6yW5s60ZqcPH6yOnT16qJrvvOGW1mxselt1bOlY7xMAAAAAAAAAAAAAAAAAgDrvSAUAAAAAAAAAAAAAAAAAAAAAoC9ZQAcAAAAAAAAAAAAAAAAAAAAAgL7U3egJAAAAAAAAAAAAAGyItbXozC2lVA2spdRERMRTtuxI61qI1bSuBx68L63run1Xp3WNbZ1K61qeOZ7WNbhrOq0rZhfSql7/4z+c1nW0M5/W9Uu/9VtpXTGcV7U6MJLWtRRNWleJktaVaXp8NK2rM3Mmr6skfu7s0kpaVdPLm1enM5jW9Yuve2NaV3ch5zgbERGHTqZVveH7XpLW9SX7b0nrmp/P268e3z2e1zWadz7xpm98QVrXq37zPWld3cT9V+JWH2diMa2rl3iAXJ09ldY1NTSR1hVN3r4wjhzL69q2Na3q9ETeW8GGJ3endaW+Q+1o3jl5bEk8Jz+Vdy6XeFoY3cjb38eJvD3Yz3/3i9K6Bhbzzr+2j+Ttc5r5zD1+xMBS3vG2WVxO69oynnebdVbzNv6ZmZm0rqHBvOPH6GjeOUXmz3hmZCita3l4IK3rX3/o/WldQyN55zpDkfhEX97NlXr8iIW8fWucmsvrGpnM60q8by+t5d1e84lPUcRo4vlvYtXcmczHC9vSumZm855XGOzm7XO6Q3nPP8Za3vlEDOUdO2JLYteJvOPjz/3bf5vWdbjJew7/Hb/7e2ld0Uk8eAzm7cCaknesXZvIe8ydeA+KxK2e85B5mAUAAAAAAAAAAAAAAAAAAAAAgMvGAjoAAAAAAAAAAAAAAAAAAAAAAPQlC+gAAAAAAAAAAAAAAAAAAAAAANCXLKADAAAAAAAAAAAAAAAAAAAAAEBf6m70BLhyrC4vt2azR45Xx5584KFqfvVzn1HNp695SmvWGRiojiVfbVuIiJg/ffos+anW7Krbbq+OHd+2rZpv5PYw2Ou1Zlv37quOPdtt+pcf/p3WbGF2tj6xPrayuNCaHbrzb6tj7/yzj1fz7tBwa7b16V9cHbu8ulLNP3XX31Tz1YG11qyUUh37tKfeWs1hM1ian6vmp48fqeZrq6ut2djUdHVsb2yimj9ZLZ0505qdPnKwOvb00cPV/JrnfUVrNjIxVR1bOtb7BAAAAAAAAAAAAAAAAACgzjtSAQAAAAAAAAAAAAAAAAAAAADoSxbQAQAAAAAAAAAAAAAAAAAAAACgL1lABwAAAAAAAAAAAAAAAAAAAACAvmQBHQAAAAAAAAAAAAAAAAAAAAAA+pIFdAAAAAAAAAAAAAAAAAAAAAAA6EsW0AEAAAAAAAAAAAAAAAAAAAAAoC9ZQAcAAAAAAAAAAAAAAAAAAAAAgL7U3egJ0D8WZ+eq+bF7HmjN7v34X1bHHr/vQDVfWVyu5kcr37uUUh17scZ3bmvNpq/eVx07tXdX9nQ2hYHBwWo+uX1nNb/qi57Wmg2NjlbHdjr9uS7Y2W6zsa1bq/lVt93emo1ObbmgOfW71dWVaj40PFTNjx890R4eqWQRccutt1Tzz9z/mWq+fdeO1mx4aLg69i/+tr6/PZubr7mxNRsfHb+obnjU4nz9nGL2xLFqPjHdfh958MBD1bHLw5+s5lNbp1uza66/rjp2M5s7cbyaH7qrfb/0wCc/cZbuI9X8zo/8fms22Bupjr1YtfPA6f3XVsdu2be/mo9MPjmPrwAAAAAAAAAAAAAAAAAAm01/rjQBAAAAAAAAAAAAAAAAAAAAAMCTngV0AAAAAAAAAAAAAAAAAAAAAADoSxbQAQAAAAAAAAAAAAAAAAAAAACgL1lABwAAAAAAAAAAAAAAAAAAAACAvmQBHQAAAAAAAAAAAAAAAAAAAAAA+lJ3oycAAAAAAAAAAAAAsBE6axEj86s5ZVk9EVGGB9K6Rrp5Xfv3XJXWtRJNWtfMykJa1+CebWld86dOp3X98I++NK3rZMmb1/v++2+ndR2PtbSuQzGf1rUcvbSupShpXbekNUUMJnbFwnJaVdPk7VdTP3Z2IO8l+CvLi2ldA4n3oe5KWlXEUt7t9Zbve0Va1/hM3g+52s3bVl/yoQ+kdcXCybSql7/sB9K6bjyct63+wj9/UVrXj/7ur6d1Da7l/Yzjnbzj0IkTR9K69k3tSOuKvF1hxPxSXtf09ryuvFPy+I/v+bW8spHhtKq5o8fTuka35Z2Tx6kzeV0TY3ldJ/L20TG5Ja9rOO+4fSzxcdpw3sPHmOjl/YynT82kdUVEDDV5jxfGxvLu34fn8h5Dbts6ndY1dzpvwxgaH0nrOjybd3t1R4bSuiJxmxgYTZxX5jucE4+30cl7ELmykvccRXc47/cYI4nPBnSn8rpWEnf6s3NpVfOJ2/1CN+/xwtpK3s9YRkbTujpTk2ldveW8c/zeaN68Ep+GiZkHDqR1Te3Zm9Y199CDaV2je/akdf3Qq34orevMWt5zme/+yO+kdR2YPZrWNTy6Na3rZOID+LXE591Pxmxa11Dk7QufmfqkNOfKrQ4AAAAAAAAAAAAAAAAAAAAAQF/KXJ+RK9zibH3V5WOff6A1u+dPP1Edu3CqvrLXifsfruaDI3mrjJ2vPU+7sTUb6NbvYlN7d2VPZ1MYGKyvPjq1q/5z98baV+UeGqmv6FtK3mrLl9PAWT6NZGxLfYW/a25/Vms2OlVfTbxfb7OIiKZpX1G2Wa1/mkdvtL4tHT96oj08XF8d/9bbv6ia33/g/mp+w96ntodnWSj4zz/zP+tXOIt9O9tXGB0fHb+obnjU4nz9nGL25LFqPrmt/VNLHnigvrLtwZn6qsNPufrq1uya66+rjt3Mzpyo36YPf/bTrdkDn6zvV1YW6quhnzp8sDXrdDKXeP/7SmXV9xv+t/+9OnZ4vL6q9Ejmp3UAAAAAAAAAAAAAAAAAAHDB2t9RCgAAAAAAAAAAAAAAAAAAAAAAm5gFdAAAAAAAAAAAAAAAAAAAAAAA6EsW0AEAAAAAAAAAAAAAAAAAAAAAoC9ZQAcAAAAAAAAAAAAAAAAAAAAAgL5kAR0AAAAAAAAAAAAAAAAAAAAAAPqSBXQAAAAAAAAAAAAAAAAAAAAAAOhL3Y2eAFeOMtC+HtPQ2Gh1bHd4uJo3TXNBc2JjdDoD1bw3Nn5R+ZWodOrrmQ32Rqr5lt31/ErV6bYfxsa276yOXVtbq+Yzqxd+mw6U+u9z13R9bvt27m3NZtfOXNCcztXRE0dbs7PdZiPDvWo+PTV9QXPiytMdHKrm41u3V/N9N97Wms33JqtjV0up5osLC63Z4YOHqmO3bd9WzQcq+6yNNlD5nfQmpqpjm9Gx7OkAAAAAAAAAAAAAAAAAAMA5q7/DHwAAAAAAAAAAAAAAAAAAAAAANikL6AAAAAAAAAAAAAAAAAAAAAAA0JcsoAMAAAAAAAAAAAAAAAAAAAAAQF+ygA4AAAAAAAAAAAAAAAAAAAAAAH3JAjoAAAAAAAAAAAAAAAAAAAAAAPQlC+gAAAAAAAAAAAAAAAAAAAAAANCXLKADAAAAAAAAAAAAAAAAAAAAAEBf6m70BOgfw+Nj1XzXzde3h6VUxzZraxcypU1hfOe21mxq367LOBN48hkc7rVme255WnXs9P5rq/ni2mBrdmqpPq+7Pv25an7t9fXvvXXrltZsrKnvi7/41udW87N54NCB1uzuA5+vjt23Y281/+Kp6QuaE1eeyW07q/lTn/2l1XxlcaE1W+7W7yNNqZ/+Liy0d3/mk5+sjn3el39ZNR/tbtyp99jW9vOViIirn/W81mzrvv3VsU2zec/jSuUc9GzHgZGp9n0xAAAAAAAAAAAAAAAAAACbR2ejJwAAAAAAAAAAAAAAAAAAAAAAABeiu9ETAAAAAAAAAAAAANgIpUQMdgZyyrJ6IiLmF9KqVhKn1RvtpXU9fPRwWtf0xFRa15HDefN65UtfltY1OTmR1vUb//k307pW0poiMj8XdCRG0rrW0poiOtGkdY0tplXF3PGjaV2jO7endb3kp340resnX//TaV0/e0deV5xZSqvqdvO2+5jL21Zf+9XPT+vaOzmd1rU8MJjW9ZIP5u1XY2g5r2tb3u31y7/7f+d1fckL0rrmZ8+kdf3I878preuX/usH07pGB/L2E6NTO9K6Eg9pEfOzeV3dobyutcT7Y5O3z4mB4byupbwzndHpvH1OrCTe9tNjaVWriY+tOnu2pHWVJvEOOZr3Q77pDz6U1pV6Uj5zOq9rLO9xWkTk7lszu04l3maDifvDkbznKCLzfjQ/l9c1lrcPi8THkHHqRF7XeF7VYpP3fFozmLd9LQ7mHbsTzwKil/nu8lOJ53ODiY9tR0fTqpqlvGfBympaVXQG837GzHPDWEzcF45M5nUt5D2+iuW8c9ap7YmP1dbyjmmju3endb3gG74hrWvv1Veldb3tbW9P68o8Ads+vjWt66Glk2ldI0N5j2NOJZ6crEXic6yJf1tgY+T9pQkAAAAAAAAAAAAAAAAAAAAAAC4jC+gAAAAAAAAAAAAAAAAAAAAAANCXUhbQKaXcW0ppWv472DLmS0spHy6lHC+lzJdSPlVKeXkpZSBjTgAAAAAAAAAAAMDmUErZVkp5cSnlQ6WUu9dfNzhTSvlYKeX7SilP+HpGrzUEAAAAAAAA4Gy6iV0zEfHLT3D57OMvKKV8U0T8dkQsRMRvRsTxiPinEfHmiPiyiPiOxHkBAAAAAAAAAAAAG+s7IuI/RMTDEfGRiLg/InZFxLdGxDsj4vmllO9omqZ5dIDXGgIAAAAAAABwLjIX0DnZNM0dZ7tSKWUyIt4REasR8VVN0/zF+uWviYg/jIhvL6X8s6Zp3p84NwAAAAAAAAAAAGDj3BUR3xgR/7VpmrVHLyylvDoi/jwivi0eWUznt9cv91pDAAAAAAAAAM5J5gI65+rbI2JHRLzn0T9oR0Q0TbNQSvnJiPgfEfGvIsIftTeZ4fHRar7jxmsvKAO4UN3hXmu266ZbL9n3veeue6r5Jz72iWr+nf/gO6v5lq1T5z2nR+2c3nHBYyMi3vmhd7Vm9x28vzp2cWmxmn/xbc+9oDmxOTVra+1hKdWxE2fZTs+WX0r3fO7u1uwvPv5n1bHPfO5zqvno2NgFzSnD6Nbpi8oBAAAAAAAALlbTNH/YcvnBUsrbI+LnIuKrYn0BnfBaQwAAAAAAAADOUeYCOsOllO+OiP0RcSYiPhURH22aZvVx1/ua9a+//wQdH42IuYj40lLKcNM09XfiAwAAAAAAAAAAAP1uef3rymMu81pDAAAAAAAAAM5J5gI6uyPivY+77J5Syvc2TfPHj7nspvWvdz2+oGmalVLKPRFxa0RcFxF/V/uGpZRPtEQ3n9uUAQAAAAAAAAAAgI1SSulGxPes//Oxi+V4rSEAAAAAAAAA56ST1POuiPjaeGQRnbGIeFpE/MeIuCYi/lsp5fbHXHdq/etMS9ejl29JmhsAAAAAAAAAAACwOb0hIm6LiA83TfPfH3O51xoCAAAAAAAAcE66GSVN07z2cRd9OiJ+sJQyGxGvjIg7IuJbMr7X477vs5/o8vVPi3lW9vcDAAAAAAAAAAAAcpRSXhaPvMbwsxHxLy7V9/FaQwAAAAAAAIArW+cS9799/etXPOayRz/1ZSqe2KOXn7wkMwIAAAAAAAAAAAA2VCnlpRHxloj424j46qZpjj/uKl5rCAAAAAAAAMA5udQL6BxZ/zr2mMvuXP964+OvXErpRsS1EbESEV+4tFMDAAAAAAAAAAAALrdSyssj4lci4tPxyOI5B5/gal5rCAAAAAAAAMA56V7i/i9Z//rYP1D/YUR8V0R8Q0T8xuOu/xURMRoRH22aZvESzw0AeJxbrru5Ndu1bWd17N7te7KnwwZaW12t5p/77Gdas+27dlfHbtte35Y20sRU2wcXRtx6++3VscO9XvZ0AAAAAAAAAK44pZQfi4g3RMRfR8TXNU1ztOWqXmsIAAAAAAAAwDnpXGxBKeWWUsrYE1x+TUS8bf2f73tM9IGIOBoR/6yU8pzHXL8XEa9b/+d/uNh5AQAAAAAAAAAAAJtHKeU18cjiOZ+IiK+tLJ4T4bWGAAAAAAAAAJyjbkLH/xERryylfDQi7ouI0xFxfUT844joRcSHI+JNj165aZpTpZTvj0f+uP1HpZT3R8TxiPjGiLhp/fLfTJgXAAAAAAAAAAAAsAmUUl4YET8TEasR8ScR8bJSyuOvdm/TNO+O8FpDAAAAAAAAAM5dxgI6H4lH/hj9zIj4sogYi4iTEfGxiHhvRLy3aZrmsQOapvkvpZSvjIifiIhvi0cW2rk7In4kIt76+OsDAAAAAAAAAAAAfe3a9a8DEfHyluv8cUS8+9F/eK0hAAAAAAAAAOfiohfQaZrmj+ORP1qf77j/NyL+0cV+fwAAAAAAAAAAAGBza5rmjoi44wLGea0hAAAAAAAAAFWdjZ4AAAAAAAAAAAAAAAAAAAAAAABciO5GTwAAAAAAAAAAAABgI6xGxKmsV1IOJn6m4dBoWlWzcCata+HUbFrXnskdaV2vfNEPpXW97l+/PK1r37HVtK6ff9s70rri6Fpa1cDiQlrX8MhQWtf0UOL9MfE+FJNjeV0Leb/H0ZGJtK4YyJtXMzme1jUzUdK6ZiPvZ5wY7qV1Rd4uOt7+rf8irev6LbvSuhZXV9K6XvKB96d1ReKvMSLvZ4zB4bSqucg7pt3wpc9O6/rc5z6X1jW8spzW9W+e/61pXf/uw7+T1hWLefuvmTMn0rqmtm9L64omryryNonUrv/zH/6jtK6pnXm3/eT+PWldr3rDa9O6moHBtK6B5aW0rqHBvHPfhaXFtK5Yy7sT9XojaV3RyZvXynjeNtFNPQeIiCZxJ9bJO/9txvMeLyys5e0QO4kP+5YSz/HLROJzOmlNERNDiW/cPQJxAAAgAElEQVQlnsp7Tmd+LW/fupK4b83bIiJK5G2siZt9xELebR9DeY/fI++ppoj5vH3O/vlN+nb8w4lb63Dez9jrTKZ1ReLTVtFJ/D0O551TZD4VEMt528S/+ifflNZ1/cjWtK6ffc2/S+uKhcRz1sT9V28lb6O4bmhLWlckPiaKucQnM7dP53UtJP4idyTuJzhnqedLAAAAAAAAAAAAAAAAAAAAAABwuWzSJe8AgI1wy7U3t2bLZ/lkjd5Q3ieVsPHW1uqrzd71d3/Tmg0MDFTHbtu+84LmdDlMTk21Zrc94+nVsUPD7gMAAAAAAAAAAAAAAAAAAHC5dTZ6AgAAAAAAAAAAAAAAAAAAAAAAcCEsoAMAAAAAAAAAAAAAAAAAAAAAQF+ygA4AAAAAAAAAAAAAAAAAAAAAAH3JAjoAAAAAAAAAAAAAAAAAAAAAAPQlC+gAAAAAAAAAAAAAAAAAAAAAANCXLKADAAAAAAAAAAAAAAAAAAAAAEBfsoAOAAAAAAAAAAAAAAAAAAAAAAB9qbvREwCAftMb6VXznXt2VvNjh49V8+HhodZsZGykOvZiTU9uvaT9XDmGhoZbs1OnTlbHnjxevw9smd52QXPKMFS5/00Pb7+MMwEAAAAAAAAAAAAAAAAAAM5FZ6MnAAAAAAAAAAAAAAAAAAAAAAAAF8ICOgAAAAAAAAAAAAAAAAAAAAAA9CUL6AAAAAAAAAAAAAAAAAAAAAAA0JcsoAMAAAAAAAAAAAAAAAAAAAAAQF+ygA4AAAAAAAAAAAAAAAAAAAAAAH3JAjoAAAAAAAAAAAAAAAAAAAAAAPQlC+gAAAAAAAAAAAAAAAAAAAAAANCXuhs9AQDoNxNTE9X8xttuqOb3fu7eaj4y1qtkI9WxkKUzMFDNb7zlttbsoQP3VcceuP+ear5lels1BwAAAAAAAAAAAAAAAAAAeJQFdAAAAAAAAAAAAIAnpdVOxMxQk9K1kvqKzJw5RUREdzCtqjec+OFPS3lVEXnzau4+nNZ1c3csreudX/z8tK7rt+9J6xpczdtWlxcW07qOz5xM69q+e1da19zCfFrXp/bWPyDrfMyMddK6Xv+h96R1HWtOp3X9+Ct/Mq0rcQ8d0SlpVT/8dV+f1vX0ybz9xIEHH07r+vGP/EFaVwzkHYje9qY3pHW99Odek9Z1qsn7GUsZSuv6xz/xo2ld//5HXpXWtXjkeFrXwFpaVfzM97woreunfuPdaV2ve8PPp3XdkXgfGix5x7ShlZW0rljI2yi+6Mab0rruvrf+oZjn4xfe/960rjf/p7emdX364XvTun71p38prSvz8VCvtH+A73nLO8WMOL2Q19XL+xm73byu1VNn0roiIgaG8x6/x3DesTvyTlljoJP3M95/9KG0rh3bd6d1lcQbbD7y7kfdpbxjZG9sNK1rNfExUUnciZXIO3Yvzc+mdU0O1z8U/rys5e0nXv8d35XWtfZg3nn5tWPTaV07F/OeDRhIfGLhg9/2vWldR0/k3fZT2/Ju+6/52NvTuqYG856vHWoSf5GJ+8JYzdt/7RyZTOvaPZB37PjP3//ytK7x5bzb/sg9D6R17Z7YmtY1knh87Cae51y17ylpXZ/77J1pXdPTefuvL//Ur6d1ce7yznoBAAAAAAAAAAAAAAAAAAAAAOAysoAOAAAAAAAAAAAAAAAAAAAAAAB9yQI6AAAAAAAAAAAAAAAAAAAAAAD0JQvoAAAAAAAAAAAAAAAAAAAAAADQlyygAwAAAAAAAAAAAAAAAAAAAABAX+pu9AToH2urq/W8aVqzbrd/N7WVlZVqXkppzQYGBrKnA2wC45Pj1fzam66t5n/1Z39Vza+69imVsDoU0nQ69XUWr73h5tbs83f9XXXs/NxcNb/tGc+p5gAAAAAAAAAAAAAAAAAAAI+qvzMaAAAAAAAAAOD/b+/ewyQ76zqBf3/dPTPJXHIlCZegCRCDCOwjEZTwCAFWlKuIsLK7IrgSleWqgCgKBIQFFZCbixdUEFjuoKJIUBMICIiGAIGQQG6EQC6TTDLJZDKX7nn3j6rRtp3upHve6Z6q/nyep58zdd5Tv/pVzVvvOXXqPb8CAAAAAAAAAACAg5QCOgAAAAAAAAAAAAAAAAAAAAAAjCQFdAAAAAAAAAAAAAAAAAAAAAAAGEkK6AAAAAAAAAAAAAAAAAAAAAAAMJIU0AEAAAAAAAAAAAAAAAAAAAAAYCQpoAMAAAAAAAAAAAAAAAAAAAAAwEhSQAcAAAAAAAAAAAAAAAAAAAAAgJE0tdIJMDquvWrzgu3bbrp53rZ73Ouk3uksm0suumzB9k2HbZq37c53vWPvdIARMLVm4d3ryfc5ecH2I44+omc6AAAAAAAAAAAAAAAAAAAAMLYmVjoBAAAAAAAAAAAAAAAAAAAAAABYCgV0AAAAAAAAAAAAAAAAAAAAAAAYSQroAAAAAAAAAAAAAAAAAAAAAAAwkhTQAQAAAAAAAAAAAAAAAAAAAABgJE2tdAIAAAAAAAAAAAAAK6PSpvr8FuFMlyjDWNO7u8Vav25tt1iZ7hcqu7b3izVxSL9Y69Z0C7Vtul+v2HD0Yd1iXbe732u/rvX7Lc+ZtqtbrA3HHd0t1g0d++rkun5Tt3dOtW6xtmy9oVus7Kluoe481a/f39xxAJvsOAV/585busV64zn/0C3WbzzqCd1ivfoz/fLq+vPBHfvqs176sm6xfuM3X9wt1gtf9YpusWY6vvibpvrta5/5xjd0i/W2M87oFmvHNVd1i/XSP3hTt1ipfvuO3/u913eLdcYrXt4vVsf3Yzrut3uOX5fdcF23WNsmu4VKqt+TfObpz+gWa2Ldum6x3vTbr+kW6/TTT+8W69Cj+x37ZqbjJ9uJjh2sY//KLf2OvyY3bOoWa6DfON3zWOemLdd3i3X4Mf3660f+/D3dYj3jOc/qFuuQdYd2izW5u9/7aO2Gfnltm97ZLdbkVL9xuudpq6Tfaz91SL/nmH5v7WS633mY63be2i3W3b/3zt1iXb95a7dYh3Y6h5wkk63feD/T+vX8TSf0e+2v6bjvWL9mfbdYHfe0ufGmfv3riEM2douVtf0+x+yqPd1ifefGfp9jjmz9zivcsqPf8e9dTjqxW6yZm/qdk75pW78xetP6Dd1ife3yi7vFmtrYb1+7rfX7fo6V0fMUMgAAAAAAAAAAAAAAAAAAAAAALBsFdAAAAAAAAAAAAAAAAAAAAAAAGElTK50Ao2Pz1dcu2H7NlVfP23aPe53UO51lc8lFly3Yfqfj7zhv253vOn8bML6mphbevZ58n5MXbF936Lqe6QAAAAAAAAAAAAAAAAAAAMDYmljpBAAAAAAAAAAAAAAAAAAAAAAAYCkU0AEAAAAAAAAAAAAAAAAAAAAAYCQpoAMAAAAAAAAAAAAAAAAAAAAAwEhSQAcAAAAAAAAAAAAAAAAAAAAAgJGkgA4AAAAAAAAAAAAAAAAAAAAAACNJAR0AAAAAAAAAAAAAAAAAAAAAAEaSAjoAAAAAAAAAAAAAAAAAAAAAAIykqZVOgNGxbt3aBdsnJ+evx3TlZVfs12MfeYejFmzfsGnjfsVfMPbG9Qu237r91nnbrr1684L3PfaOxywpJ1ZGa23B9muvvWbB9g0b5u+nGzceuD7M8quqBds3Hb5pmTKBlXHUHY5dsH3bzTct2H7Vd769YPsd73SXedtqQn1IAAAAAAAAAAAAAAAAAABYTVxhDAAAAAAAAAAAAAAAAAAAAADASFJABwAAAAAAAAAAAAAAAAAAAACAkaSADgAAAAAAAAAAAAAAAAAAAAAAI0kBHQAAAAAAAAAAAAAAAAAAAAAARpICOgAAAAAAAAAAAAAAAAAAAAAAjCQFdAAAAAAAAAAAAAAAAAAAAAAAGElTK50Ao+OYOx27YPvOHTvnbfvqv56/X4997x+6z4LtGzZt3K/4C7n7yScu2P6tS749b9tl3/jWgvc99o7HLCknDk6XXHrxgu13ucvx87Zt3Hjg+jDAcjv+e05YsP2Kyy9ZsP2bFyx83HDscXeat21yQn1IAAAAAAAAAAAAAAAAAABYTRTQAQAAAAAAAAAAAFalqcnJHLPhyC6xbrlha5c4SXLkkYd3i7Vt+y3dYm08dEO3WNm0vl+sbdu6hXrJme/vFit7+oXKTMdYrWdiHfX83aTqGKtrXq1bqMf2/G/s+XrN9HuOh3RM7JDJftPmpzu+XjMb+42r090iJa8++8P9gm2d/0daF23Nof1itXX9YnV8P77geS/oFuvt735nt1ifv+ir3WK9/1mv7BYrG/r9Pz79Fb/eLdZr/+gt3WLNHHVIt1g33rClW6yj1x7VLdYZv/GybrGyu1+ortb0C/XGj7y7X7CeOo6Fa9NxjN7VL9RTXvLCbrFe/rrf6RZranKyW6z/ffovdYt11MYjusXq2cGmjuh3/NXzMDpJJjpG7Jnbnsnez7SPnllNdRzDel6wu+cg/fi+bqrfON3zc0y/T6N9T8NU9Tueu6XjeLj+sLXdYr3+Ex0/Q/Y8npvp+CY6SN+PB+/5tH7vyJ7v7Z5Pcd3hHY91eg46Hfvqqz/8nn7Ber6Hesbq2cFWg55vooM1Vkd7Oh7MTUz0G/A3b97cLdZxxx3XJc7UVL+j6J67RgAAAAAAAAAAAAAAAAAAAAAAWDYK6AAAAAAAAAAAAAAAAAAAAAAAMJIU0AEAAAAAAAAAAAAAAAAAAAAAYCQpoAMAAAAAAAAAAAAAAAAAAAAAwEjqWkCnqh5eVR+pqquramdVfbeqzqyqR+1j21Or6mNVtaWqbq2qr1TV86pqsmdOAAAAAAAAAAAAAAAAAAAAAACMp6legarqd5O8MMmVSf46yXVJjklySpLTknxs1rY/meRDSXYkeV+SLUkem+T3kzwoyZN65QUAAAAAAAAAAAAAAAAAAAAAwHjqUkCnqk7PoHjOO5L8Ymtt15z2NbP+fViSP0kyk+S01tq/Dte/JMlZSZ5YVU9urb23R27zuXnbtnnbrr/++gP50KOrbqN9av4Nzv/il/froQ875ogF2w89bMN+xV8w9sZDFmzfunXrvG3XXbtwX7rHD5y4pJxYGXtaW7D9wgu/vmD7zMyeeds2bti0pJwADkaTaxfed+7ctXvB9q999SsLtp98n/vN2za1Zs28bQD8Rwt9LgYAAAAAAAAAAAAAAACAUTGxvwGqal2SVyW5IvsonpMkrbXZV0k/MckxSd67t3jOcJsdSX5rePMZ+5sXAAAAAAAAAAAAAAAAAAAAAADjbapDjB/LoCDOG5LsqapHJ7l3kh1JvtBa+9yc7R82XH58H7HOSbI9yalVta61trNDfgAAAAAAAAAAAAAAAAAAAAAAjKEeBXTuP1zuSHJeBsVz/k1VnZPkia21zcNVJw+X35gbqLU2XVWXJfmBJHdL8vWFHriqzp2n6Z63L3UAAAAAAAAAAAAAAAAAAAAAAEbVRIcYxw6XL0zSkvxokk1J7pvkE0kenOQDs7Y/fLjcOk+8veuP6JAbAAAAAAAAAAAAAAAAAAAAAABjaqpDjL1FeKaTPK61dvnw9vlV9VNJLkrykKp6YGvtcx0e79+01k7Z1/qqOjfJ/Xo+FgAAAAAAAAAAAAAAAAAAAAAAB5eJ297kNt04XJ43q3hOkqS1tj3JmcObDxgutw6Xh88Tb+/6G+dpBwAAAAAAAAAAAAAAAAAAAACALgV0Lhou5yt4c8Nweeic7b9v7oZVNZXkxCTTSS7tkBsAAAAAAAAAAAAAAAAAAAAAAGNqqkOMf0zSktyrqiZaa3vmtN97uLxsuDwryf9M8hNJ3jNn2wcnWZ/knNbazg65zevss8+et+2qq646kA89tm66Yb4aSsnXz79gv2Jv3j1/7CQ55tzP71f8/fGtS66Yt+2WbdsXvO812/S1UdJaW7D9a187f8H2C75+0bxtn//nf1lSTgCj6NqrvrNg+3e/M/++NUlu2j1/DciJyckl5QSwGl144YUrnQIAAAAAAAAAAAAAAAAA7Lf5rz6+nVpr30ry0STfk+S5s9uq6hFJfjzJjUk+Plz9wSTXJXlyVf3QrG0PSfLK4c237m9eAAAAAAAAAAAAAAAAAAAAAACMt6lOcZ6Z5AeTvL6qHp3kvCQnJnl8kpkkT2+tbU2S1tpNVXV6BoV0PllV702yJcnjkpw8XP++TnkBAAAAAAAAAAAAAAAAAAAAADCmJnoEaa1dmeSUJG9JclKS5yY5LclHkzyotfahOdv/ZZKHJDknyU8neXaS3Ul+NcmTW2utR14AAAAAAAAAAAAAAAAAAAAAAIyvqV6BWmubMyiE8+zbuf0/JXlUr8cHAAAAAAAAAAAAWIxdO3flissu7xLr3e96V5c4SbJjx45usa7dvLlbrMOOPKxbrImJLr8BmSS59dZbu8XaeNiGbrFuueWWbrFm+r1cmamOsSb2dIu1e7JbqEz3fL0O0tf+7lv6/V7p2o6JrZvpFirV8SdZd3abNZ/ctK5jrLX9Otj2Nd1CZbL1y2vyhu3dYt1lamO3WGu29+usk2v7vfh7Dj+0W6xv7bixW6w7bDq8W6w/ePUru8Vac+wR3WJ9d0+/vnrxlqu7xXr5H7+hW6x1u/oNrFNb+x1/Td28s1usyeo3fvXcd9yytl+snR2PmToe5uTQ3f1iHdbv41AOne4X64KT1neLdc32Ld1iHbZxU7dYr/uLP+kW68brru8W69A1/d5ER67v93r1fI5Jsn5tvwPNQ9f0i7XxkH7HJ5Pp99njsssv7xbrta99bbdYGw/tN1bceGO/47nD9hzSLVbPz8m7Ou7Xeu4jpyf7ne/oeS6gp8nW7zlO9QvVNdZEx/MKe6pfYj3PW/WM1fP92Dr2+8M7Hhv27BM9HaTDxEGr53/jwXru92AdJ6Y7jhO7O+a1p+Nr3zPWMTf2C7Z+fb9jzA0b+n0PdtVVV3WJs3t3v5MKPc91AAAAAAAAAAAAAAAAAAAAAADAslFABwAAAAAAAAAAAAAAAAAAAACAkaSADgAAAAAAAAAAAHBAVdXRVfX0qvpIVV1cVbdW1daq+kxV/UJVTczZ/oSqagv8vXelngsAAAAAAAAAB5eplU5gpZx19tnztn32859bxkzGx8z0zLxtO7bful+xv3zxVxdsn1qzZr/i749dO3bN2zazZ8+C9/38efraOLn11u0Ltk9Nzd9P16xgHwZYbtO75993JsmuXQu3f/H8r8/fWLWUlABWpR237ljpFAAAAAAAgNXlSUnemuSqJGcnuSLJcUmekORtSR5ZVU9qrbU59/tykr/cR7yFJ5UBAAAAAAAAsGqs2gI6AAAAAAAAAAAAwLL5RpLHJfnb1tq//TJZVb04yReS/HQGxXQ+NOd+X2qtnbFcSQIAAAAAAAAweiZWOgEAAAAAAAAAAABgvLXWzmqtfXR28Zzh+quT/OHw5mnLnhgAAAAAAAAAI29qpRMAAAAAAAAAAAAAVrXdw+X0PtruXFW/lOToJNcn+Vxr7SvLlhkAAAAAAAAABz0FdAAAAAAAAAAAAIAVUVVTSX5uePPj+9jkx4Z/s+/zySRPba1dcTsf49x5mu55O9MEAAAAAAAA4CA2sdIJAAAAAAAAAAAAAKvWa5LcO8nHWmtnzlq/PclvJzklyZHDv4ckOTvJaUn+sao2LG+qAAAAAAAAAByMplY6AQAAAAAAAAAAAGD1qarnJHl+kguTPGV2W2vt2iQvnXOXc6rqEUk+k+SHkzw9yRtv63Faa6fM8/jnJrnf4jMHAAAAAAAA4GCyagvobLlhy/yNNyxfHtxO21Y6gQPjhhtXOgMAGD03br1ppVMAAAAAAAAAYD9V1bMyKH5zQZKHt9YWmNT371pr01X1tgwK6Dw4t6OADgAAAAAAAADjbWKlEwAAAAAAAAAAAABWj6p6XpI3J/lqkoe21q5eZIjNw+WGrokBAAAAAAAAMJIU0AEAAAAAAAAAAACWRVW9KMnvJ/lSBsVzrl1CmB8ZLi/tlhgAAAAAAAAAI0sBHQAAAAAAAAAAAOCAq6qXJHlNknOTPLy1dt0C296vqv7THMeqeniSXxnefNcBSRQAAAAAAACAkTK10gkAAAAAAAAAAAAA462qnprkFUlmknw6yXOqau5ml7fW3j789+uTnFRVn01y5XDdfZM8bPjvl7TWPntAkwYAAAAAAABgJCigAwAAAAAAAAAAABxoJw6Xk0meN882n0ry9uG/35nkp5LcP8kjk6xJck2S9yd5S2vt0wcsUwAAAAAAAABGigI6AAAAAAAAAAAAwAHVWjsjyRmL2P5Pk/zpgcoHAAAAAAAAgPFRrbWVzqG7qro+yVETk5MrnQoAAACMjT0zM0lV2p49tdK5AAAAAAAA7K+qun5qauqoI488qku8devWdYmTJK3t6RZrenq6W6ye8zKr4zdOe/b0mws7MTnRLdaemX7/j+n4evWcOdw6RmsH6beQPfPq+dqv6/fWTr9en9RBOjW95//jTNdY/YL1/Ca/69ux41i4tvr11uo4RHfdqXXcD+3c02+gaBP9nuOhu/sNFDXV79hkd/p1ip3Tu7vFWnvIId1iTXS8fqhmOg74HceJ6jiCHaz7joP1mGmiY5eY7DhG9zzOuXVdv2jTu/uNE5MdP6dNdNzXzvT8LNpxXzs50e/16vkck2Si4/625/9lz9e/5zi9c+eObrHWTK3pFmtiouP7aGamW6zJnvvIbpH67td6HuIfrOdheup6SNHxSfbMq2esrufAukVK1yd5sL6Heh4bHqSH0qygvufKOzpI90MH67nynno+x6me5/A7HmP2jNXrO8jrrrsu09PTW1prR+9vrKkeCR2EbkqSPTMzlw9v33O4vHBFsmG10M9YLvoay0E/Y7noaywH/YzlsFr62Qlp7aaVTgIAAAAAAKCTm6anp7N587WX38Z2q+W7IIDVzngPsDoY7wFWB+M9wOphzAcYbSdkWCNmf1XrWEH6YFVV5yZJa+2Ulc6F8aWfsVz0NZaDfsZy0ddYDvoZy0E/AwAAAAAAGF++CwJYHYz3AKuD8R5gdTDeA6wexnwA9ppY6QQAAAAAAAAAAAAAAAAAAAAAAGApFNABAAAAAAAAAAAAAAAAAAAAAGAkKaADAAAAAAAAAAAAAAAAAAAAAMBIUkAHAAAAAAAAAAAAAAAAAAAAAICRpIAOAAAAAAAAAAAAAAAAAAAAAAAjqVprK50DAAAAAAAAAAAAAAAAAAAAAAAs2sRKJwAAAAAAAAAAAAAAAAAAAAAAAEuhgA4AAAAAAAAAAAAAAAAAAAAAACNJAR0AAAAAAAAAAAAAAAAAAAAAAEaSAjoAAAAAAAAAAAAAAAAAAAAAAIwkBXQAAAAAAAAAAAAAAAAAAAAAABhJCugAAAAAAAAAAAAAAAAAAAAAADCSFNABAAAAAAAAAAAAAAAAAAAAAGAkjXUBnao6vqr+rKq+W1U7q+ryqnpDVR250rkxOqrq6Kp6elV9pKourqpbq2prVX2mqn6hqvb5PqqqU6vqY1W1ZXifr1TV86pqcrmfA6Orqn62qtrw7+nzbPOYqvrksF9uq6p/rqqnLneujJ6qevhwbLt6uJ/8blWdWVWP2se2xjQWraoeXVWfqKorh/3m0qr6QFU9cJ7t9TP2qaqeWFVvrqpPV9VNw/3iu27jPovuT/apq9ti+llVnVRVL6qqs6rq21W1q6quqaq/qqqH3sbjPLWqvjDsY1uHfe4xB+ZZAQAAAAAAsD/MQQQYD+YCA6xe5uMDjDfXxQCMP9enAbAY1Vpb6RwOiKq6e5LPJjk2yV8luTDJA5I8NMlFSR7UWrt+5TJkVFTVLyd5a5Krkpyd5IokxyV5QpLDk3woyZParDdTVf3kcP2OJO9LsiXJY5OcnOSDrbUnLedzYDRV1V2TnJ9kMsnGJKe31t42Z5tnJXlzkusz6Gu7kjwxyfFJXtdae8GyJs3IqKrfTfLCJFcm+bsk1yU5JskpSf6htfZrs7Y1prFoVfU7SX4tg/HpLzPoY/dI8rgkU0l+rrX2rlnb62fMq6q+lOS/JNmWwbh1zyTvbq397DzbL7o/2aeymH5WVe9N8jNJLkjymQz62MkZjHGTSZ7bWnvTPu732iTPH8b/YJK1SZ6c5Kgkz26tvaX/MwMAAAAAAGApzEEEGB/mAgOsTubjA4w318UAjD/XpwGwWONcQOfMJI9I8pzW2ptnrX99kl9J8kettV9eqfwYHVX1sCQbkvxta23PrPV3TPKFJHdN8sTW2oeG6w9LcnEGX6g9qLX2r8P1hyQ5K8kDk/z31tp7l/WJMFKqqpL8fZITk3w4yQsy54R9VZ2QwcScW5Kc0lq7fLj+yCT/kuTuSU5trX1uOXPn4FdVpyf54yTvSPKLrbVdc9rXtNZ2D/9tTGPRhvvI7yTZnOS+rbVrZ7U9NIO+c1lr7W7DdfoZCxr2mysz6CcPyWAi03yFTRbdn+xTSRbdz56W5MuttfPmrH9IBsdwLckJrbWrZrWdmuSfklyS5P6ttRuG609Icm4Gnznuubf/AQAAAAAAsLLMQQQYH+YCA6w+5uMDjDfXxQCMP9enAbAUEyudwIEw/OWXRyS5PMkfzGl+WQYnt55SVRuWOTVGUGvtrNbaR2d/YTZcf3WSPxzePG1W0xMzqFb73r0HWMPtdyT5reHNZxy4jBkTz0nysCQ/n8GYtS//K8m6JG+ZfaH18GLs/zO8aZIO/0FVrUvyqgx+Qec/nSRMkr0nCYeMaSzF92ZwnPnPs09OJElr7ewkN2fQr/bSz1hQa+3s1to3Z//K1wKW0p/sU1lUP2utvX1u8Zzh+k8l+WSStUlOndO8tw+9am/xnOF9Ls/gc+u6DI79AAAAAAAAWGHmIAKMF3OBAVYl8/EBxpTrYgBWDdenAbBoY1lAJ8lDh8tP7OOLjpuT/FOS9Ul+ZLkTY+zs/eJYi+sAAAk2SURBVDA9PWvdw4bLj+9j+3OSbE9y6vDDOvwnVfX9SV6T5I2ttXMW2HShvvZ3c7aBvX4sgw+CH06yp6oeXVUvqqrnVtUD97G9MY2l+GaSXUkeUFV3mN1QVQ9OsinJP8xarZ/R01L6k30qPe3rM0KinwEAAAAAAIwScxABVg9zgQHGjPn4AGPPdTEAq4Pr0wBYtHEtoHPycPmNedq/OVx+3zLkwpiqqqkkPze8OfuAat7+11qbTnJZkqkkdzugCTKShv3qnRlUQX7xbWy+UF+7KoNK+cdX1fquSTLq7j9c7khyXpK/yeALojck+WxVfaqqZldeNaaxaK21LUlelOS4JBdU1R9X1aur6v1JPpHk75P80qy76Gf0tJT+ZJ9KF1X1vUkensGJ1XNmrd+Q5C5Jtg371Fw+owIAAAAAABxczEEEWAXMBQYYP+bjA6wKrosBWAVcnwbAUoxrAZ3Dh8ut87TvXX/EMuTC+HpNknsn+Vhr7cxZ6/U/9sdLk/xgkqe11m69jW1vb187fJ52Vqdjh8sXJmlJfjSDaqv3zeCD44OTfGDW9sY0lqS19oYkT8jgxMLpSX49yZOSfDvJ21tr187aXD+jp6X0J/tU9tuwCvm7k6xLckZr7YZZzcY5AAAAAACA0eL7HYDVwVxggPFjPj7A+HNdDMAq4fo0ABZrXAvowAFVVc9J8vwkFyZ5ygqnw5ioqh/OoMr961prn1vpfBhbe/f900ke11r7TGttW2vt/CQ/leTKJA+pqgeuWIaMhar6tSQfTPL2JHdPsiHJKUkuTfLuqvrdlcsOoK+qmszgV4selOR9SV67shkBAAAAAAAAAAsxFxhg/JiPD7BquC4GYJVwfRoAizWuBXRuq8rz3vU3LkMujJmqelaSNya5IMlDW2tb5myi/7FoVTWV5C+SfCPJS27n3W5vX5uvYiar096x57zW2uWzG1pr25Ps/RWdBwyXxjQWrapOS/I7Sf66tfarrbVLW2vbW2tfzOCE9HeSPL+q7ja8i35GT0vpT/apLNmweM67Mqhi/v4kP9taa3M2M84BAAAAAACMFt/vAIwxc4EBxo/5+ACriutiAFYB16cBsBTjWkDnouHy++ZpP2m4/MYy5MIYqarnJXlzkq9m8IXZ1fvYbN7+Nzwpe2IGFW4vPVB5MpI2ZtBnvj/Jjqpqe/+SvGy4zZ8M171heHuhvnanDKppXjk8+QN77e03833Qu2G4PHTO9sY0FuMxw+XZcxuGY9IXMjgO/cHhav2MnpbSn+xTWZKqWpPkPUmenOT/JfkfrbXpudu11m7J4OTsxmGfmstnVAAAAAAAgIOLOYgAY8pcYICxZT4+wOrhuhiA1cH1aQAs2rgW0Nm7M3xEVf2H51hVm5I8KMn2JJ9f7sQYXVX1oiS/n+RLGXxhdu08m541XP7EPtoenGR9ks+21nb2z5IRtjPJn87zd95wm88Mb39ueHuhvvbIOdvAXv+YpCW519x95NC9h8vLhktjGkuxbrg8Zp72vet3DZf6GT0tpT/Zp7JoVbU2yQeSPCmDXy56SmttZoG76GcAAAAAAACjwxxEgDFkLjDAWDMfH2D1cF0MwOrg+jQAFm0sC+i01i5J8okkJyR55pzml2dQBfqdrbVbljk1RlRVvSTJa5Kcm+ThrbXrFtj8g0muS/LkqvqhWTEOSfLK4c23HqhcGU2ttVtba0/f11+Svx5u9o7huvcNb/95Bif6n1VVJ+yNVVVHJnnx8OYfLtNTYES01r6V5KNJvifJc2e3VdUjkvx4BlW4Pz5cbUxjKT49XP5iVd1ldkNVPTKDiYQ7knx2uFo/o6el9Cf7VBalqtYl+UiSn8xgQsXPt9b23Mbd9vah3xz2rb2xTsjgc+vODPoiAAAAAAAAK8wcRIDxYy4wwHgzHx9g9XBdDMCq4fo0ABatWmsrncMBUVV3z2Cnd2ySv0ry9SQ/nOShSb6R5NTW2vUrlyGjoqqemuTtSWaSvDnJ1n1sdnlr7e2z7vP4DA62diR5b5ItSR6X5OTh+v/WxvXNR3dVdUaSlyU5vbX2tjltz07ypiTXJ3lfBtUyn5jk+CSva629YHmzZRRU1fEZ7CPvmkHl7fOSnJjk8RlU4X5ya+1Ds7Y3prEowyruZyb5r0luzqDIxNVJvj/JY5JUkue11t446z76GfMa9o/HD2/eMYMvNS7Nv58Mu272Pm8p/ck+lcX0s6r68yRPy+Dk6v/NYP851ydba5+c8xivS/KrSa7MoC+uTfIzSY5O8uzW2lv6PSMAAAAAAAD2hzmIAOPDXGCA1c18fIDx47oYgPHn+jQAlmJsC+gkSVXdNckrkvxEBhckXpXBDvLlrbUbVjI3Rsesk6UL+VRr7bQ593tQkt9M8sAkhyS5OMmfJXlTa22mf6aMq4VO2A/bH5vkBUnul2QiyQVJ3tJae8dy5sloqapjkrw0gw+Ad0pyUwYFAl7dWvvCPrY3prEoVbUmg1/he3KSeyVZn8FJhy9k0G8+sY/76Gfs0+04HvtWa+2EOfdZdH+yT13dFtPPquqTSR5yGyFf3lo7Yx+P87QMxsd7JdmT5ItJfq+19jeLzRkAAAAAAIADyxxEgPFgLjDA6mY+PsB4cl0MwPhzfRoAizXWBXQAAAAAAAAAAAAAAAAAAAAAABhfEyudAAAAAAAAAAAAAAAAAAAAAAAALIUCOgAAAAAAAAAAAAAAAAAAAAAAjCQFdAAAAAAAAAAAAAAAAAAAAAAAGEkK6AAAAAAAAAAAAAAAAAAAAAAAMJIU0AEAAAAAAAAAAAAAAAAAAAAAYCQpoAMAAAAAAAAAAAAAAAAAAAAAwEhSQAcAAAAAAAAAAAAAAAAAAAAAgJGkgA4AAAAAAAAAAAAAAAAAAAAAACNJAR0AAAAAAAAAAAAAAAAAAAAAAEaSAjoAAAAAAAAAAAAAAAAAAAAAAIwkBXQAAAAAAAAAAAAAAAAAAAAAABhJCugAAAAAAAAAAAAAAAAAAAAAADCSFNABAAAAAAAAAAAAAAAAAAAAAGAkKaADAAAAAAAAAAAAAAAAAAAAAMBIUkAHAAAAAAAAAAAAAAAAAAAAAICRpIAOAAAAAAAAAAAAAAAAAAAAAAAjSQEdAAAAAAAAAAAAAAAAAAAAAABG0v8Hgv4AXOvsLTwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 279, "width": 2280 }, "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "random_color(rs, re, gs, ge, bs, be) (19, 19, 11)\n" ] } ], "source": [ "'''生成彩色图像'''\n", "def get_wavy_line(w = (0, 100),h = (30, 50)):\n", " '''产生波浪线坐标'''\n", " import random\n", " n = 50\n", " x = 0\n", " y = random.randint(h[0],h[1])\n", " flag = random.randint(0,2)\n", " xy = [(x, y)]\n", " while x < w[1]:\n", " temp_y = random.randint(1, 3)\n", " temp_x = random.randint(5, 10)\n", " if flag == 0:\n", " if y + temp_y > h[1]:\n", " y -= temp_y\n", " flag = 1\n", " else:\n", " y += temp_y\n", " else:\n", " if y - temp_y < h[0]:\n", " y += temp_y\n", " flag = 0\n", " else:\n", " y -= temp_y\n", " x = x+temp_x if x+temp_x < w[1] else w[1]\n", " xy.append((x, y))\n", " return xy\n", "def Asin(x, A=8,w=0.05, b=6, k=40):\n", " '''\n", " y=Asin(ωx+φ)+k在直角坐标系上的图象\n", " A——振幅,当物体作轨迹符合正弦曲线的直线往复运动时,其值为行程的1/2。\n", " (ωx+φ)——相位,反映变量y所处的状态。\n", " φ——初相,x=0时的相位;反映在坐标系上则为图像的左右移动。\n", " k——偏距,反映在坐标系上则为图像的上移或下移。\n", " ω——角速度, 控制正弦周期(单位弧度内震动的次数)。\n", " '''\n", " return A*math.sin(w*x+b)+k\n", "\n", "def random_xy(width,height): \n", " '''\n", " 随机位置函数,返回指定范围随机位置坐标\n", " 参数:width:图片宽,height:图片高\n", " '''\n", " x = random.randint(0, width)\n", " y = random.randint(0, height)\n", " return x, y\n", "def random_color(color_tuple):\n", " '''\n", " 随机颜色函数,返回指定范围随机颜色值\n", " 参数:start:颜色最低值,end:颜色最高值\n", " '''\n", " if len(color_tuple)==2:\n", " rs, re = color_tuple\n", " gs = bs = rs\n", " ge = be = re\n", " else:\n", " rs, re, gs, ge, bs, be = color_tuple\n", " red = random.randint(rs, re)\n", " green = random.randint(gs, ge)\n", " blue = random.randint(bs, be)\n", " return (red, green, blue)\n", "\n", "def gen_captcha(text, fig_size=(200,70), fonts=['fonts/ANTQUAB.TTF'],font_color=(10,100),same_color=1, font_size=(25, 35), rotate=0,\n", " font_noise=0, offset_w=(0,0), offset_h=0, line=(0,0), shortline=(0,0), line_width=(0,1), line_color=(200,250), point=(0,500), \n", " point_color=(150,250), frame_color=None, wavy=(0,0), bg=(200,255)):\n", " '''\n", " text:验证码文本\n", " size:验证码图片宽高\n", " fonts:字体列表,随机选择一个\n", " font_noise: 字体散点干扰,0不加干扰,1加干扰\n", " offset_hor: 左右偏移值\n", " offset_var: 上下偏移值\n", " fill:字体颜色范围\n", " rotate:字体旋转角度\n", " line:干扰线条数范围\n", " point:干扰点数范围\n", " wavy:波浪线数范围\n", " color:干扰线、点 颜色\n", " bg:背景色范围\n", " '''\n", " bg = random_color(bg)\n", " img = Image.new(mode='RGB', size=fig_size, color=bg) #\n", " draw = ImageDraw.Draw(im=img, mode='RGB') # im, mode=None\n", " \n", " font_path = random.choice(fonts)\n", "# font_name = font_path.split('/')[-1][:-4]\n", "# print('font_name:', font_name)\n", " \n", " font = ImageFont.truetype(font_path, size=random.randint(font_size[0], font_size[1])) # font=None, size=10, index=0, encoding=\"\"\n", " rotate = random.randint(0, rotate)\n", " def get_char_img(char,font,font_color,rotate,bg, font_noise=0):\n", " '''\n", " 生成单个字符图片,随机颜色加随机旋转\n", " \n", " '''\n", " w, h = draw.textsize(char, font=font)\n", " im = Image.new('RGBA',(w,h), color=bg)\n", " ImageDraw.Draw(im).text((0,0), char, font=font, fill=font_color) \n", " if rotate:\n", " im = im.rotate(random.randint(-rotate, rotate),Image.BILINEAR,expand=1)\n", " im = im.crop(im.getbbox())\n", " if font_noise: \n", " im_draw = ImageDraw.Draw(im)\n", "# for i in range(random.randint(1,20)):\n", " for i in range(random.randint(int(w*h*0.01),min(int(w*h*0.05), 5))):\n", " im_draw.point(xy=(random.randint(0, w), random.randint(0, h)),fill=bg)\n", "\n", " table = []\n", " for i in range(256):\n", " table.append(i * 97) # 5.97\n", " mask = im.convert('L').point(table) \n", " return (im, mask)\n", " \n", "# char_color = random.randint(font_color[0],font_color[1])\n", " char_color = random_color(font_color)\n", " if same_color: \n", " char_imgs = [get_char_img(char, font, font_color=char_color, rotate=rotate, bg=bg, font_noise=font_noise) for char in text]\n", " else:\n", "# char_imgs = [get_char_img(char, font, font_color=random.randint(font_color[0],font_color[1]), rotate=rotate, bg=bg, font_noise=font_noise) for char in text]\n", " char_imgs = [get_char_img(char, font, font_color=random_color(font_color), rotate=rotate, bg=bg, font_noise=font_noise) for char in text] \n", " ws = [img[0].size[0] for img in char_imgs]\n", " hs = [img[0].size[1] for img in char_imgs]\n", " w = max(sum(ws), fig_size[0])\n", " h = max(max(hs), fig_size[1])\n", " if w>fig_size[0] or h>fig_size[1]:\n", " img = Image.new('RGB',(w+6,h+6), color=bg)\n", " draw = ImageDraw.Draw(im=img, mode='RGB') # im, mode=None\n", " w, h = img.size\n", " fig_size = img.size\n", " \n", "\n", " # 短线\n", " for i in range(random.randint(shortline[0], shortline[1])):\n", " x0, y0 = random_xy(w, h)\n", " x1 = x0 + random.randint(2, 5)\n", " y1 = y0 + random.randint(2, 5)\n", " draw.line(xy=((x0,y0),(x1,y1)),\n", " fill=random_color(line_color),\n", " width=random.randint(line_width[0], line_width[1])) # xy, fill=None, width=0\n", " \n", " if rotate:\n", " temp_x = random.randint(int((fig_size[0]-sum(ws))/5), int((fig_size[0]-sum(ws))/2+1))\n", " temp_y = random.randint(int((fig_size[1]-hs[0])/8), int((fig_size[1]-hs[0])/2+1))\n", " for i in range(len(char_imgs)):\n", " tmp_offset = random.randint(offset_w[0], offset_w[1]) if sum(ws)+(len(ws)-1)*offset_w[1] 0:\n", " temp_x = new_x if new_x+ws[i]=0.5:\n", " A_ = random.uniform(hs[1]*0.1,hs[1]*0.2)\n", " w_ = math.pi*4/w#random.uniform(0.04, 0.06)\n", " b_ = random.random()*math.pi\n", " k_ = random.uniform(h*0.5, h*0.7)\n", " # 波浪线\n", " for _ in range(random.randint(wavy[0],wavy[1])): \n", " draw.line(xy=[(x, Asin(x, A_, w_, b_, k_)) for x in range(int(w))], \n", " fill=char_color, width=random.randint(line_width[0], line_width[1])) \n", " else:\n", " # 波浪线\n", " for _ in range(random.randint(wavy[0],wavy[1])): \n", " draw.line(xy=get_wavy_line(w = (0, w),h = (min(hs)-5, max(hs)+5)), \n", " fill=char_color, width=random.randint(line_width[0], line_width[1])) \n", " \n", " # 边框\n", " if frame_color!=None:\n", " draw.line(xy=[(0,0),(0, h), (0, 0), (w, 0),(w-1,0),(w-1, h), (0,h-1),(w-1, h-1)], fill=random_color(frame_color))\n", " \n", " if not rotate:\n", " temp_x = random.randint(int((fig_size[0]-sum(ws))/5), int((fig_size[0]-sum(ws))/2+1))\n", " temp_y = random.randint(int((fig_size[1]-hs[0])/8), int((fig_size[1]-hs[0])/2+1))\n", " for i in range(len(char_imgs)):\n", " tmp_offset = random.randint(offset_w[0], offset_w[1]) if sum(ws)+(len(ws)-1)*offset_w[1] 0:\n", " temp_x = new_x if new_x+ws[i]" ] }, "execution_count": 168, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuUAAAGRCAYAAADCYc20AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmMZNt9H/bvqbWru3rfl1nfRpEURZG0FtKgKDkRZEFeYNGA/kjsJLaA2BYE2ZazWFJMJ3IiAw4UyUZkQE4sLwGoQIYdCFEUJ5YVWRJNkRTFx7dw3iy9793VS+3rzR/TAz2+7/c+Vr/unjvL9wMIo3em6t5b95577plifc8vRFEEMzMzMzNLTirpAzAzMzMze955Um5mZmZmljBPys3MzMzMEuZJuZmZmZlZwjwpNzMzMzNLmCflZmZmZmYJ86TczMzMzCxhnpSbmZmZmSXMk3IzMzMzs4R5Um5mZmZmljBPys3MzMzMEuZJuZmZmZlZwjwpNzMzMzNLmCflZmZmZmYJS3RSHkJYCiH8ryGErRBCM4SwEkL4n0II40kel5mZmZnZ4xSiKEpmxyG8AOB3AcwA+D8AfA3AtwH4bgB3AHwiiqLDRA7OzMzMzOwxSvKb8v8ZDyfkPxpF0Z+Ooui/iqLoewD8LIBXAPydBI/NzMzMzOyxSeSb8rNvye8BWAHwQhRFvbf93TCAbQABwEwURdX3sP1lACNn2zczMzMzuyo3AZxGUXTrIhvJXM6xnNt3n/35r98+IQeAKIrKIYTfAfC9AL4DwL95D9sfyWWzE/Pz8xMXPE4zMzMzs1jb29totdsX3k5Sk/JXzv58K+bv7+LhpPxlvMukPITwpZi/Gpifn8ff/qmffO9HaGZmZmb2Dfyt/+6nsbq2tnLR7ST1m/LRsz9PYv7+UfvYYzgWMzMzM7NEJfVN+aWIouijqv3sG/SPPObDMTMzMzN7T5L6pvzRN+GjMX//qP34MRyLmZmZmVmikvqm/M7Zny/H/P1LZ3/G/eb8PUln09RWGCjI1+bzA5e56ycAr7JTq1fkK7PZPLdlcpd+RE+Ler1GbZkM3zrZ7PN7juzJ1+50qK3eaFFbcYjHxFQIV3JMdrXU6mr1Slm/ttejtmyenwW5mGfms+a0xuep2+V7KGlB3JvDg8PUlk7x/Efp9bqyvV7j+cJAYYj3k+5/Wqn6Z0U8bwdy/GzNZrJym90uH3/5lLdZHB6ktkxGn6NWqym2qe+ji0rqm/J/e/bn94YQvu4YzpZE/ASAGoB//7gPzMzMzMzscUtkUh5F0X0A/xoP13X8K+/4678NYAjAP3sva5SbmZmZmT1tkgx6/mUAvwvg50MIfwzAmwC+HQ/XMH8LwE8keGxmZmZmZo9NUj9fefRt+ccA/BIeTsb/OoAXAPwcgO+IougwqWMzMzMzM3ucEl0SMYqidQD/6ePa38AQhzcXFhflaxfmdPvTSoU3VtbviFcCE2Mz1DY2OnXpx/S0WFt9QG3F4gi1TUw+v+fInnylEw5qrW8fUNs3vbBEbbnsU7167nOrK8K9a3fekK9tNznMNjbNz4KZazcufmBPkEgsggAAX73/OrVVG0/eL2pTIsD58u1XqG0wz8FGpdnkUCQArD54k9oWr79IbUND/GyM0xHB2Tsrq9Q2P8XP1olRvXhfpcrH//pX+Rn+4su3qG14mIOrALC/tye2+Zp87UUl9k25mZmZmZk95Em5mZmZmVnCPCk3MzMzM0uYJ+VmZmZmZgnzpNzMzMzMLGHPVaR+eIRLz07N6BUzpuc4da5EEZe4zeV0+desKM3+uKjywKXqhnztrPjsczPXL/2Ynhbl0xK1FUfGqG1uYYHa8nkuD2xPlkajQW3pNK9okM3q+/ppkd07oraDCq/KtHSD7/XCFfTjpljtQ513AMgkOHY+zbrtNrU1SrySBAA0RXnz8elJapudme5//+JrP73WSXJUqXcAGDudoLZMPbnxvNvr6Xaxws7CNV5BabTPVVHqdV6lCQCqFe43M7M8fxob5/6Ryeixsy2O/aBep7bJad7m3CT3TQCo13hc2dw44W1O8TxnanpcbvNx8jflZmZmZmYJ86TczMzMzCxhnpSbmZmZmSXMk3IzMzMzs4Q9V+mZmalZaosLFq2I0upKq8uncHF+Tr52eoLDgfZ0Ojw8prZUZoDarl/j8Kc9Wba3OPBcLBapbXpG39f2jakw3e7uNrWNiAA1AIyNeex8L4J4vs1evyFfqwKDLRHG3bx/t+/9l7N83Tu8NkKyYo5nbpLnC5l0cuN5paoDmBvb69SWivtQfchm87J9cekFalOLIKRS3OcmxLkEgHSKvxe+Pj9PbScV/uwHx/wMBoBJMYa8/Ar3+f198QwXx/64+ZtyMzMzM7OEeVJuZmZmZpYwT8rNzMzMzBLmSbmZmZmZWcKeq6DnxDhXgEpl9b9L1jZW+9rmaY2DAYODg3r/oxweS6eTuwRxldU6Xa7ypyqCJnns59ETldAi0ZaOqRqo2stHImSS5tDLvKiOmsnoMEkIT1oC6vlwdMTXrdfje2B8Qlf/VdUmW22+XzJpHmtSIuh0VVIp7l9Z0RfbHf7seRHYU9s7j8ODA2rLpHXlv6sIevbEONeLeFyIq0Z4ESr42u5w9c2rqH5ZnOq/IufeGj8Hd/p8NgJAKc/ns6W6jRj7QuB7Ix03doo2VQFTXd9czPV9cfE2tY0VR+VrH4fDI75fAGB3e5PaLnJnxvX3mblr1PbaVzhkmslw1dO4oKca/+aneJzdLR1SW1fcvwCwIKp/3rzFAd3f/e2vUNvAgA65plN6X1fB35SbmZmZmSXMk3IzMzMzs4R5Um5mZmZmljBPys3MzMzMEvZ0JPWu0OiIDm7cusEhDxXOubO8S22lkg5kjAzy6Z6bfTwVwiIR/ahHOjSzf7xPbQM5rlY5NcmVt55E1UqV28pcIWx2IaYS6wyHVJptDn7U6zVqW13jEM7NG4tyPyowaFdvYYGvR7lcprYdEagCgPmFJWpbXudxYXaKw4pjI0P9HOKlKA7yPbw0z+H3jW0OVS3N8etGioXLObCEnB5zwLde5bFi/vrNS993s82VMu9tcBVpFVJ/nKqnJ9RWzvQfP813+bkjo3QpDhemB4epbX6eg/OADoAenvD1Ldf4vr41f1NuUz3z7Nlx7QY/7yu1unzt7h6PiVfF35SbmZmZmSXMk3IzMzMzs4R5Um5mZmZmljBPys3MzMzMEuZJuZmZmZlZwp775R5GhvXqK6pdrb6yvMnl1o9Eqh8AigVOiM/O8Aomj6vceiPo1VcaJ7x6TDF/+auviNMJVVj6ouejJlZfOdznzzgzr0sBT01ze6XCKf6Tow1qW9/YobalRb3Ky7O2+oq+vHrlhsfV55W5eV595fT0TWrb3dmW758W9/Dqxh61FQa4/PTo8KDc5lWcD7X6yqJYVeW3v8CfXa0Sc57VV9TYeRWfUe0nzskxr6hwcshtc9duXOiYlEaLV1+5u3Gf2rq9mPLe/X7Mq7ituBvHmqqL1VcicVBZ3mg2N05tt+dvyf3k8/z+B6llauuBV7N5aekFuU1FnfbkRq6z/Yv76Dz3wWXvWznP8ahtnmes6HesuXaNn+uv3eE+AwA7e3pOdxX8TbmZmZmZWcI8KTczMzMzS5gn5WZmZmZmCfOk3MzMzMwsYc9WsuwJMTHO4SkAKBQ41LWxtUZti/NctjuV0qHMfqVE0OHWjC73XtqPCRddsqOTU2prttrUNj+jz2e/hoaL1NZut6hte2NLvn96drqv/RSLfH3HpzgEmBEloZ9FpRMu0V2r6zLG1+Z0+DUp6hK1mxX52vW1FWq7NjdBbdVag9r2DvkcAcDs1Ni7H+ATrNnkEKMKyY6P8zkaHubS6nFaHR4rVrZXqS0uLHl8wqHOZptD4V9be6vvY+pXo8HnKKpxCPH6Ej8LAKAtxslWi8e06Zn+xq6rUr6/SW0jQzweD4vjjLIcJN7f14G7qNPhfR/z86Xb5Nfd3eSAbZyZMT7OsaJeLOKyFQZ0KPz64k1q2zvkoLmKWo4URy50TFNiDtFs8Bi/uvZAvr+V4mt8c36G2mbEWFGu8b0KABt7u9R2bfbJer68G39TbmZmZmaWME/KzczMzMwS5km5mZmZmVnCPCk3MzMzM0uYg55XYGJiSrYXBvjfQGvrXEFqTlQIvHDQM8X7jgt6dqtHF9pXv0oiiFOucEjkwkHPIlcjjCIOVd15/Wvy/aPj/QV5hoY4tHLj+gK1pdPPb9Dz8Ej3rSct6JlVQc9WTLBI3MMf/SMfp7Y7yxxAand0CPFpDnq2RNBzc2Od2j7wwQ9RW/EcQc92m8OO90RVzKYIdQNA1OMxIBJxuKPVyw96Rl3eT1TnvnBtSo/R9SqPk5UKB5Hfd+Pl93B0l+crq3y/D49zWHLxFlfqbIkw6xtv3JP7aZ7wZ++K/tFNc9Dz3lb/Qc+8qDz6+IKeuoLuDRH0/NJXv0BtA6Iq90WDntNiDrEu7peVdX2Oaxl+ti9OcahzdoLbGjH39cYuj7NLM1y9M8kq0u/G35SbmZmZmSXsUiblIYRPhxD+fgjh34UQTkMIUQjhn3+D93w8hPBrIYRSCKEeQng1hPBjIYTn42tEMzMzM7Mzl/XzlZ8E8C0AKgA2ALzv3V4cQvhTAP4FgAaAXwZQAvAnAPwsgE8A+LOXdFxmZmZmZk+8y/r5yl8F8DKAEQB/6d1eGEIYAfCLALoAPhVF0V+IouhvAPgwgM8B+HQI4Ycu6bjMzMzMzJ54l/JNeRRF//bR/9/Hj+c/DWAawD+NouiLb9tGI4TwkwD+DR5O7D97GceWBBWqBICiqGQ2M80Bt4uGOvuVjtlPJ/DxV8scLNrd5KphM/Mc4gkp3SdCm8NOjZMatW1s837mpnX4U1XLVH0yn89TW1z1u7KoPJpO8a1TGORA6eHBPrVNTun9XEUAdGuLqxYWhzkwNDKsq8VdxEiR+7uqOggAK5tc+W9hhiu75bLZix9YH4oj49Q2MclhIQAolbjKYCbN99D0JAfCKjVd4XRjh6/b0tzFAs9KRvS5a/McVFfVSEvHusJpCBxYPO3wfb1+wNc8X+HPHUdVDm1VuK0bE6btVxccDoyjAsIZ8TjIpDkwOHPzGrW1TnT/qB+Vqa3d4c++t82ht15P1XYEJiY5TDc4dLFxYWaRFy1Qu9/d4OPsiCqdrZj7ZWSMA8LqupfKx9QWlXX/mFvkZ3Ozzed4//iA2qbH9GIPFxE3t8pk+Fk0O8XHPiSeTxel5irDauwc0yH55hGPIWs7/LxfElW142aaXRHgVg72+LpVqnpMw2P8UXUSQc/vOfvz18Xf/RaAGoCPhxB41mRmZmZm9gxKYknEV87+pHVzoijqhBCWAXwAwG0Ab77bhkIIX4r5q3f9TbuZmZmZ2ZMkiW/KH/1vuLyI8de3P70L9ZqZmZmZncNTXTwoiqKPqvazb9A/8pgPx8zMzMzsPUnim/JH34THlcF61M6JDDMzMzOzZ1AS35TfAfAxPFxC8et+Ex5CyAC4BaAD4MHjP7SrNTTIq1Go0rdxq7c8Ls2I938gVkXJVjkxPzXLK0TErfKS6nAMvylWG1jZ2KG2yXH9bzq1+oqSzfHqB/NLuqT18j0uETw8wuWJB/K87+2tDWobH+dVDoCLrb4SRXpFhfUNXv1lYYGv0VWsvjI5yteo29UrHbx+j8tnT43xL9ge1+orI6O8ekI7pqxzpcyrr6iFEuZneFWCtU29ssfqBq9AsDjL/eaipaLVKjE3l3jVmzfvr1NbXJ+bnOCMfrXHq7c82FmhtiBWfooTifGjV+X+FWKO8yrks3w9BsRTtpDn8eell16ktvVX9WOwvM/l63tiP+srfN3aMavRqBWpLrr6ytyNJWrbWOYxcf1Bf/2r09b3y5RYuabZ5dcei9U1MhXd565P8bHvVnjFjp0jfg5exeorcdR8YWmejz2dfjzTvVE5durrVjp8ldpWtrapbXj48leO2d3lMfa0yqsaAUCUfnxjSBKzv984+/P7xN99EsAggN+NoojXHjIzMzMzewYlMSn/FQAHAH4ohPCxR40hhAEAP332n7+QwHGZmZmZmSXiUv73jBDCnwbwp8/+89Gq9d8ZQvils///IIqiHweAKIpOQwg/jIeT898MIXwWQAnAn8TD5RJ/BcAvX8ZxmZmZmZk9DS7rR0YfBvDn39F2++z/AGAVwI8/+osoiv5VCOG7APwEgB8EMADgHoC/BuDno7gfK5qZmZmZPYMuZVIeRdFnAHzmnO/5HQDffxn779fJKQeydvd0cCyb5dDL+NjFylyrIN9VlFZX1L9zdnf0AjfZwOHToiiZXq3rksf9Gh7h8MboGO/n6IRL9O7u8bUEgNkZDsMVBvhaqoBcToSvAKA4zCWcZQipxQGq4WEOO4bHGORtt9rUdnjIJQLSKf486fTFypMr1YouY9xpcl86OOAgTrXCffMqFIt8zYeKOlw8JUpanxxxwFbd66lIn+OhAvfZ9S0Omc1Ocxg2n+s/DNsTJakPD/jYT48Oqa1R0fvptvka5QI/appVDs7GfR8zNMiBw8kJDpSFQrLf5zTrHBTrtLhv9wL3BRUyq3Y5IAsALXFvRmke01odjmZ1u7oM+VGJw6NR9/LPZ6XOiwZEYiYyMsT34OEO900AyGR4TM2Le3higsPW+w0dXyuXRCg0y9etJ8bOnRKHPwFgZpzLxafOEW7uVy7XX0H0ep3718mJDjt2Ony/Tk3xPdhrcaiz29T9aHZ6lto29vj9pQN+ZrWDHju7UX/hdzWnGYqZ0/AMBLjY7Cdesst8mJmZmZmZJ+VmZmZmZknzpNzMzMzMLGGelJuZmZmZJSyJip6J2T/kypDNrg6eFUWo66JBzyT1ehy0WFnWoZnpeQ7IZKY4PLF1wGGWPjMWAIDRKa6K2WxxmOT4tVNqW9/UQZrBIQ6ZqaDneUzNcJhlb4f332xyqFJVCX1c4V4AUJnSg30OzVTK3JbLXX79rk5MRc+cCDzubG9S2+Oqdru0dJ3aZmc50AkAsws3qW1t+U1qa7f4fI6Mx2xzmttff4urHo4MF6jtPEHPTodDVQ8ecBXJkxO+B1Mx1USrZd7/UIbvwU5TBMJiQoijYzwmvXLzZWoL+u2Pzcr6CrXtl3icbYhztyqq/zaDvgd7w3wfyLFXhBBVIBQADg84PF8+1KG/i6iLuoBDoxy6W1hYoLajbX6GA0AkAsvFIi8kMDvHQcujY+7bALC1vkVti7d4PA8DfC1Wd9fkNidHeSGClKiq+7hUKhxXXF3lfggAtRr3hSFR8bV1wuHRuqjUDQCLN25TW2V3ldr293lRinpa3+yFfH/j3+wcVy6uNXSw+niPFx24Kv6m3MzMzMwsYZ6Um5mZmZklzJNyMzMzM7OEeVJuZmZmZpaw5yromctyxcaBAQ5KATpQdljiH/uroFScpggRVE85YKcMj3LlPgDI5vsLMapKeY2mDrk26+Lfann+nL0eBxtLJa46mD5HOK8lKtiFwPuu1/WxHx9zWCmN/q9Rv6o13r+qnlmrcS0w1XZRMYUQEYlQVbvNYdp2m4OWuRx/HgAQmaq4o6KWbF4POdOTHKa9iG5MoPRYBFrVvaFel4sZK7pd7l9lURmu3eRrkSnoAFQY4PZag/tc6YSrMHZEFcc4KlhdVRUXweczrthjs81/UczyuctkuC+EmOqGQXx/pO63pHU7/NnzWQ7DFUWwUSnE9Lm6COjVa6IvidsgLovfanO/URVBI7FogKoMG6db4CPIRBzQr3W5b45NckVOAGiKz94S1SqLw3zep6Y5fAkATVF9uDjI4dFQ4OD+SV6HR0Ps2U9GWoRMs1kdlGw0+HociHBwrqcql+txv1PnfjMxxgtA1MV43IuZV4wM8TXaPuRxckrsJxuzCEPUeXwJcn9TbmZmZmaWME/KzczMzMwS5km5mZmZmVnCPCk3MzMzM0uYJ+VmZmZmZgl7rlZfmZrk0tULS1zKFwAaTU5zr2/ep7ZWS6/yoNTKXKZ2/f7dvt57633vl+39rr6iKmLn83r1gpMTUcJelGtOi9UP1te5RO558uadNq9kEYnjjKkUjdIBH3vl5PAcR9CfplhJQ5V6Xl3lxPrj1OnwShppkTDvicR8p6NPcqfPLh+Bz8eAKMsMADdu3Opvo32qN/SqJsf3eeUbdd2Oyrx6Qk2sVALo1Vvq4nxGab5Xj9SKGQDK7W1qy+f4xO+K/l461isIKGrVjLRYISef7f/7m1SK+01XtGULfD4ycSu6dHkMWNnUpcyTVDvi/jVaHKa2G4vXL7SfnXUuN9860iXC+xWCWFVFjPsdsbJR+xyrkHW73D+7NR6nsM99+8Vb1+Q2Dzf5fED0ufmb/P6lpXm5zZ74TIVBsRqOeBjdmNXXN53q/958HIpFHo8XFmbla09Pef6yvc3XaGGO3z86olcb2lvj98/e4OtRXxP9K6OfT6MTvFLdnfUtahsS44/q28D5Vtm7KH9TbmZmZmaWME/KzczMzMwS5km5mZmZmVnCPCk3MzMzM0vYcxX0RCSCAZH+d0lHlB0vHR/zC3tcHrjZ1GXUT9pctvdEbVM4PeIysQBUJXOpF3Gga3iEjx0AWq3+ynRnROncUoXL4Y4UuOwtAGTF+zNZbhuZ4JBI9USf4yBKQDebHBJrNrhtZFSHEJV8nwHbnjieExGYAYAhESKKxAWOCzH2K4jSyirkFcXcG71ef9HdSAStopgy6pFIIqs+2+uJcu8inFNp6P5xVOb7qNXmgFw6pcKO+n7JZXT7Ow2LEt9x/ajb5WBRLsVB00aNP3sUU5o9l+N9pUSp6vEJLmVeK3MQr93RQfFMjsNsQ0P9lZWP0xSh8qNTHk9Hh3msSamUe4yO+Ez1Ku9nqMglugFgUJz7wTy3hf7XB9C6fG9kxf1WEOe9Wtb3Rk8clBp/Uhm+viMiMBin2hPnuMbPnOMOPxtbczqUqcYaRYXcR2JCiBeRz+YufZtqEQQAqFZESFaIxNiZy2epbUyUnweACTEubG9vUltPBPwLRT0m6QkMtw0P8hgbxNgFAOkWv79S4nu4dMj9S4X2AWBQPJtP+pu6nZu/KTczMzMzS5gn5WZmZmZmCfOk3MzMzMwsYZ6Um5mZmZkl7LkKeu4f7FFbu6ur9LXa3N7ucEgkm+LwRPlkX26zJgIMPRFsVPZ3ucIfAJwcHvT1fhWKmF5YlK/N5Dj8oVSbHJDbXb1DbVOzXEkVAMaGuNKdokK3D0rL8rVT49PU1hRhy8MmB1KvX78ht3mOnBjvW4RMD450FdfxCa6E1gO/vxbTF/oVRJW+VCRCXjGBzrSoyKfqtgZRnrET6ZCqqs7YFvdgs83vrzU46HRa1imclXXuN5Uav7aQ48Dg1Kjux1MjugLeO91Y4GqC09NT8rX1OofxVk95/EKKw5tTo1zRDgAmJvje6NfqXb4+5RrfQwAwOMTHdPOCFSz3jnlf5R0+H9fmeUxTgfI41QpXct085X0vzui+kBeh33pZVId+sN73MSnVCvfZfIHvy8UbfD7u33kgt9kVwWo1BuQH+Pq+8PJtuc0gBs+1dQ4HNnb5WnZbfDzLm/xeAFgan6C2cdH2NGvW9QIM6/f1OXknVd15fIrHiqVbN+X7VeXTo6P+5h/5IR30nLnOY2dpm7c5NMpzhbgFB0prXMF7uMX3xtYqV/mcnuEwKwDMzfNxbm9tyNdelL8pNzMzMzNLmCflZmZmZmYJ86TczMzMzCxhnpSbmZmZmSXsuQp6tlscHKuICpQA0GhyqKLb5X/DjIhKVSlRHRHQFfCiTH8pwrgqm722rqpHxyQqmeUy+vLnc/1VKOQYDjBQ5OpoYxM6cDNZ1IG0d2qLan6rkQ63FIdGqa0gQq61Ml+jnAj3AcDQEJ+PtKiKqTSb3OcGh3bka3N5rorXbItqbaLapKoGGqcu7gOISma5tK5KdyruDZERk/dBp6N6DbC9w+ekVObAdLXBQbxqjau1lav6vj4s8TZPqyVqGy9OUlsho/vH+AC/Vt1vRVFdcWqC3wsAtSqf+6NB7h9RivvmUExFz0FZPZSvUWGQP+fxkKiEWtWh3Wzg/hn3OfvVEqGuA1HVNz/A5yMrrgUAqGG6W+fznhbVNwcyuhLrQIHPfe2E7+HSLp/PSNxEhZiAXBAfqSACtrkBNcbr51NO9I+eGBfSoirvUFHfG6oSYkVUFD0R1RXr4pl3cMAhPgC4tbDAx3QFlTqT1BNVXAGgWecFF5SKCAerm2AiZmGGnJirZMS91RLP67aoUAwAoyJour/Ood+QFgsJyC0CvRbfsBMFHjt3Tng/Y+O6mmkuf/kVWuP4m3IzMzMzs4R5Um5mZmZmljBPys3MzMzMEuZJuZmZmZlZwp6roOfU9Ay1DeT1v0t29rjaUxDpmrk5ETARwUAAODnlQNnWVn+V3abneT8AUBzsrypmJAI7h7s6cNjt6FDGOwVRjfSlWa5aOJTvP4R4FUZHOYTUbvFnfHBPV8p88WWuilcs9heGzWS4z7xwa0m+9rDE4cTDIw7npMChk5tL/VdMXN0W1fN6HCJamNDVzY73vkZtnY6oCAoOjoWujuec1jnA+cbyl/l1NQ7IqQB1u62D0Y0GhxNbbQ5KjRb5s2dyergMGR5DBkVYMhMTrFZyOT53C9deEjvn/lUXnxEANta4mmkQ4cJbL30TtU3NczVQVXEV0CH5ixod4qDWtVmuhrq+y1X2eiqFDCDb5usWVXlc6HT4uu2s78ptpsU1blT5PIWIr1tH9OOpOV3xdWiYx59miwOl68v3qK1VL8ttzs/wGNJNiYDtPoctVx+sym3efvEWtU1Nc+i3LqpDL2/wszE0ReoWQOjq8OqzJD+ow8XXbuvnyTuJosmoVvlevX9XX8tUl/tXV4z7Jyc8lm9t6WfrC7dvUtvMDQ6alku8zSACxwCw8KIOqr5T4w73uZODmIU/OhxOvir+ptzMzMzMLGEXnpSHECZDCH8xhPAvQwj3Qgj1EMJJCOG3Qwh/IcT8cyaE8PEQwq+FEEpn73k1hPBjQX0dbWZmZmb2DLuMn6/8WQC/AGAbwL8FsAYNItjoAAAgAElEQVRgFsCfAfCPAPzxEMKfjd72+4kQwp8C8C8ANAD8MoASgD8B4GcBfOJsm2ZmZmZmz4XLmJS/BeBPAvg/o7dVPwgh/E0AvwfgB/Fwgv4vztpHAPwigC6AT0VR9MWz9p8C8BsAPh1C+KEoij57CcdmZmZmZvbEu/DPV6Io+o0oin41ekc5siiKdgD8w7P//NTb/urTAKYBfPbRhPzs9Q0AP3n2n3/posdlZmZmZva0uOrVVx7Fyd8eaf+esz9/Xbz+twDUAHw8hJCPouhSY/xjo7yiQi6nk/n7B5zmjkRh1+Iwl2WdHNerVqRFuffDI53ip/2M6ZL0ExO8KkImzZdVraiyt6lXfqlXOGncEWVyM6L07DffuE1tIa48cFevEkH7bnPCOxuzEoYqRZzP82snJnnVmvsxq6/UqpzSzqT5WqZFmzrOxXleBQgA1jd4NZxDUX56YmyU2kaLujywkk6LEt/gczw8pEtnpwL3hVaTV3RoN7l/RJH+HuDolFeEWV3jVV4qzQpvU5SK7vT6W0Eollh1Ij/AK4AAuhR6LserY6iS5a2mXsEkiEVqpmb7W2VhZeW+bN/b5f6dFiuTzC3yKhwjY9y/To/1yk+Vbb6vG63+SoHHSYvrMSbO+z1RolutzgMAhS6vZjHQzlJbt8P7Ptw9kNvMZPn9mTTvR/WPljhHYxMx4/7MBLWVDvapbe3+XWrrijLoAFAY4Pu1J1aT6YH7zFGJxxQAqNVmqW1cPB9n5vg5tn0kznFN39dd8YxQqwClxI2Vyz2+EuoXEVfqfWaRz51SKfNz/bTMz5zNDT0nyXR4BZTcMF/LRpNXaTnM8MpzAPDiizxfGJ/lvn26z89BNe4DwOg0j1XZPN+XR9vcZ9f39BygVOH9X5Urm5SHEDIA/tzZf759Av7K2Z9vvfM9URR1QgjLAD4A4DaAN7/BPr4U81fvO9/RmpmZmZkl5yqXRPwZAB8E8GtRFP3fb2t/9DWfXhDyD9v1VwRmZmZmZs+YK/mmPITwowD+OoCvAfiPr2IfABBF0Udj9v8lAB+5qv2amZmZmV2mS/+mPITwIwB+DsAbAL47iqJ3/pjo0Tfh/MPYr29/fD/iMTMzMzNL0KV+Ux5C+DE8XGv8NQB/LIoiTt0AdwB8DMDLAL7uN+Fnv0O/hYfB0AeXeWznFUUcCOn0+N8wG6J8bCat6x8NDnEw6vrSC30dT6Wqf+2jwoWTExyuSYmQ6ey1G3KbnRaHz46OOaixt8+Xd2OZQ2Zq3+cRRDhneolLNQNAQ4Qyj/b433ejU/xvwhdenJfbPDzggMv+Lm9zZJSDkddu9BfCAQD0OIAVehxWqte4L9y5QxGNWMfH/P5ej0Mzqx2dsx4VAbuDTb7upT0OnrUaOvBXqfH5HDzlfjhY5LLjjQwHzw5r/QWo42Rz/Bknp/i+AoAXbnJYaW2Dy73vHXBwrVnlUBQAFDI8hszd4ACmujeaMWHaZooDhwWRpd9aX6a2xev8GXtZHeCupDhQdm+Tt3ke6S5/plDjPpupiddF+jE3Ps6/kBzOcgBz+74OziqTc9d4m5M8BrTqIix9j++NuFLiyqAIZl+7yc+X1Xv35PsPdjj0F2U5XJjLcz9amtOlzY9EUD2V4r49JI79pZs3eYNt3efKDe5zR6scPh8q8H19+xrfV8+iiWkOZVbqfP9XN/S4n8nwNUqJOVFGzJ2yF5wDjInwZ+WYry8AHGzwvGTu9gK1TYo5RK2tn0+1Ku+Le9zluLRvykMI/yUeTsj/AA+/IVcTcuDhWuQA8H3i7z4JYBDA7172yitmZmZmZk+qS5mUnxX++Rk8/Ob7j0VRpNeLeuhXABwA+KEQwsfeto0BAD999p+/cBnHZWZmZmb2NLjwz1dCCH8ewH+LhxU6/x2AHxX/k+pKFEW/BABRFJ2GEH4YDyfnvxlC+CyAEh5WBX3lrP2XL3pcZmZmZmZPi8v4Tfmtsz/TAH4s5jX/H4BfevQfURT9qxDCdwH4CQA/CGAAwD0Afw3Az0eRqLJhZmZmZvaMuvCkPIqizwD4zHt43+8A+P6L7v+i4oI0qZSoiilCDVs7HCibEAGih+0cAhos6KqJ7/T613SdJBX0GhtVIUgRllzg8MPDV4qQ6zp/9pXtTWrb2+SAmzrG81BV8j7wR3Q4Z+3NLWrrtDlAOTHL12jxmg6P/t7nuLLkUYkrS87Nc5BmfpEDKoD+N2cQVTUzKQ42dVpcMXF1dVVuU1H/5u31eN+1k0P5/pvzImx5yr9Y21vn81Yv60WVum0R6lSBsHG+Ric5PvbzBD1V/8yJoOf4mA7tLi0sUtva5hq1lUoclm6kOEQMAKMiTDezxPtRpT9bImgFAG0xpuV7fN4317gvFYe5Hze6ujLkSYvvjZM1blPnPW6syHW4Lww2RKVMVc24p7c5MsjB+7ExHo/373Eos9flPgfosPfMIt8v9QoHyvY2xK8+Y65lJILZAwWuOLtw/Sa17WzrSs4nR6LqYobPcXGGP8/8og7Jv/r7X6W2fIG3OTHJY+fQNX5edsU4BQB/8OYb1KaC1WMjHPC/Lu7fOKoq90Wfb4/L2CR/9nKN++H2Tky1WhGYTotfQKdT3DdzMYtfdMV9lBavHZ3m53WzrkOZBxu8wIAKek6I53X1RAfvD7d5m/rpeHFXWTzIzMzMzMz64Em5mZmZmVnCPCk3MzMzM0uYJ+VmZmZmZgm71IqeT6PisA5lTk1zMGC38m7Lr1+t6SkdpKnVuK7U2kZ/VTXn53RYMpflII6SzXG1t8VrN/va97mIXOTBNgc6AaBW4/hFqsn7X73HIbV6VwcwK1XeZkcE5E5FZu/+XQ7Ddnu6FtjICAfPRkdH5GsvotngoOjW+gq1rbz1un7/IR9nJAJ2czdforZMTF8YHuRg5cpbHN7CIAfpaoE/z3kUBjggV0xz3+6U9X4eiL64uLBEbeVTvu55cd4AYHS4SG3bKxzArGe5z57EVP9t90S1WxE4PFjmjry38RVqK1d1fbf9Ix4nUykOwxWKXD1zfIo/NwCMjvI1GhjiAPi1mxwO3NnnqssAsFs+orZWmo9z4eUX+b0bHOQFgGNR5bitqtgGDrPN35yhtvKxHitSopLz6CTflyo0t3j9FrUBQKfBY+LpCQd0y6dc3XB9g8c5ABgXAc5+x7R2lwO2yzt63C8WeVwYGeK+pEb4e6srfR0PAMxNcchVhUefFiMjfN6WrunqrNvrXPF1VoT+C0M8dkaRDuhurnLoeP4aB2+zYrGHoVE9VqiFKvoN445M8T0EAOPzPE9c5+HjUvibcjMzMzOzhHlSbmZmZmaWME/KzczMzMwS5km5mZmZmVnCPCk3MzMzM0uYV18Z1snpSVVReznB1Vcm9eora3VeaWV1ndvSYpWHqUmdsu5/9RV+3eLtF6gtE7PCRL/aLV7p5Kv//nfka2tVvVrBO52ccNncUksnxEVVeqgc/8mpKFVf49e1OrxvAPi2b/8otS0s8CpAF1U+5nLaxzsr1Lb1QK++sif6x/ztl6lt9gavvjI5wWl9AFic476ojrOe5dUCTtv6uvVrUKy+Mpziz9g91SWYl8XqK9/1rXwttyNeBSSdiVl9ZYLT/m9+4fep7ajAK1S0RZlrAOj0eHWNslh9ZW2FV2/Zf8CrjZRL+nx0xH2UzfIqIBMzvApHeIVXIAGAgdt8nqJhUVb+Bt8vBw19v20d8PIJnTRf9+/85leo7ehUPwvU6itHm3zdB0f4s3/wU5+ktjtfXpb7CWKVGLX6Suocq68oG/d5/wfbvArH2vqGfP+3fPMHqW10tL/VSjqiBPv9Hb2fD93kFXIWJvghXjo5prbPfZnvqzgFseLY07z6yqhYwSRuoZJ1sfrKpFh9ZWqKx67SgS5Kf+c1XmFreo7HgPOsvjIoVpTp1+ikXhlofE6s0icWB7sM/qbczMzMzCxhnpSbmZmZmSXMk3IzMzMzs4R5Um5mZmZmlrDnPugJUZIV6L8sa7fNp3B/n8MkADBY4FLiM6Js73mOZ2SYAwhLC/0FeQ5LHEoCgNIRB6M6HQ6UzU7PUtvysggmRf2dyzg9Efg5qYnS1QDaHX7t2BifoxERtKqv6dLZGn+mdIr3nUpzafZul/vBwy1yX+q3H8Y5Otiltrde42DTgzsc6iyMcIlsAPiWj34HtXVEWfpIlBLv6tQsTkVAd3SWS6YPiMDgyZHuC/3Kprjc+4To29NLOhi9Uef7fWOfy46f1rl8fUjp70Xa4H5TzXD/mp3i42y3e3KbazscOFz+Ioe3Dtb4OKsnfDztBo8JABD1+Bq3RVv5mIOimw90IKwtxp9U4G2uPFihttqJDqQGUca90eAS8g82+R4andJ9IVLnvsNt04vct1Uoc3JO34PtJod2D3c4uKref54xZWScx87rL97mbRb4HgKAk30OxKbEGKD2kxHn49asDr6X63yND8scWB4c4OO8fe263KYyMqzLsD9LztM/1GvP8/4o5nlwEf3uf3Od++ZQUffjiz6Hz8PflJuZmZmZJcyTcjMzMzOzhHlSbmZmZmaWME/KzczMzMwS5qDnBZ0n6Fko8Gv7DXrGGRVhvOIQhxi7PQ6JvfG1L8tt1hscupsW1T/nZhap7fOf/z1qUyHRi+q0Oej0EAdHZkTV1vlrS9S2v8XhPKD/MEoqLYKeGQ7ItTq6AlwI7/12jDvG0j4H+V7/0ueo7f7dO9Q2c5OrdALAd3zX91LbPVHR70DsO64vHJ1ywG5klq9RJ8vv323rwHK/MiLoOTnN/X1mSVfV3bzPgaG1vXVq6/V0AFM5qnGwqJvj/vX+GT6mlqgsCwArR3yelr/A1UhbTT7HPRFWjL0vRHMkPnpFhEfrosIoADTrTWobHOL75cEEB82jlD7vqQwfqAp63t3ggOzHP8hVPgGgLcZOZfbWTT4eEfqdXpiQ79+8z/fW4XZ/Qc/zGB7jsWpwWFRSjAnCvf75L1FbWnzOfoOet+f4mQMAf7B8l9pU/3zf0k1qe/EGt8VRx2RPp401XtBiJuZ+icnjXwl/U25mZmZmljBPys3MzMzMEuZJuZmZmZlZwjwpNzMzMzNLmIOeFzQ/P0ltzRZXxAOA0wqHgNZ3+gupTY3rcGAhn6e2VIrDKClRva5ea8ltViocwMpl+DNlMrzvKOIAZqfDIS0AODnlQOzRUYnaGk1+/8K8rux2/RpXMx3Ic5CvclqhtvnrurJbucyffXuHQ6F7+xwIqzW40lxhkKv5AcDu5iC1RR0OvkUhS235nA5Q3nn1i7yfLa5cWhSV6l76pg/JbR7V+BqPjHJAZlD0zXqVg3QAcHjIYcmFJb4ea4cc5CvX9Db7lRdV/pptUUVWVKAEgEyHq5lOT3BAL5Ph+7JW53sNAE5F8DUtQuXlQ+6b+yt6/Nlb42qZBVGJcWyJ++FQgY89HXSgtCGq7R7scFu9zPd1u6W3WRah0L0Nrtg4c50Dg/kR/ZhT4cKRSR7Pu+BzdCjGDwA4bvKYqjKQuyd87PNi32nRZwCgODpEbdn8xR7np0fc52oV/pyZNH+gqQVd4XR8mj/TYJGPXQmianIuw2MfAEyJMH+jxf1rdY/H6LiQ6vw4L8KgwrjPmmxW96Ola1w9+FTcB7kcv1+NsQAwPcvbLB3wODUxxdeoMKgrY/drYooXxGi19HO0fMr361V59nuYmZmZmdkTzpNyMzMzM7OEeVJuZmZmZpYwT8rNzMzMzBLmSbmZmZmZWcK8+so5BJHSvnFjhtr29nVZ570SryzyYJ3LXCuDBV7JAtCrryiqInajrlc6qFe5vQROH3e6nG7P5/kcdTp6P8cnvPLM3Qdv8euOuXz0UPE75TZnZj5GbeocHexyid1XPvR+uc2NTS6Z/sYKH+erb71Jbbsi7f/KLb06xuw4r+JRK4uy4ylOnY+N6BVuXv/S56itJI7pfR/+dmp7/4f5XALAvR1x7m4sUdvkPJeAL5V4lZW49iWx+sqDg3v83lO+r85jQKxAUhHl3ne3uB8CQDbi99+Y4RV2BsQ9vL+vz0frmFfx6DV41Zv9db4Wb726Ibe5tbpLbWMzvGrFzIf4us1Oct/MpXWfO97nVZVav8fXqFXnz9Pr6LGzXuHzsbvOY9Ir4nW5ol5dY2KMV1+5deM2tXW6PHh+5S6vAgQAlSqvRqH23tzmazE3Lkp8x5R1H5nkUve9Xn+rmsQpiet2sMVjRT7H3+VNzvMqGgAwd53vg7gVZS5iYXKa2tRKK3c2V6lNPdcBYLzIq3Pks3r1l2dJLqc/4+3bPMa/+cYDalMr1FwTK7cAwPy1RWq79yY/W9XqLRddfeXade4zD+6L1XkAbG/xijBXxd+Um5mZmZklzJNyMzMzM7OEeVJuZmZmZpYwT8rNzMzMzBLmoOcFFQocgJqc4AARAFQbHB47EWWMex0Owuwf6jKvbVEOPCfCKKNFLp09PcVBBwAYGuQQUVaEe0Kag1q72xyU2NjUwbO1jRVq29vfobZancub53J83gGg2+MyufUGl48+qXCo6d7yXbnNu/c5eKICqZu7HNo9OuKAyNQEB1wBoFLjAGg+z8fZaPA2d1ZW5DYPdjapLZfngMzUHAduJqc4xAwAB1W+7sUh7l+9wAG5WkcEVwFEWe5flTZf92qjSm2ttg4c9mtwgANyw0W+B8bHOPgFAKkUB8UaNe6H3Sbfq+0qBxMBIBd4aB6Z4XGlUeXPXhMhVQBIp/kcf+AjL1Lb5Ms8LmRTXOY+n9UB7ilxnKfH4r485m2etnXQs9vl9nqNz135iLc595Lux2oMaYqxZnRsgtvEeAoAA1kuza5ihKks73vrkMOwMyKMCgD5mDDeReQH+JjSGe6H9Rqfo/1NHZAbn+bzkbmCsOSAOJ/Dg3xfjw4NU5uOeQKlMj9zMyLEODRwscDhk0YFNQFgcJDDlu0239eqLR0TWB4QAc5Wk8e0bsxiERcxIOZuwyP6vlafvXRF2c9L+aY8hPB3Qwj/JoSwHkKohxBKIYQvhxD+VghhMuY9Hw8h/NrZa+shhFdDCD8WQrj8aLaZmZmZ2RPssn6+8lcBDAH4fwD8HID/DUAHwGcAvBpC+Lp1kUIIfwrAbwH4JIB/CeAfAMgB+FkAn72kYzIzMzMzeypc1s9XRqIoov/NNITwdwD8TQD/NYC/fNY2AuAXAXQBfCqKoi+etf8UgN8A8OkQwg9FUeTJuZmZmZk9Fy7lm3I1IT/zv5/9+dLb2j4NYBrAZx9NyN+2jZ88+8+/dBnHZWZmZmb2NLjqoOefOPvz1be1fc/Zn78uXv9bAGoAPh5CyEdRdLEEV0KmJuXP6NFocTDp+HiF2jp1/rfS9o5OFZROOIwyqkJqIzep7eZNbgOAbpdDFSrMdlrmCodf/OLnqe21r31V7mdri4OR1RoH+TIZEVwdEdXvAJRFOCdEHBIrN/h1r/27r8htvvbGa9S2vcfHXqlwoLQnAmrlKr8OAFoRB2SiwP/erR5xGPaNL/+W3GZVHNPNl7lS5rQIehZECAcAXhRV2IZEtcqdElct3DziNgDo5XkoWt/nc3xS4esWiet7HkMDHP6am+Fw4K0bC/L9KoS4vMwB254IMEVtHfTMZvl8XLvF1REPdvgeTIv7BQDGJvlzfvw/+DC1FcY5uLYlQtl5cc0AHfotl3n82r7L17J2os9HS5xjVf3z+IDHj6mJOblNVclxa5tD6ePjPJ7fWtDb7PU42KjUW3yv31nnfQ/F3INXEfQcn+ZQabPBfXZrhSscr93hSrsAMCieRdm8DulftglRkbOQVRWwRblr6OqfWRF8fdaCns+zqWmucAwA5VMOe2/wbXApLnVSHkL4cQBFAKMAPgbgj+LhhPxn3vayV87+pOUroijqhBCWAXwAwG0AXLf86/f3pZi/et/5jtzMzMzMLDmX/U35jwOYfdt//zqA/ySKov23tT36p4he4+8P2/VaUGZmZmZmz5hLnZRHUTQHACGEWQAfx8NvyL8cQviBKIp+/zL3dba/j6r2s2/QP3LZ+zMzMzMzuwpXUtEziqLdKIr+JYDvBTAJ4J++7a8ffROuf7zzh+1cNcXMzMzM7Bl0pUHPKIpWQwhvAPhwCGEqiqIDAHfw8PfmLwP4ut+EhxAyAG7h4RrnD67y2B6pNfXCMcdVrq4Y0iIQIsqBxQXkBkW7yE9iYowDWfWY41T77w3xcZZO+PPEGSxwcKXd4sDPySlvMyuCNHVRyRQAqlUOZTXFfmTQc5SDF4CuEFav837aPa5KGYL+N6qqKFoRlVgb4nNmRaW5bF6FjYBhUb0vm+FjKh9z0HNfBNQAoCdCu4UCV7rLpPk4K0dcYTBOpc2VFE+O+f0NEeQF9H1QE/dgRbS1RJ+JkxLXeGacK1jOiGq3IyN83gCgIQKcp1X+TuFQVKttNbgfAUBhiPvx8ALfl/VTvtcHRPU5QFewKxT5EZAV49zwMH/2oSEO8QHA4BD37/EZ8XnGOBB6mOd7DQBaLb5fez0+zkqFg6KtBr8XAAojXKcuk+7vkZhq6nDgwCBfo9wAj1+pKn/OkwrfG4fHOuA/kONjHxzQ1Qj7NSDC2gMFceyivF9clc7KsaiKKUKq6rxdlKryqdqiKOZaitfWGjzO7Zc4bJ2JdA3E0XF+tqtFFJROTCi8IqpTK4ODHHzN5fVY0a/RUR4DVPXLOEF89tEx/r4295jCwapCOwAMifH4qlzJN+Xv8GjJgkezg984+/P7xGs/CWAQwO8+rSuvmJmZmZmd14Un5SGEl0MI9E+bEELqrHjQDB5Osh/9c/JXABwA+KEQwsfe9voBAD999p+/cNHjMjMzMzN7WlzGz1e+H8D/EEL4bQDLAA7xcAWW78LDZQ13APzwoxdHUXQaQvhhPJyc/2YI4bMASgD+JB4ul/grAH75Eo7LzMzMzOypcBmT8v8XwIt4uCb5t+LhUoZVPFyH/J8B+Pkoir7ux6VRFP2rEMJ3AfgJAD8IYADAPQB/7ez1+kdeZmZmZmbPoAtPyqMoeg3Aj7yH9/0OHn7Lnqjjsg5Aru+LyoM5/reCKAp3LrkcX4IXX+LKgXfvcXVDACgWOIAwPsLhi/tr+v3K0hxXpSuf7FPbm1/jSpcLC1wtclIE6QBgb2+P2lTQU1XeGx3Vy9jPzS7xfkTAbv+QA1Tf+q3fJrdZOuYgT0VU5WyIEFA6zb8Qm5rkapEAsLh4k9q6ooLl6RFfCxXoBAD9z1s+proIrq7f11X6lJ7IeVXbIvja0cepqGNvitBuvcltqs8AQCrFn/266LNTYxwkjqsc2u6IcGHg67Z2SPXSsH2gA7oqTLfX5iqhE80XqG14TAcwC0M81myI6oyZQd751DTfw6MimAwAnQ7fB6k0X4+RcT7OfEFXu62WeZuRqMRYb3L/2l3fltscm7xNbfMLPH6oy763wvcgAEwscqXh3EDcQmPf2NYuX3MAGMxfftBTiUSV4ZzIwl1/+UX5/t11Pv50ho/9KoKe/YobK67PzFPb5iFf97dWufLnUEcHAz/4YT5PqVR/07BGU4egN9fv9vX+hSXe90WDnguL/CxT1YjjpMVAN3+d78GCWHziWfU4gp5mZmZmZvYuPCk3MzMzM0uYJ+VmZmZmZgnzpNzMzMzMLGGelJuZmZmZJewylkR8qnV7ekUFBE72j4uSsrWWKCGvK2ejLVbIGBkWKxAM8L+VijFlXodEyfaMKF3b6XKKPk5blPOtVXmFC1V+/n2vfJDahof16gOqpLVKwqsVTFKiDQB6YqmElNjP6CivrnH71ktym1/56pepLd9naj0l0uWTk3o1mhFxng6ODqjtVJTejltFNJfn1Homy6s0tFp83o8OeQURACgO8zZrNe4LnR739/MMONkB7ts90Y9bor+GoPvH4ACXix/M8X5a4r4+Pi1RGwDsH/EqQtslXpFho7TCbQf8OkCvelHt8EpRL4nVl15Y0v24OM5L5Bwf82fKNPkqLSwuUluhoFf7qNW4rH1xmFclUSutpDMxy1mJ5m7ge73S4NWb1lb1ylPjc3xMQ2O88lSnyee9fMLjIQBkRZnu3CC3dcU4Fbp8D+/t8b0OAMNiNYoxcY6HBvVKPP3KitXBBoe5z2UHxPJLAConPIakRPn6wgQfe/EKVmTpivGjUtHXMiPG1NDl61ar8VjRKvOYBAC93ntf7TmKmat0xOpPSr3GE5Nslsc+tUIVABQGh6ltVMyJziOIucro2HtfrehZ4G/KzczMzMwS5km5mZmZmVnCPCk3MzMzM0uYJ+VmZmZmZgl77oOe48Mjsv3lpRvUpiIae0ccxGl1dKhyKMcBmfnZWWpb3+DS2+MTHEwEgCDCo9UTDibdvsZBrThBhMwGBjh0c+sml/ien1sQ79WhSBXqVCGTtAhqnpxyABIAGg0OHA7kOZD2wi0uOTwc0xdUiLIXFxB+B/V5piY5TAYA7SYHhkr7O9R2IsKfcaWih0W5+NzQJLV1UhyuyWV00Grh5jVq21p/QG2VUx0UVWTgR4RxcyLYrK5PNqOHtkkR5DsS9/CdzuvUtnXA9yUA3Fl7k9p2Drm0+8ERl+hutUVQHEAkgoDq/QuFI2prpvR576REcC3L93oIHE4+j1yO+83CPIdPQ+CQa7fHIVEAiMSxt7N8jk7qHB59674OerZFefODI74e0zOiH+b0OVLh6G7EY3RhigPHmQZ/np0D3T/WUjwujBQ5dPfizZfl+/tVHOFxodvma7S1zPc/ALQafPx7h8fUFob5Hnz5Npdbv6iGOJ7l5XvytaHF12NokvvC/DiPp/tlvi8vakCE1AFg6Vp/17hc5vO+sf4WteXF4gAAcOPW+6ntomOFMX9TbmZmZmaWME/KzczMzMwS5km5mZmZmVnCPCk3MzMzM0vYcx/0LMZUpVPtKlC2IYJ4B6KKGQBEo2PUNjPOwZG9Aw7yTU5ymAQA0Jp+F6cAACAASURBVOZjqolqYmND/VdHq4mw5NAQh0zyAxyGnRChl7Soagno85lO82sLonrdqQitAECnzQGb+VkODKnjHIzpC6rCabujA2nvpD57XEXPZp0ry5X2d6mtVuEwW1zQc2RMVPkbFX0pzWHcWj2mKh04ANUQx1Q75muUyerKfwPi3AdVWU58TNWPVCVVABgZ4uBapcrB6OMTrnS5vK3DbMvb96lNhfvaovJet6dD4SpIXBbH2Uxxn2mndTiwCzEGqNMkznGrxZUy66K/xikU+Lx3RCBetQFAlOZr3E2LkHurTm0b27ofNzp8jk8r/DmXrnEYf35R38OtI37/4AGHk8cbPO6XD/geatV0Bch6jT9TRd2DVdUX4qpYc1NGBKaHRPjz/huvyU2m0ny/V5t8jvYP+X5bnONQ9mCBzyWgx79Om/tS+Zj77O4WV+QFgNDiMf62WAxgpMBtlUHuh3HH2a+sqDwMAJPT/S3iUKnwvKRa4TE6rkJoQ9zvapzNiIqtmYwe9435m3IzMzMzs4R5Um5mZmZmljBPys3MzMzMEuZJuZmZmZlZwp77oOd5qJDG9Zl5ahP5IQBAuc7hj9UdrjbXFdX8tg91GGVKhEeHRzl4srmqqxEqI5Mc5BkTlSFVwE6do1pMIKwpwmP5PAcOp6c4aKUDTEBeVHxsd/i1+6LiYrGoK3qeisqUjYYO8ryTCq7OTPPnAYBqia/xSYmrOGpxQU++bjOzHP6MAn+eu1/9stxmafML1Ha8z+dThRUnxLUEgKXbXPFxY40DlKenOuD7TiHS5yPT4+8hQprbKlXRZ9N6m5/4yHdT27DoS1/86ueo7a1VrgYKAPUmh62VTJ6PKQQdqup2Vdib7+GM+Kpm/4AD7adlDufFiURfOCmJkGqbw5uArugZBdEmcpGdmAH55IT33+1xPz4q8f3/4IEeT7sNPv5shseAgdd4nDsqcZD3mz/6itzPy7e5qu5ocZjalu/y8yWCHjtDhs/T5BSPH8WCriypzF7nkH1OPAdPxDPi/iof+ze9eF3uJ5vlqczpoQh1rnKfTbf0IgjdNJ+P/X0ef8bHOdh44zbPCwAgLcaax2V8gsfegQEO2Pd6+h7c3uSgeyTGj4lJ/uwTk3P9HKLB35SbmZmZmSXOk3IzMzMzs4R5Um5mZmZmljBPys3MzMzMEuZJuZmZmZlZwrz6Sgy1ski7y2V7p0Z4JYvDckVu87jK7VuHvLrGgFixo3TC5eMBYEystFIcLlLb5uq6fL8yNMLvL4yJMuhixQ913up1vZKEKl9fGOCVXybGuCx8s6HL3BeLfOyqWvtpmc+nKiUOACdixY9Gg1cwUCvPZHOczJ+c4PLRAHBn+Q7vu+/VV7RBURZ6bIxXT6jX+fOcHCzLbT54Y5PfL0o4q7LQ7ZZe+WFijtP52yf82StlXqFCiStmnQs85LVFqftqi1duyGT4WgLAt77vY9S2NHeD2g6PeHWdtR19jvtefUUstKLKXANAOq1WzVBl3Hl1DLXqTQh6VRM1BnTFCijlY/6M7ZiVUiL19ZG43zJi6Rh1PABQrfDnrFT4mLZ5ERC160d/E/cX31A2x+P+Jz75YfnapXm+X8SiXbi7dpfaetDPp5DjDQSx6s3ALPcvfYaBsWkeu7snh9R2IJ5v61t8v9y6NiP3k07z86lW4bHm9IDv63yKnxkAUE/z8+noiM9dLser3tx+ZVFusyPmEBkxJqXEQyuuH3c6YpsZ3ubIKF8L1VavleV+NjfuUVuzyc/MdIZXFhoZ0c+8jFg153nnb8rNzMzMzBLmSbmZmZmZWcI8KTczMzMzS5gn5WZmZmZmCfOv7GPURehveYdLTQ+0OJxTEOE+AJgb51DF/hGX/b0lyrBv7e/KbUZdDn/kBzhosXiDyx3HaTU54LK5ymWlM6J89PA4BwtVGAQAul0u56vCkilRmrhQ0KWRlxZvUtvMNIeDUinez1v3XpfbPBYhpK4I7OTEdR8bHaO2gQF97BWxn8opByg1HQJqi35cFvsZHuVy2t/2qf9QbvNYlFx/9fd+h9pK+/y6g10OiQLA177yBWprj/B5anV0X3qnlAhLA0BhmENZGztr1JaJ+P0LRR0ya4ty7ZlFHlrHVdBqiIPNAHB02l8Je3UPjY/zZwSAW/McPlMhsa1NvkZTkxzUGh7W/bjd4m0eH3J4rNvme1B9HgCI0ty/s4Gv0cw0jz+Nlg6F1+s8zjXFsfd6vO90Wgc6M1k+pl5PhVf5/TduijBcisOoALC/z+OxygGm8/z+AH2OVaizUuGA77Z4f1dcHwDY3+a+VK6JzySuey7L9/rWtl6wYGmBn28jExzgvCEDmPrYV1e431QafEyVCvft5WUORcZZWrpGbUNDfA83GrovbO9wX1ha5KB5TgTvlUxWv25x6UVqW97gMX5/n8fDXErPXxZv6kDs88zflJuZmZmZJcyTcjMzMzOzhHlSbmZmZmaWME/KzczMzMwS5qBnjEaLQ0APdrapbbjCp/Cll67Lbc6McfXP4yqHIq4vcWjl+Dgm8CeDnhzUWLjWf9DzwR0Oqexuc6AjlxeB1gwfTzOmUqYOQDFV3WywoKoTAksLHHBZWuTrcXTMVeV+/yufl9tUFT1VQE4FOMfENR/IxwU9eT/9Bz21tujHFfF5Zua5f7z8oY/IbZ4cHlDb1joHsA52uRTi4R7fQwBQOuQg0Mj7X6K2lqgCq6g+AwADRe43D1beorab49xn5od00LNT5iqQGRFCHBvmvjA8xMHE81D3UGzQ89YCtdXrIky3xdd3YoIrSM7OcjgYABo13ma3xtdXBT07cWOCeFLlUlzOdG6Gg9Xlqq4ie5TisbcHPnZ1r+dz+tGZy4uKsW1+fwjcP2++MC1ep4/94ECVGeWmtMjs6Qi0rhhZrfL4o9pCRgdf93f4OJviukMEZ7MDfC22d3TQc1yMs9NTvGDC8DhX/oyrlLm7zs+Iao8DqTro2X8l5okJDoCfJ+i5ublKbTPTfL/2G/TMxlQEnl98gdpWDrhvH2zxvZ7p6qDnwg0ek9RiD88Tf1NuZmZmZpawK5mUhxD+oxBCdPZ/fzHmNT8QQvjNEMJJCKESQvh8COHPX8XxmJmZmZk9yS59Uh5CuAbgHwCovMtrfgTArwL4IIB/DuAXASwA+KUQwt+77GMyMzMzM3uSXeqkPDz8MdA/BnAI4B/GvOYmgL8HoATgY1EU/ZUoiv4qgA8BuA/gr4cQvvMyj8vMzMzM7El22UHPHwXwPQA+dfan8p8ByAP4u1EUrTxqjKLoKITw3wP4XwD85wA+d8nHdi4FEYp4cYGrT+1tcihq+1SHPFJVUa2yxiGT5W0Ow1UbOvAzIioUXtTYBIdmMlkOVXV7HPIoHXE4piXChnFUqKpW40DW0pIO0w4P9xuc42sRYm+H/oInBRH0nJ7kcGC9eirf32xwYLAngkXnEYng3Og4Vw6cmJmntrjAT3GUq1C+9MEPUdvxIffjlTtf1ccpwlYqYNtM6fvgnVod3efWdzgU9U0vfDO1vbL0PmpbnNDV59IiVHqwzQG3oz0OOzVjwlv9ymX4GqVTOspXq3H/OtjnsWpxkftHpcLHWa3q6qz1Cl+jtTf4fDRERc24W21klKsz3rrBffbGAodPR2ICqZGo+noiqrPurHPIfXyGx0gAWFkW4eYSByOnFzjc9+GP8D2Ehq5GWixyYHF4ks/Reezt7FGbCjEODIqFBMSzEQD2t7iPtGrcP2SB1HOMfQf7PNbUa3zsSkzOE63A1y1d4GNPpUSQNy5NK/Sba4yrBK2qdx4c8rVUisWLBc0XZ/je6omqp+W6HrfX7nE1ZRX+zOZ4/vGsurRvykMI3wTgZwD8XBRFv/UuL300Wf918Xf/1zteY2ZmZmb2zLuUb8pDCBkA/wzAGoC/+Q1e/srZn7QOWRRF2yGEKoClEMJgFEX81c7X7/dLMX/FX3OZmZmZmT2hLuvnK/8NgG8F8EejKPpG/3vso//tO24B5hMAQ2eve9dJuZmZmZnZs+DCk/IQwrfj4bfj/2MURY/1d+BRFH005pi+BEBXPjEzMzMze8Jc6DflZz9b+ad4+FOUn+rzbY++Iee02Ne3X6yUoZmZmZnZU+Ki35QXAbx89v83Ysqj/mII4RfxMAD6YwDuAJg6e9/XfbMeQpjHw5+ubHyj35NftYEcr2rw4jyngvePeIWIuNVXsh0+P4W2KPstVl+Jmv2tOnEZxiZ5ZYHRCS5fXa3yUvQrf/CA2tptvYKA0u7wa2t17goqcQ4Aw32myYNY5iEVdMJbvVZR6XhV6rle1asCqJU4et2Lrb6iVm8ZneDVNSZneSWLlCgFDuiVeF76wLdQ28b9r1HbeVZfOS2L1VcK4lqIw4zrc+vbK9T2A5/8M9T2La/w/wg3OMArXgBAR+zr9S98ntpKcvWVi93XWXEt0mk9rNfF6it7uzzWvP+DfC3v3t3g9+4dyf3UTrkfr77Gqyw01eorKb0Uxsgoj5MvvcRjwNI0v+6V7/yA3OaYWJXl6IA/02u/9zrv52U9/jQb/D8W11rcP268uERtH/4on/eVL/FqQQAwUuRVtxZu8FhzHqclXjXjuM19Jpvlce76dS7BDgDHYjWu0Ob+kQZf94gXjoq1L1ZfOTi42DoWvRSPnRm5AIros+eoFH/R1VcWF29S26tf/SK/Pz9AbRdefWWWVxEqV/n6Li+vy/ev3uf+Pb0wTW3P0+orF52UN/FwCUPlI3j4O/PfxsOJ+KPR6jcAfALA94GXPfzjb3uNmZmZmdlz4UKT8rNQ519UfxdC+AweTsr/SRRF/+htf/WPAfwXAH4khPCPH61VHkIYxx+u3CILD5mZmZmZPYsuu3jQNxRF0XII4W8A+HkAXwwh/DKAFoBPA1hCAoFRMzMzM7MkPfZJOQBEUfT3QwgrAH4cwJ/Dw1+FvgHgJ6Mo+idJHJOZmZmZWVKubFIeRdFnAHzmXf7+VwH86lXt/6JUaDUjyjIvTHHQodvjwAwAVMscjFRlw9NNDjV0Yur2Hle5LPTuHpfYnZ3hcu9xUqJsuKLCeQeHHHJttXTJc2VwkINaN67dojZV0h4ATg550Z6UKDvejjh8tbvH5bQBoN3u7/hT4hqlIr6WO+tcihsA6pXLzzZPzXH56+FRDu2qcxRHBV+HRzkcXBi6WNnvTuCkV6/PBaOyWQ5qA8CNRQ6kTYxx8LVV53u4VdH39dg0Bwan5jk4W9jmUFVIXzCM1uR+fCzufwDItfga93p8jtPimCYnebGsaoXHHgDYXeX7aHOFj6kljn1wgMNoALCwwOPXK9/C48L4MJeAHx7nUCQA5Ae4jwwN8/gzMcdj/J03l+U20xk+d9dv8QIBo1PcF3IizDa5wH0LADotLu1e3ufny9gc3+txpmf5Pmi2+fnUqHOQb2tLj2kjo3z8xWHuS80Gj31HJfEsiVkzYHyaj31wkIPZrTbfw/sH+n7ptHh6lAaf9+Iw76coxkMA2N3k83QgAuANEfqPo+7hZpPfXxLns9vlz3NRjSoH9DNBj51RWge73+nwiAPYcQsRjI/FLez3dLjYE8HMzMzMzC7Mk3IzMzMzs4R5Um5mZmZmljBPys3MzMzMEpbI6itPKxX+vDbNAaRyXQegyiKUqYKexRaHlXp5XdGqVOHqkLld/rfWeYKe/eqIkMjBAYdJ2iJcE2dIBD1fuP0SteXyOsi3v3JAbeksd/PsCJ+j7Z1Nuc1mn0HVlPg3buhw29YqV0cEgJroH/2KqaaL2QWuPDg00n/4q19DQxymyxd0Bcx+9cRXBlGf1e/yOb6HgP+/vTOPjiwtz/vz1S6V9qUltaRudfd0T88CMzDjAYZjGCDGNmZzGGyOjx3sBBz7xNgY4pCT2Ak5x1uIbbBN4gXHJgEngxmMsRNsiD3MDHhY7RkPTDPdPd0tdUtq7VJpqUVVpS9/1JURet47XRotV61+fufUqdZbt+797rfdr27f532AU0O3UKythcVoyws8rvJLdvt0GAK53iNDFGseZvFXLLG9Kbha5L45P8nCMQAwphrEDTGcRY/hfplbYEEXAOQXue7GDaFnuczzR3ub7TA40M9ulTffeZxiKWOsJ7bgBmg5B7Z28Xj51KceNb/f08d9Ychw72xs53q3xnDXgC30vHqB23h2lMVwWxF6HuphJ8VigTvNM+cvUGx42Ba+3noru6k2N/NcsTDH/WNxnufyaojQs6uzl2LdxjVvaYkTAczM8XEAoLLK1xgHdvnMprktD/fZjq+Tl9h51HLVnZ23xaf1UjauWbOzvM+FBXZc3S6VCtdRynBHBYBYgsebM1x9p2e4nPGQuVNCTyGEEEIIIcS20KJcCCGEEEKIiNGiXAghhBBCiIjRolwIIYQQQoiIueGFnkt5FiUBQMFwxDrUzsKRdJKFCl2GYyIALBsC0LmFOYqVqyyM7GizHcJKJRbibMVBcztUKobQ0xCTrIY4YlrCpmyWhZ6DAyyaSSZsoWej4a5WNNwZJ8dYKDUxwYIboH5HT2e4YsYNZ8nYmqG4AxCi1awT+8ve3CnHinl21FuYZeEYABjaVbS1skAvbjjghmEJOH2dtwxM911nT21NjvvX4jSfZ8qxUNQSAQLA9FXu852H2AWyssbjpVzZyljl8+w5xG6Rmaw9/5QqLKBKl3hszE6w62A8xvU5O8aibgCYGWMxneXemW7gsdFxyBZpNbSyg+9y3pijjXqPxeyxsWCI/sbG2Y300tM8L1TKtuLQEsSeOM6uumsJLtPYJAsOe7rseb+xlee5RLL+8WaxYiQNcOA+02k42M7n7L4wN8cuo+k0j8FEivvCmiH48yFK74RxPUin2R22arhfWmMIAEYXFynW3MT7bGhk5+LCEn8XAA71sSB1PmeIGB3PNc3GHAvYztrzEzynWXNNsonnuZaWvRNKWu7h8/NcH8tLhqNnyPVlcrJ+YXe9LOR4nbZb6E65EEIIIYQQEaNFuRBCCCGEEBGjRbkQQgghhBARo0W5EEIIIYQQEaNFuRBCCCGEEBFzw2dfmTdUvQAwvcBKeCv7ikV3SPaVYonVz3OGJXUhwVkFTnUdM/e5ssRZM5aX7IwyO42VfWV6mlX4YdlgrKwZjQ2szB/oH6RYIsxit4ezFUyPcVuOXmSr+8lJzjoB2JbFVtldnH/jJjKcFSAbD8sgsI3sCSGpW6zsPFa7rSxyloSR88+Y+8wn+TxvO33aKBKXKSR5gpklxo7xd2PGdnFn32+IF3jbyZExig0O8XhrCsl+MHpxhGKt7ZzBIF/kcV0o8fgNw6rPo0dPUqylwc4mkZtZoFi1wO0+blimrxku2Zef5gxGADA9wllNLBqznMmis9+2lU808TgaHeW5prOTx3/MyIoEADOGxfgTT52h2JnHLlMs28hZKwBg8Ahn1zhxbIBiK0Uel09dGKZYc5azzgBASxdn/Fir8ty5FaYnuD39Gmf2GBjk/rWwaFvVXzHaKGPM8Y1ZPk4lbmRfCckyVS/pNLfb4MCQue3U5bMUazey4TQ08lwzfZWvLwBw9NStFCuc4Tkg29hMsSNHj5v7rFZ5cObHn6ZYxRjETc08Tx09epN5nN2gWuVr0cWLXO/5Fc5mY82HADBS2vn1z1KOM+ftFrpTLoQQQgghRMRoUS6EEEIIIUTEaFEuhBBCCCFExGhRLoQQQgghRMTc8ELPZNy2ZLXsXyfnWAjT0cLCpIxhrQ4A7c0s3ujp6KLYWpUFYS5EIWcda62RLZinZ1iI095mC1ItEeWaIRIpGmIlyyK3HGJJncmwiKmtjYU0lu1vmIW7VfZEmrddLbO9+PIKi94AW0iTSHC/aW3lcvb19VAsP83CMQBYA1tAW1gCl3jcHsprhlDLsmWOGyLTpGF9DQDFRRYMzhr9a3m5fnGMN24PcCltUsYYaG9lu3UgxJY+yYLDxiYWo2WbbSFdKs3HnzEEz9bYKBpCXMDu382N3L86O1h8HncsAgSAhZhlo87HSRvjcuIKl31qjPsBACwvsHAtmeLjdPdxOVt7uC0AwGV4bCwW+HymZww7bnOPwOXhCYqNXuY5vlDm87n99tvMfTYZwkxnWLs3ZlhwuLTCx6kYcw8AJNM7byVeKrDormrM3U2tvF1XV7e5z6lpPqe5Oe433nG9tbfxGJ4u2H1ucYnFxU3N3L/SKe5fK4t2IoK2dr5et3XwNTOd4pkqZQhKAaBc4mt7UxMLyFvb+TqYzXJ5AGCtyv2rvYvrrrLE51ld5e+WjO0AwNmXg7oIu5Y0GKLfwjLPiQ1p7h/pjD1XWIkMFha5f7S2cL0njes6ABQL9hpmN9CdciGEEEIIISJGi3IhhBBCCCEiRotyIYQQQgghIkaLciGEEEIIISLmhhd6tjezoAIAKmssFjg/ep5id568k2JhYoHmBhZgnuxntzd4FvdMXbWdR9NJPla7ITi8NMKug9msLVyzxJKmC2SehZHzOS5npWKLJNoNUWdnBwuGUkkWzYS5eVlYQs90M9dbmCDVEkZaznA93Sy6u+kEO0N+dfSceRyrji2c4VaZCBEXW26GVt1lDRFy/7Gj5j4Xn2B3tatj7Io5M8viT8ulEwCqlstpnU3ckOZx1dfTb2574vTNFLP6V4Mhlk4k7emy7ygf68JZbuPpaRYRllZtoac1h/R09lEs28hitvJqyLRuiNfjhoCq7yj32cvPGGN92i57qchCsXQDn8/AMRZaNXfbZa+meGyWHB9/ZOQqxVaN8gDAhbPcZ+cn+Dw7D/PYeN5d7GALAK7Kc8Xs5BzF2vtsIXKUxMFzSC5nOCkmWMR81JjnAGAlz86Sc3NcH7E4JzzoP8z7XFx60jzO1DSLdi1RZ3s7H+fC2SvmPodOsCi81RB/xmLc5t199vwzPnKRYl297FhtCTXDcDGeKHuP8VyRH2Fh9PI8x64s2/UR52VF3XN0syGqBIC+Pl7/VEs8Tx3q4YQJXYe4LQFgJc/i4tklnit6erjemw2BPwAk4+z2fem8nbBhu+hOuRBCCCGEEBGjRbkQQgghhBARo0W5EEIIIYQQEaNFuRBCCCGEEBFzwws9M2nbFSqbYaFXbpEFKnOL7HSXCHFXzBjCE0uoabEwbbtNwhDOVQ2x0XyOHa0sp8owSiV2wFxY4PooFlhksWY42gG2Q1m2kQUh8/P1O0M2N7NwzXLKLHvD3SyknN7wlrSEeA0NhutYirdbXmFxDRAuNN2MMwR7yRCh55rjsheKXJ9VQ9jc1slutQDQ0cEC3dEpFsLkl0P6rMHaNm4PWO6qDQ22qyUMJ8QmwzE2aYidw2hu5T67uMLjbaXA9VGp2uLeJkPAeXzgJopljfNcKtv7tDS2a47rwxjqmJtiJ8KlnC30bMiycHboZhae9Rzl/pVsCnGmdXxOvsIFzRnz8eSE7QI5Oc7zV9KwLTxx8gjFmjt5rAPA3AQfv5TjcmaMeaqjlefDQtFoDAB5I265hG4Fy8V2YZ6F+3nDqbctxB26o53H1sIC9xu/xp3TVy3XZPs4pcU6Hadn+XzmZ1nMCgC33XGCYulMfbaWjcacAgALhmt0m3V9MpIjlA1XylCM+TQW52DFuOYsLdvHiRnTSraV+0zZWFfE4vZcYSUdaG7mumtt5bnCigFAwnBotraNJbgtMxlb6NlozMe7he6UCyGEEEIIETFalAshhBBCCBExWpQLIYQQQggRMVqUCyGEEEIIETE3vNAzjJhhVZU2RAlXJtn9KmUIDQCgt8OO10N3ty1qmJ1jEdPkJIuNtks+z+KeKcOh0HK/DCPbyKKKeJzFSmcN570wTp1iF7ZCgUVqlvMoDEFnGPE4O2Va4pzJKXaam5tngRmwBaGn0Q+TKVuAtOp4n7Pz7MiXNpwdD/XarnQDhnvf7Bzv0xmCQx/iAGc5eoZtS9sZY7VYtkXMF8d5vDYY555MbEHYY5TTN3Bf8nGOhTnTNhqCo9tO3sHbNfB2+SW7f8UcC8oKq9yPz/4Du/+OnGchbyFvixB7B9mV9+WvfRHFKnEWPFeqLBQHAG+JV8tcnxVDpXp1jF0+AWDFKP/RoyxIvevO51Fseon7OwDkKiySi5f4Mpu6yiLGmwZ5vE0YwkTAFu01ZthReCt09rKAu1DkNlqYZ6feMPr6eD7u7OSxubzMwvvLV7iOBwbZhREA4p3cj3MLLOAcH+N+vBuEOReXMjzXTBvXgxXjertdisZ1MJ7iegtz6awaReoc4rGeM0TIZSP5BGBfRwePcRs3NnHijTDSxrXwmNFvpma4HyeM8uw1ulMuhBBCCCFExOzIotw5N+yc8yEvvlVY+869zrlPO+fmnHMF59yTzrl3Ouei/6kihBBCCCHEHrKTj6/kAHzAiFNiTufcGwB8AkARwMcAzAF4HYD3A3gpgDfvYLmEEEIIIYTY1+zkonzBe//ea23knGsB8CEAVQD3ee+/FsR/AcBDAO53zr3Fe//ADpZNCCGEEEKIfUsUz5TfD6AbwAPrC3IA8N4XAfx88OdPRlAuIYQQQgghImEn75SnnXM/DOAIgBUATwJ41Hu/WWr9yuD9r4x9PAogD+Be51zae2/L+/eARIwfbW8zbOFnljn7SS4k+0F7E9vHplP1ZWRpabHtX5cNy+PyKmcqsB/VrzO9BYCVFT6OlVlkzdtW9RaNRvaVbCPX8cpK/d1gaYkV5jnDnnhuzm6jerHOs1DgzBFWppVEijMvAEDM6HMWVqvFYvbv67JhT16qcKYDy27ZUsYDQMchVtxnkjyVuC30hbVt3B5IxPnYyaRtOV5Y5b60YmQlaEjx95NJu93WDJvslQrbaZfXuI4TMXsKbslyJozjAycplklxNoeYUR4AwJrRZ1e4N419Y5Ri01e5H2ca7Iw/x24eoNhtd5+i2LiRuaqwaGcbWV3msbW8xLHcPGfcWJwPsQ03bLa7u1oo1tPJ1u5jAo4YJgAAIABJREFU5y+Z+6zGjLo3MgstLnE5T7bdRLHzl+3MUw112r1vhSbDMj3bzFkvrOQry4ucpQUAmpt5PrfnFb6OXjWyiLW3dJnHSad5bJaKPM+VjMwgYRSLPC8k8/VNVAUjCxAA+ASXM5fnuaJizFPp5PbaPGkcO9nCMVqxBVSNodnayvNUNVWk2OKinU2mYLRRWyfvMxarf62SSPCc2t3J2esmpqYoVqkYWZ72mJ1clPcC+Mim2CXn3I957x/ZELs5eD+3eQfe+4pz7hKA2wAcB/DNZzugc+7vQj46XV+RhRBCCCGEiJ6denzljwC8CrWFeRbA8wD8HoAhAH/pnNuYYHf9drF9++Jbcb49IYQQQgghxAFkR+6Ue+//06bQNwD8hHNuGcC7AbwXwPfvxLE2HfcuKx7cQX/hTh9PCCGEEEKI3WC3hZ6/G7y/bENs/U44P2D97XF+yEwIIYQQQogDyE4+U26x7pO7UUFyFsDdAE4B+LZnwp1zCQDHAFQAXNzlsj0rlu34YD8LcYqXz1JsMWfbEM+mWTRzuPfocyjdt2htZSFNTw+LYS6PsqAizOLbYiXPQp6JSbYs9r5+q/rGBq7j3l4WEQ7223bvFrkci78uXuRyTk2zamUrZS8Y4sD5Bd5n3hB/3nLrneY+54efodjS7CTFvCGgLJdDhEXGObW2sZCmrcMWUNVLIs3irXiSf/P7kC63ZvTFsG0305jhcTXQzfbeAHBT/xGKLedYhJR0PDV2dthP1FWqLA4aGWch4HKexX2NaR6/ANDTyn2+rYXbzRK5hrFWNoSes9xvhs+y0LNaZfXXyduHzOPccS9LehoaWTjb09NDsUq7XcezUzy2xqa4js8+w9bsCcOSHgB6ulnY2Jzm8xy7yJei2JI93g4f5n635vj4C4b4tGyIzLYyJ+0GMWMcVEo8MIfPXzC/f+I0i5Mbm5oo1tzM14JjQ30USyTq9xZsa+O+dHiA2+fcU9zfAWB6iufexSVb7L2ZqjEnAEDaGEclQ7qfaeF7loc7tzdH10uYPt8f4li6kRNVdKSMOSlkpyOjXMc3DfHcl7L2uU0OG/NPJmMnCJgpsHh1t9jtO+UvDt43zmoPBe/fY2z/MgCNAB6LMvOKEEIIIYQQe8m2F+XOuVucc3TLwTk3BOCDwZ8f3fDRgwBmALzFOXf3hu0zAH4x+PN3tlsuIYQQQgghrhd24v8EfhDAu51zjwIYAbAE4ASA7wOQAfBpAL+2vrH3ftE593bUFucPO+ceADAH4PWopUt8EMDHdqBcQgghhBBCXBfsxKL8c6gtpl8A4KWoPT++AOALqOUt/4jf9GCc9/7PnHMvB/DvAbwJtcX7MwDeBeC3Nm8vhBBCCCHEQWbbi/LAGOiRa27I3/tbAK/Z7vF3i6ThnnWoiwUIUzMsIlxYtIWecwssQursYLGBWR7DjQsAslkWyHR1sXvVzDQns6mUbesuS9S1kmcx3Mwsn49VzkRI2VsMMcuhbhazHDnC4s8wnniCxV+zsyyqWlxkF7Uw4avltGlta9VbzBB53XTTzRQDgKfaud3GDKdO6zdrucxCXgCIG2VvyLLALdPI/WgreG+J1Lg+wurYhbiH1oPldNfZagsGu1o4ftEYwysrLNC1xhoALBuOfGNTlylmCfm6W+3xf7iLBanJGIuQrPoME2qV8+womrvK4tOpK4aTYjc7XZ64ddA8zqnnD1EsleE5oCPD/T3sfozRHJhfYnHh2CSfz4mjtkDuyEAnxZqbuJzT41cpljIcJAGgM8NzWiHO42Bygd0EZ2d4jg57vtQZ9VQ0xGhW/0ilbWdIa9uE4Xoaj/G5T4xyHQFAryGstByNreHf1cmC0GqV+3AtzjHLgdcSf2Ya+DoGAHnjmleyp9m6yRrXwqIhCk0Zc3RHp30dXDUcvNNGHbstuGJuhxS4zxRDKu7CCM+9h3tZ0B5PGI7mIbdu16o8ASaN+ujs4OOEYa/odofdFnoKIYQQQgghroEW5UIIIYQQQkSMFuVCCCGEEEJEjBblQgghhBBCRMxuO3oeKCwhTO+hAYoVK7YYZcFw9Lsyer6uY/f1DpnxbCM7AmYyLLQYGGBB2cwMu+QBgDcUFMUii4gKhltlby8Le5qyLNgBgMGBIYpZ4s+t0NfH4o2BQRZ0nbvAdWQJOgGgOcv77DNcRm+//QUUO3mS3Q3bDEdNAGhu5Xgqw+LCklHv5ZLttdWZZTFdfoUFTJOzLNQa6LHdZi0x3uQYCxvnZ1nMFjOEqwCQMVw5CzHuc2tgEc/aGscsYTIAXBll976WFu6fa2t8jsOXR8x9zi4bYu8lHlu9XexQeMfJu8x93nL8NopdOj9MsWM3DVGsEmI+NzvOdXLhzBWKZQz3zdvvOUWxm25jMSoQLoKsh0rFVqnmFgxB6lXuX61tPH/cdsct5j5PnjRcXw2V7OWRCYoNDtouwyVjnszlWDhbmmKH5M89+UWK3Xq3XfaYUU/D51jkHjcUlEdPDpn7tASgTa0ssOsZ5GvJ5WfY4RgAZqdZIrdsuEPvBpb2vVo2hPenbcFyis0qETJ9bYuVSVsku5n8ij3HXx7mcXD8JM811rogaqy5e3RymGJHYsZcs2o3xtIC96/Dx3isb8XRfC/RnXIhhBBCCCEiRotyIYQQQgghIkaLciGEEEIIISJGi3IhhBBCCCEiRotyIYQQQgghIkbZV7ZJdyereicX58xtZ68OU2xsgmOWNXpHh23HbWZfMVT0fX1sNf34E0+b+8w08PcrhkW45XM72M8q6Y4O2+b68GHOXJMNydSymbU1w1cZQFcXf//wYc5q0tbG2zWkbRv1tla2Nz52jLNR3Hrr8yh2ZHCIYlZGBABoaeMsMQ2NnP2gaGQWqZTtjD/NKf7+yjJnsiiv8ff7D9nZNSoVTmswOc5ZPBbneRwkk5zZAwDSTWx/nSsa9teGWr9i2FQvrdgZHsYnONPB82/jdltYWKbY8CifIwBM5p6hWKHIGXJOHrmZYnfcYmdfOd7H/euxR75MsZ4+nheKy/bYmBvnc7pywci6c4z3eetdN1Fs6GY7A0ky9dwvK6UQO+75uRzFZqY4q0lHN2cbGjIy1ADA4HEu/+wsH6d4kY/T0tlr7nPq8gWKLRhZYopzPIa/+PmzFLvrntvN47hVHq9XLnAGJMtevO8IZ+YAgHiC56VMlsdrVx/PU+MXJ819zs3yHBAzhmZsFyzg88t8fUrGed5/8Xc+3/x+LM73LHcjY8foEvc5i5UVO63SyDDX/eEBbqOE0b5WvcdCzrFqzL1WNi2rjkLrzXEbXZ0Zo1h7K18fYgU7y9P8FGe+6jnCc9pW2nKtameF2g10p1wIIYQQQoiI0aJcCCGEEEKIiNGiXAghhBBCiIjRolwIIYQQQoiIkdBzFzjUdsiMl0qWBTPbEA/2DlGsIcOCva1gCTL6+ljACADNTWx5fvzYCYq94bX3G99todjsHAvMAKBQ4TJN5lj00mhYzU9OsKgJAJaLLBRzMe7m99z9EopVTTErkEyweOyWU7dSrKOdxTXDY2zNfvSwLaAcPMFCwCsXz1HMElBadsUAcOGbT1Is289Cr57BoxTLG4JQABg+/xTFFmZZzJZu4D7be9iwNgfQfSuf+8wTD1FsNc/9Y3GFY+NTdv841neSYlNG2XOLvM/5ZbZbB4DLV4cp9rxTL6TYnafvplhvl10f9TJ2kct09gnucwAwMcpzzaE+7tsveiUL3/oGWaydSG7v8lEu83g7f3bY3PbsmYsUq1ZZ0Fpe5fH/2KOPm/t88nEWuq+ucpnm53kclIq25Xnc8/GLKyzKzOU41t3DdZybNcTOABpSLFJLJLjsln5yMsTWPWUkCLAoGXNsrMGeO6uexYWtza0cM4T322V6gtttYZoFtuPn7Lmix7BmTzXYQvXt0NfJ1+HlAgvFx2bsvlCtciNfHuY5LZVmYWRbO8/RnZ12W0yOsgCzq48Fz5kGvl43htTb0X7+/ugkj63pORZbt2V4rQEAbV0sCh2/OE6xYsLox1V7TpufYPHobqE75UIIIYQQQkSMFuVCCCGEEEJEjBblQgghhBBCRIwW5UIIIYQQQkSMhJ67QHebLaAsrrKAYW55gWL9fccolk5tT2BiuVcdDhF6Wts2N7Oj39Ejx+v67pe++nXzOJOGkNASeh7t5nJOhQg9Jwwnxt4+FjHec/e9FPMhLqH5PAtkbjl1C8WaWzMU++YFFpP199jivsHjLHbsO/INip1/ioVrYQ6nF86w0LPPscis4xALbsKEnme//vcUs4SeGUPoOTDE5wgAN9/xYoo9dvZLFFu0hJ7LHBubtvtHtplFSNMzhtBzmcW0WxF6vum7f4hidxhCz+52WxS+mLMdSTczeond/J5+4pK57eQVFkuduG2QYpbQs/swC0ITSduZtl4qZe6z55+2RapPn+FzssTNptDz80+Y+8znWUyXTrHYscUQIV56ZtTcZ/8gOwc2ZHj+WF7iMdjVw0LxMKFntZHrPhFnd0Q4rqOpSRa9AYAzkgHUS6zBODaAconnxOYW7kv9A7ZD6nZYLbAD7+QIj+swoWe74YK9G0LPw4bj9fkxLvvYLAu1AWBtjfvs5RGr33AbHRni+ael2Rb8Xh3hempuY9GuLfTkfgAARwyh54ThyDk9Z1xfDtvL1/4uPqenvmwkJ0jzHJso2e1bMYTZu4XulAshhBBCCBExWpQLIYQQQggRMVqUCyGEEEIIETFalAshhBBCCBExEnruApbYEQBasuxAdbSXRYiJ+N40S1g56902Hq9P6NXfZ4vZWkpcHwlDYzIxPkyxXDlEWFRhkcniAjupTjew4OfYEItZAWC1zO2xVmUB1cQEC3G8t8tpkTWc7k6cfh7F5g1nt2eetsW0lovs1Mgwb1hh0d3SFXZwA4ByiQXLp++4h2LOcJDLdrCYDQBWl7mcfW0siPVGvRfLhlPuEguoAeBL//B5ipVLvM/mbDPF2ltYkAUApwfvpFi8YIytMh8nbAx6w6C1zLpEjJxhweHMVdt9brXEIsjpcR4HD//FVymWbeFxFYtv755OyXC//OaZC+a2uQUWZVketqslFmTl8wVzn5Z7p18zxivriMPbzRjvSdP5lLc70cFOyvFUyLUgyYK0TIa/395hOCyHiEcrhki2qYXnpLYuO0GAxdURHoe5WW7LxkbuX13d7My4FVrb+dyPnWJhc8bZc3RuiseG1e7ZbbqR1nsdbmjg+RQAek6wuHhslNu4rY37R9qYoyeu2nPnof5+ii3nOBlAzFi/NLfa7pv1nvtWrqOpDC8i+obYxboyxTNIwdlOvasJO74b6E65EEIIIYQQEaNFuRBCCCGEEBGjRbkQQgghhBARo0W5EEIIIYQQEaNFuRBCCCGEEBGj7Ct7SEsjZ3TIGor5erOaXC/0H7bV+muGonoxx1bgF8+do1jO27a9a1VW8efmjewLCc7S8KI7X2juE2CF+LlzwxQbG2cr4IaW+jPcZJtZoX78NFuel41MKZNTfGwAyC+wCn9lhC3LZy1b57az5j6Pn7yNYrfd9RKK+QxPL3OLnNEAAIo5Ti3S38Zq/8oaZ8yYXJigWFj2lccef4RijRkel7ec4Kw3J/pvNvfZluJyugKfT3WV2y0Mb2xaLvB4uXiGM+TMTNrnbmUMmhzj8fbXn/wixWKx+vuxiZWMJsNtWfR2loNy1ciUYmy3ZGRzsM679n3eg7WtlaXFOh8AWF4yUuQY2zY18Tx1861sOR43smMAgEvx9zMtnNmof2iAYgvT9lyxWuS6bzzEx+nv5wwmYcyPcn0szHDGjkSGz3O72VfajMwzzS1ZijmzJwHnv8LW7Mk0Z/bYbvaVemloNFKTAThxnLOvTE9xyqDunnaKJYylxpXLdnaeu+/h7GTDZ/ka4Yz1S1j2ld0gZbRR/zGeo3NzXEfFmJ2pqZJS9hUhhBBCCCFuGLQoF0IIIYQQImK0KBdCCCGEECJitCgXQgghhBAiYm4ooefcHIvM2js7zG1bWnZemBCL8W8gK3bQSCTq72YxxyKR4iqLr1JxFmoCQMmwtK6UWWlVWOZ9jk9O2oUyhFq5JRYrpZIsVurpYvHV5Ix9nO6OQxRrbOJ+2H/0BMVe+JKXm/u8MjJCsWSchU3ZRhbOphtZFAUAhweOUayn/whvmOK2jBsiHACYvsp10tHJtvbe6Eq9nYcpls7aQuCEYQGdSbHYuiXLoqimBntOaDdsx6fHWIC5MGuIXL09/hdmihS7dGaUYosLyxSrGkLgMCpl3rZSNsSK28Q6zUrJEFBuYTpMJrl/9RxhcWAsae+0XDaEpgWeV4oFtp8vG/UGANUqx2OW8K2Zx9bxE0cp1neYxwAAJFPcv+NxHluzc9w/KrDFo62dPP+0dfD8lTDmuTA6e/j62lBi0VzCmLfHx2zBoUW7IepsaEhTLB7nvhBm4d7azXNAOsvC192gNcvi0XjIWiGV4rqz7OsThqqzuZnrqPtQq30cY+5uaec6WqvwuJoaGzf3aSV76Dbasur4HBNGWwLAzDxfS7o7WETd2cN9uzhpCzrz+RUzvhvs6IrQOfcq59wnnXMTzrmSc27cOfcZ59xrjG3vdc592jk355wrOOeedM690zljVSaEEEIIIcQBZsfulDvn3gfg5wCMAvhzADMAugHcBeA+AJ/esO0bAHwCQBHAxwDMAXgdgPcDeCmAN+9UuYQQQgghhNjv7Mii3Dn3dtQW5P8DwI9771c3fZ7c8O8WAB8CUAVwn/f+a0H8FwA8BOB+59xbvPcP7ETZhBBCCCGE2O9s+/EV51wawC8BuAxjQQ4A3vuND+rdj9od9AfWF+TBNkUAPx/8+ZPbLZcQQgghhBDXCztxp/y7UFtkfwDAmnPu+wDcjtqjKV/x3m+2h3tl8P5Xxr4eBZAHcK9zLu19iL3bc2TKcDLbS6GnuDZrngUqlSoLixodi68AoGKIXqqeBSqrhm7j3KULdZSwRinPgq72Fu5Lg33sJPaNc2fMfTYa7q6d7SxGOXSYXfrufcX3mPt84hvshtrdyX279xAfJ0yEnEobotCMIYAyxEaW2xsAzBrOo+0pLlNTmgVQHe0stDx+0nbftIjFuEyTxlxRsZwdAQwOchsv5lhgNzM9w9vN83YAkJthAdTZJ9iJtbDMgtDIMYTRPsbn44yxDlu/jViVt20whI03neijWKLRvsyt5Lnu5me5PWZnliiWX7YvTYaGESnDlbOjiwWpN58+RbG2DnabBWzBcm6RJ7XhSyw4LoPFfQDQ0cfzSpshYt4KhwZZqLq2xiL7BWO8DF+yxYEW6Qz3BUvoaWGJIgGg+yj3pbhlgbkLdBjuzpb4c7u0tPI1J8w51Dm+HnT1spvo5BUWpI8ND5v7jBv9+Ojp0xRLZliEPD1/1dzn+DS7U3e1czm7DafxfN4Wuc9N8Ny9W+zEovw7gvcigMdRW5D/I865RwHc771fv+quXy1pteC9rzjnLgG4DcBxAN98tgM75/4u5CNuVSGEEEIIIfYpO5F9Zf0nzM8B8AC+E0AzgOcD+CyAlwH4+Ibt1/Pt5EL2tx7nWwlCCCGEEEIcQHbiTvn6wr4C4PXe++Hg7687574fwFkAL3fOvcR4lGVbeO/vsuLBHfQX7uSxhBBCCCGE2C124k75QvD++IYFOQDAe58H8Jngz3uC9/U74XaG+m/FF0I+F0IIIYQQ4kCxE3fKzwbvYYvo+eB9XQl2FsDdAE4B+LZnwp1zCQDHULvrfnEHyvZtLC+xYGdi3BYLONvkS+wyi0Yb5VdYkJWK20KrVccionKZhStVQx+Xr/CxQ6nw79lMjIfT9AQLBudnDGdHAGMJFmXlDfGWhYfdYS2zutUKB/OGk2EoK1bdhz2N9u0s59kJFQgXzhEVFlr5VRZqlZZsIXC9FHIFihWLtqhyuoEd5FZWuC8VF7mOYt5u3/wyn1NTJ/evxo6dF39tG1PoacTiPFZhCDoBILbG8UwDCyibWwwXx4x97ymesMSnXCZLm1w0nBAB2yXUcqtsbePvL+bmKVYu230uFuP6WFrivjQ3w/NPGLOG43W1uoV5YRvkDKHn7BbKPtbIbby8yPV5EKmuGfN5nttyespwofW20Hw7zEyzaH9uZtbc1nK7bZiYoJjlJjqzYO9zfpFFmSOpYYo5Y6JaWLD7zKql4N4lduJO+d+g9iz5rc6S535L+LmeOuCh4N1KF/EyAI0AHtvpzCtCCCGEEELsV7a9KPfejwD4CwBHAPzMxs+cc68G8N2o3UVfT4H4IGpun29xzt29YdsMgF8M/vyd7ZZLCCGEEEKI64UdcfQE8K8AvADAbwR5yh9H7TGUN6Lm3Pk2730OALz3i4ED6IMAHnbOPQBgDsDrUUuX+CCAj+1QuYQQQgghhNj37MTjK/DejwK4C8AHAZxE7Y75fajdQX+p9/4Tm7b/MwAvR80s6E0A3oGabcS7ALzFe+tJWCGEEEIIIQ4mO3WnHIE50DuCVz3b/y2A1+zU8YUQQgghhLhe2bFF+fVAcYUzKoxdYUtWAJiZYgWx2H0qFc5eUChwu8WcoSQHUAFnK/BG5gYYiR9Qsm3UTQyL8LlV1iYXVzgp0dKKnXHjkpGBZDTBGSa2gmUlnptlxfvV5PaOUy/Vql3H+WJ9WWZgZBoornCGiPl5O8tLvZSMtrTswQEgN8uK/bzRZ9fKViYLO9tI1eizx+5ky/LrBisji5XiyhhXgJ0NKxbnbWMpq43s/3hNpfj7VlaUbJYvk9WQvuCN/umMTCkZIyPM+XNnKRa3Ur+EUKnwnFgs2NlbLEpFHjOJxN4sEex5v/5cDxefia7sUWP17uUlnn9KRV7TTIzvfB1ZmUrKIdlLnOOxkT9zhreL8XhZLdv7LFc481Zx/uvmtrTPor3PsMxbu8GOPL4ihBBCCCGEeO5oUS6EEEIIIUTEaFEuhBBCCCFExGhRLoQQQgghRMTcGEqIAEtMsrxk28yGxcV+ZwtizR2magj5ioV83d8vh4hMdpq9k6zsDauGQHdlpf563y755TpFqtuktbthT45zfWPJ3myhZ9y4JRVPs7AybcR2g4X5aG3hSyUWB14vrF7HZd8rDO36vqSwC5b2xZXr5OShO+VCCCGEEEJEjhblQgghhBBCRIwW5UIIIYQQQkSMO4iO9s652VQy2dHX1xd1UYQQQgghxAHm6tWrWC2X57z3ndvZz0FdlF8C0AJgGMDpIPx0ZAUSz4baZ/+jNtr/qI32N2qf/Y/aaH+z39tnCMCi9/7YdnZyIBflG3HO/R0AeO/virosglH77H/URvsftdH+Ru2z/1Eb7W9ulPbRM+VCCCGEEEJEjBblQgghhBBCRIwW5UIIIYQQQkSMFuVCCCGEEEJEjBblQgghhBBCRMyBz74ihBBCCCHEfkd3yoUQQgghhIgYLcqFEEIIIYSIGC3KhRBCCCGEiBgtyoUQQgghhIgYLcqFEEIIIYSIGC3KhRBCCCGEiBgtyoUQQgghhIiYA7sod84NOOf+0Dk37pwrOeeGnXMfcM61R122GwHnXKdz7m3OuU86555xzhWccznn3Becc//COWf2Pefcvc65Tzvn5oLvPOmce6dzLr7X53Aj4pz7YeecD15vC9nmtc65h4P2XHbOfdk599a9LuuNhHPuVcFYmgjms3Hn3Gecc68xttUY2mOcc9/nnPusc240qPOLzrmPO+deErK92miHcc7d75z7befc551zi8Ec9tFrfGfL7aD577mxlfZxzp10zr3HOfeQc+6Kc27VOTfpnPuUc+4V1zjOW51zXwnaJhe01Wt356x2Ae/9gXsBOAFgEoAH8GcAfhXAQ8HfTwPojLqMB/0F4CeC+h4H8McAfgXAHwJYCOIPIjCv2vCdNwCoAFgG8N8B/JegvTyAj0d9Tgf9BWAwaJ+loM7fZmzzU8FnMwD+K4D3A7gSxH4t6nM4iC8A7wvq9wqA3wfwywA+BODvAbxv07YaQ3vfPv95w5j4g+B68yCAVQBrAH5YbbQn7fBEUIdLAL4Z/Pujz7L9lttB89/etA+AB4LPnwLwe8H64U+D9vIAfjrke7+2Ya58f9BGs0Hsp6Kug7rqKeoC7FLjfyZohHdsiv9GEP/dqMt40F8AXgngdQBim+K9AC4H7fCmDfEWAFMASgDu3hDPAHgs2P4tUZ/XQX0BcAD+GsCF4OJEi3IAQwCKwSQ3tCHeDuCZ4DsvifpcDtILwNuDev0wgJTxeXLDvzWG9r59egFUAUwAOLTps1cEdX5RbbQnbfEKACeDuey+ayz6ttwOmv/2tH1+FMALjPjLUfuxWwLQt+mze4N9PgOgfVO7zQZtN7RT57NbrwP3+Ipz7gSAVwMYRu1X0kb+I4AVAD/inMvucdFuKLz3D3nv/8J7v7YpPgHgd4M/79vw0f0AugE84L3/2obtiwB+PvjzJ3evxDc8P43aD6kfQ22MWPxzAGkAH/TeD68HvffzqN29BWr/QyJ2AOdcGsAvofYj9se996ubt/Helzf8qTG09xxF7THQL3vvpzZ+4L3/HGp3Bbs3hNVGu4T3/nPe+/M+WIldg+fSDpr/tsFW2sd7/2Hv/eNG/BEADwNIobYI38h63f9S0Cbr3xlGbS2YRu36tq85cIty1H6NAcBnjQXhEoC/BdAI4MV7XTDxj6wvJCobYq8M3v/K2P5RAHkA9wYLFbGDOOduQe2/3H/Te//os2z6bG30l5u2Edvnu1BbOPwpgLXgueX3OOd+JuRZZY2hvec8anfu7nHOdW38wDn3MgDNqP0P1Dpqo/3Bc2kHzX/7A2v9AByQ9jmIi/Kbg/dzIZ+fD95P7UFZxCaccwkA/yz4c+PgCW03730FwCUACQDHd7WANxhBe3wEtbux/+4amz9bG11F7Q77gHOucUcLeePyHcF7EcDjAP4Paj+ePgDgMefcI865jXdYhnoqAAAFw0lEQVRhNYb2GO/9HID3AOgBcMY59/vOuV9xzv0JgM8C+H8A/uWGr6iN9gfPpR00/0WMc+4ogFeh9qPp0Q3xLIB+AMtBW2zmuln3HcRFeWvwngv5fD3etgdlEcyvArgdwKe995/ZEFe7RcN/APACAD/qvS9cY9t626g15HOxNQ4F7z+H2rOS34nandfno7bgexmAj2/YXmMoArz3HwDwT1FbxL0dwL8F8GbUxGYf3vRYi9pof/Bc2kHzX4QE/2vxx6g9hvLejY+o4ACNq4O4KBf7FOfcTwN4N2oK9x+JuDg3PM65F6F2d/zXvfdfjLo8glifnysAXu+9/4L3ftl7/3UA3w9gFMDLw9Luib3BOfdvUMu28mHUMn9lAdwF4CKAP3bOvS+60glx/ROkqPwIgJcC+BhqWVYOJAdxUX6tX6vr8YU9KIsIcM79FIDfBHAGwCuC//bdiNptDwkeW/mfqP1X7C/U+bV62yjsboXYGut9/fGNwjIA8N7nUcsyBQD3BO8aQ3uMc+4+1FIi/rn3/l3e+4ve+7z3/u9R++E0BuDdzrn1xyDURvuD59IOmv8iIFiQfxS1/336E9RSjG4Wix6YcXUQF+Vng/ewZ4dOBu9hz5yLHcY5904Avw3gG6gtyCeMzULbLVhAHkPtjuHF3SrnDUYTanV9C4DiBsMgj1qWIgD4UBD7QPD3s7VRH2p3CEeDBaPYPuv1HXYhWf/v24ZN22sM7R3rpiSf2/xBMA6+gtp19gVBWG20P3gu7aD5b49xziUB/G8AbwHwvwD8UPDM/7fhvV9B7QdwU9AWm7lu1n0HcVG+Pjm+2m1yjXTONaP23x95AF/a64LdiDjn3oNaEv8nUFuQT4Vs+lDw/j3GZy9DLWPOY9770s6X8oakhJphhvVaT0X1heDv9Udbnq2NvnfTNmL7/A1qz5LfunkuC7g9eL8UvGsM7T3r2Tm6Qz5fj6+ns1Qb7Q+eSzto/ttDnHMp1DQzb0btf3V/xHtffZavHIz2iTpR+m68IPOgffFC7bEID+BrADqusW0LgGnIVCPyF4D3wjYPOgaZZ+x1W3wqqNef3RR/NWpukfMAWoOYxtDet88PBPU6AaB/02ffG7RRAYGLtNpoz9rlPlzbPGhL7aD5b0/bJw3g/wbb/AE2mRCGfOdAmAe5oNAHisBA6DHUshd8CjVL1xehlsP8HIB7vfez0ZXw4OOceytqwqcqao+uWM/ZDXvvP7zhO29ETTBVRM1mdw7A61FLRfUggB/wB7HD7jOcc+9F7RGWt3vv/2DTZ+8A8FuoTXIfQ+0O4P0ABlATjP7rvS3twcY5N4DaXDaI2p3zx1FbHLwR31o4fGLD9hpDe0jwPxifAfBPUDMK+iRqC/RbUHu0xQF4p/f+Nzd8R220CwT1+sbgz14A343a4yefD2IzG+en59IOmv+eO1tpH+fcH6Hm6jkD4L+hNtdt5mHv/cObjvHrAN6Fmgj+QdRMhn4QQCdqN2k/uHNntEtE/atgt16oXcT+CMBV1AbOCGr5fdujLtuN8MK37rY+2+th43svBfBp1O4AFgB8HcDPAohHfU43ygshd8o3fP46AI+gtghZAfBVAG+NutwH9YXaIxC/Hcxhq6hdqD4J4J6Q7TWG9rZ9kgDeidojkYuoPYs8hVpe+VerjfasHa51zRneiXbQ/Lf77YOaa+e11g/vDTnOjwZtshK00SMAXhv1+df7OpB3yoUQQgghhLieOIhCTyGEEEIIIa4rtCgXQgghhBAiYrQoF0IIIYQQImK0KBdCCCGEECJitCgXQgghhBAiYrQoF0IIIYQQImK0KBdCCCGEECJitCgXQgghhBAiYrQoF0IIIYQQImK0KBdCCCGEECJitCgXQgghhBAiYrQoF0IIIYQQImK0KBdCCCGEECJitCgXQgghhBAiYrQoF0IIIYQQImK0KBdCCCGEECJitCgXQgghhBAiYv4/Jqz5yusACTEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 200, "width": 370 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "font_type = ['ARIALN.TTF', 'ARIALNI.TTF', 'BKANT.TTF', 'Calibril.ttf', 'calibrili.ttf', 'CALISTI.TTF']\n", "l, _ = data[1]\n", "x = l[0]\n", "print(x.shape)\n", "idx = 13\n", "plt.imshow(x[idx])" ] }, { "cell_type": "code", "execution_count": 126, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "random_str 2a5e\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABCQAAAIvCAYAAACsgQrwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XucZGddJ/7vU9XdM7kxCQESYgK5kBCuQhKQawhEWUC5g8ByWxVcL+gioLurqPHCT911V7koKCIo6oIGgUWzIBLCLVwHEAIkISQhJISQe0gyM91d9fz+mB4dkznfk+nTdaq65/1+vfLqTH36qfNU1TnnOf3t6vqWWmsAAAAA9Gkw7QkAAAAA+x4FCQAAAKB3ChIAAABA7xQkAAAAgN4pSAAAAAC9U5AAAAAAeqcgAQAAAPROQQIAAADonYIEAAAA0DsFCQAAAKB3ChIAAABA7xQkAAAAgN4pSAAAAAC9U5AAAAAAejfVgkQp5chSyp+XUr5dStlRSrm0lPKHpZRDpjkvAAAAYLJKrXU6Gy7luIg4NyLuFhHvjYjzI+KhEfHYiLggIh5Za712lfd9SUTcKSIuXZPJAgAAABERR0fETbXWY7re0Vz3uazaH8fOYsTP11pfv+vGUsr/johfiIjXRMRPrfK+77Tffvvd+T73uc+du08TAAAAiIj42te+Fps3b16Tn7Wn8g6JlXdHXBQ738FwXK11vFt2UERcGRElIu5Wa71lFfe/9aSTTjpp69atazRjWIf+7bBqyEueD1py6MG4ZT8eFB+FBKtVW46v4vhijWQ/bhSXG7DunHzyyRERsXXr1s5H8LRWmseufP2nepvVsNb6vYj4RETsHxEP63tiAAAAwORN60827r3y9cKG/OsR8fiIOCEiPtR0J6WUprdAnLj6qQEAAACTNq13SGxZ+XpjQ77r9oN7mAsAAADQs2l+qGVntdaT93T7yjsnTup5OgAAAMAdNK13SOx6B8SWhnzX7Tf0MBcAAACgZ9MqSFyw8vWEhvz4la9NnzEBAAAArGPT+pOND698fXwpZbCHtp+PjIhbI+JT05gcbAht7dq02Vpf2jo0b9DXU1vPvTfVVo5t7Ya9njNFW88GWY/KLIuI2vKc7qstLvfVx91J27qf7Ytat7OOTGUlqrV+IyL+KSKOjoifvU38GxFxQES8vdZ6S89TAwAAAHowzQ+1/JmIODciXldKOT0ivhYRPxARj42df6rxK1OcGwAAADBBU3uv3sq7JE6JiLfFzkLEKyPiuIh4bUQ8rNZ67bTmBgAAAEzWVNt+1lq/FRE/Ns05AAAAAP3zaUYAAABA7xQkAAAAgN5N9U82Jq22tGZqUvQmAlahtvToKh16c7adz2b1vDXxeWfd+VqGTvUpa1ufOkxukq0c26c9xd9zTPA5bd/05PbzbueVlhaVLdvucs5a17LXq+W13Eefscla5fX8v5rmyT6betu0WnN729rr8oJN0/ruDe8dEgAAAEDvFCQAAACA3ilIAAAAAL1TkAAAAAB6pyABAAAA9E5BAgAAAOidggQAAADQu7lpT2CSOve3B9hdSy/0SZ5zymCWz2fNz8vEz8PJ3c/yM9Y+uVnthd7S67zmc6sl2Vc6Pq7WLuzZ8dtxP53osd/heWl7TlpOaV2fln1SbX3Wc+nr7QXbo7bnvOu5pYtsbtOcFw06LL1T3Q+7Lc1T3xO9QwIAAADonYIEAAAA0DsFCQAAAKB3ChIAAABA7xQkAAAAgN4pSAAAAAC9U5AAAAAAejc37QkAzIra1uO9xbT7OE9KW2/tLC4b9UnpqHVPS/bFMsUntW3brfvKBE3zeemm7Tlb/eNq63s/1aes7Xw73clNcduJye0qs61lX2jbz6dp/Z6XctmuuK4fcYfXq+MlZLdTXtva3OHc0cfr6R0SAAAAQO8UJAAAAIDeKUgAAAAAvVOQAAAAAHqnIAEAAAD0TkECAAAA6J2CBAAAANC7uWlPYF80ruPGbFDUiGCS0lbMrb3O902tPd6TuHZszL1Re7i3PqfrdG9rf1ywHqx+P57oETBwfMGsGrRcr3S8HOpk1k8dfvoFAAAAeqcgAQAAAPROQQIAAADonYIEAAAA0DsFCQAAAKB3ChIAAABA77T9nIKN2saO29PycH3xbK89+/AqaaW6D9k3X4/WvbhlP5/V/biOW+bdof9e17aBM/qUsQ7Zlfae46+Zd0gAAAAAvVOQAAAAAHqnIAEAAAD0TkECAAAA6J2CBAAAANA7BQkAAACgdwoSAAAAQO/mpj2BdalzH2iNaPcVba91157i7D1HHzOhw8Ff2vbiDbqTj+s4zQdl3/wdS9vzkpnmc7Zhr4Um+Lja7tolxeypybl+wx4DsJf2zdUbAAAAmCoFCQAAAKB3ChIAAABA7xQkAAAAgN4pSAAAAAC9U5AAAAAAeqcgAQAAAPRubtoTmJZOfYG1Dd6jmvRCL/tof/g2WlDDBpWcDyPiDhz8Tg631bY2J8v6yvg1nMwMab1moVfTfDnsCbPH8Qnt/JQIAAAA9E5BAgAAAOidggQAAADQOwUJAAAAoHcKEgAAAEDvFCQAAACA3ilIAAAAAL2bm/YEpmXf7Qs8TrK25yTP993nFOA2Ws+Hzpd7q7Q9Z+v1Ka0tcc3W7YgyWK+/W2p54K2SF7zlrsetz2nzfbfuhzADxun1fsTA76SZIfZGAAAAoHcKEgAAAEDvFCQAAACA3ilIAAAAAL1TkAAAAAB6tyYFiVLKs0opry+lfKyUclMppZZS/qplzCNKKWeVUq4rpWwrpXyplPLyUspwLeYEAAAAzK61avv56oj4/oi4OSIuj4gTs28upTw1It4VEdsj4p0RcV1EPDki/iAiHhkRz16jeTUa1VFjNtzQNZFJvilGKyzgNmpbT8OW8Un7vdm2XudN79q6mZZZfjNr1lqwbd4TPEZa7now08/p5IzHLa0gO7SQHbec6wcz2hp+vc67jbaerCdrtbf+QkScEBF3ioifzr6xlHKniHhzRIwi4rRa60/UWn8xIh4UEZ+MiGeVUp67RvMCAAAAZtCaFCRqrR+utX691rZfhUVExLMi4q4R8Y5a6+d2u4/tsfOdFhEtRQ0AAABgfVurP9nYG49b+fr+PWQfjYhbI+IRpZRNtdYd2R2VUrY2ROmfjAAAAADTNY0/MLr3ytcLbxvUWpcj4pLYWSg5ts9JAQAAAP2Zxjsktqx8vbEh33X7wW13VGs9eU+3r7xz4qS9nxoAAADQBx/BCgAAAPRuGgWJXe+A2NKQ77r9hh7mAgAAAEzBNP5k44KIOCV2tgn9dx9KWUqZi4hjImI5Ii6e5CSGZTjJuwcgIqKth/s0W7zfocZQDWa4N/24jtN8UPbNN0eOx83Py2Cwbz4n3Xne1pNJ7ueDGT4nZtbrvGEjmcZKcvbK1yfsITs1IvaPiHPbOmwAAAAA69c0ChJnRsQ1EfHcUsopu24spWyOiN9e+ecbpzAvAAAAoCdr8icbpZSnRcTTVv55+MrXh5dS3rby/9fUWl8VEVFrvamU8tLYWZg4p5Tyjoi4LiKeEjtbgp4ZEe9ci3kBAAAAs2mtPkPiQRHx4tvcduzKfxER34yIV+0Kaq3vKaU8JiJ+JSKeGRGbI+KiiHhFRLyu1i5/2AsAAADMujUpSNRaz4iIM/ZyzCci4klrsX0AAABgffHxyAAAAEDvFCQAAACA3q3VZ0iwF7p8QkZbu+S2u87a0++rbdjHkTwpEVEif9LbcvagZUcdJzvqoOQ7am07RsbNGx8MvJb7lAn2n68tO3myG0ZExLDD3NqOkTbZ1NbzETKY0UWubV/JzlkR+eNquyaY6uvZ9ePCJnj8AtCf2VydAQAAgA1NQQIAAADonYIEAAAA0DsFCQAAAKB3ChIAAABA7xQkAAAAgN4pSAAAAAC9m5v2BPZFk2yd3XbXHdvTb0gDdbne1Zb+84PB6l+T9mNA7/rbaXk92k9azeNb7jlK6ys2m2rLI2vdx7ucjNuf1E6yqU9y/dpXtR0DbeesbHcYt+wrbafDib7cdiZgzU14gWQi/CQGAAAA9E5BAgAAAOidggQAAADQOwUJAAAAoHcKEgAAAEDvFCQAAACA3mn7OQHTbDjTuXsf9GBWW2+2tWosG/UAantcLc9Llq7n5yx9XG2tGif4uGtp2U87rjIzenjSIHu5hhv5tcwP0H3UFK9AXYDSm2Rfsx+uS94hAQAAAPROQQIAAADonYIEAAAA0DsFCQAAAKB3ChIAAABA7xQkAAAAgN4pSAAAAAC9m5v2BNajtha3rSbaAneKPainKHtNJt9yWDP0jaK2HNxlX+1f3fa4s5bgbXe915NZO11P5VOjz/qGUsct39Dh5dzQu8JGfmyrNr0nZZbP9awzLWtc7bA3tY/MLmg67sUOgkbeIQEAAAD0TkECAAAA6J2CBAAAANA7BQkAAACgdwoSAAAAQO8UJAAAAIDeKUgAAAAAvZub9gTWo1nu611meXIblud8oxgM1GhXY72edtbptKPM8MxrS//4zLpev+o4z9PHlj/u9fy0sNby46vt6JvkuWO9Hr9dzlkR6/dxt5nqubxlfJeU2eTqGwAAAOidggQAAADQOwUJAAAAoHcKEgAAAEDvFCQAAACA3ilIAAAAAL3T9pMNYYN2XQK4vRk+4bW1e+vWYG+Gtb4mzXnxqyHusH204WHH1pzZ8dl6ztqwJ63cRm1n2i553Bv4KRknO/qgh33BMggAAAD0TkECAAAA6J2CBAAAANA7BQkAAACgdwoSAAAAQO8UJAAAAIDeKUgAAAAAvZub9gTYO7WO07xoaM4dVCPfl66q32rMzlv+dDr20vrVNL9+fFWaL8aOxmz/OCgde8/hiWl+0vDU5rGD+6RjyzRruC3Hfkzy2G9rxL7P9itnb63XPaW2HQMtHCIwQRM8wBy77AvKlFdnP70CAAAAvVOQAAAAAHqnIAEAAAD0TkECAAAA6J2CBAAAANA7BQkAAACgdwoSAAAAQO/mpj2BqUlaio9b2o0PpljGKRois2Ic4zT/1vjCND9r6W1p/pXRpxuzG+o16dhb43tpvli3p3n22OZaTlv7jw5K8w+VdzZmT5x/UTr2P8y9IM3ny0KaZ9pez8E0j33nnZlSa76vREs/8fW6jnx7fHGa/9GOX0rzbXHL6jfecl1QW75hvT7nB8aWNP/ZTf+zMTtscNRaT4d91To9fpg9teVcntlXd8Nx2yXHGvAOCQAAAKB3ChIAAABA7xQkAAAAgN4pSAAAAAC9U5AAAAAAete5IFFKObSU8pJSyrtLKReVUraVUm4spXy8lPITpZQ9bqOU8ohSylmllOtWxnyplPLyUsqw65wAAACA2bYWbT+fHRFvjIgrI+LDEXFZRBwWEc+IiD+LiCeWUp5d6781WimlPDUi3hUR2yPinRFxXUQ8OSL+ICIeuXKfAAAAwAa1FgWJCyPiKRHxj3W35uillF+OiM9ExDNjZ3HiXSu33yki3hwRo4g4rdb6uZXbfzUizo6IZ5VSnltrfccazK1Z0kt2MNN9Zmd6cvuk0Thpalzy5r3DDm8IurFek+ZvXfytNP/i8kfTfEds2+s59WEpFtP8xnptmt9Ur2vM/mbx99Ox48hfzyfMvSDN52NTYzbY85vJNryaHT8RUWb7hDwVDW883PC2x61pfuH4C2l+c71xLaezT9hSDk3zxdje00yAvTIe5XnbOlI25tq7QR9WZ9nz0sdz1vmqptZ6dq31fbsXI1Zu/05EvGnln6ftFj0rIu4aEe/YVYxY+f7tEfHqlX/+dNd5AQAAALNr0r9mWVr5urzbbY9b+fr+PXz/RyPi1oh4RCml+VeJAAAAwLq2Fn+ysUellLmIeNHKP3cvPtx75euFtx1Ta10upVwSEfeLiGMj4mst29jaEJ24d7MFAAAA+jTJd0j8bkTcPyLOqrV+YLfbt6x8bfpjzl23HzypiQEAAADTNZF3SJRSfj4iXhkR50fECyexjYiIWuvJDdvfGhEnTWq7AAAAQDdr/g6JUsrLIuK1EfHViHhsrbf7SPtd74DYEnu26/Yb1npuAAAAwGxY03dIlFJeHhF/EBHnRcTptdbv7uHbLoiIUyLihIj4d58BsfK5E8fEzg/BvHgt5waTMkzbEq6+rWebceQtndraX7a19Rwmp4eFls+cnYuFNB90qIUu/+tn5e7Z9npLmo+S5+36PZ6y/s3/aWkLesTgmDQ/Zfi4NM/UyNtjjsfNLUmHg277YdraNtqOgZy2nns2HjW/noPhvtn2E4A7qOO6D31as6uaUsp/jZ3FiC/GzndGNF3Zn73y9Ql7yE6NiP0j4txa6461mhsAAAAwW9akIFFK+dXY+SGWW2PnOyOuSb79zIi4JiKeW0o5Zbf72BwRv73yzzeuxbwAAACA2dT5TzZKKS+OiN+MiFFEfCwifr6U270F99Ja69siImqtN5VSXho7CxPnlFLeERHXRcRTYmdL0DMj4p1d5wUAAADMrrX4DIldfzQ9jIiXN3zPRyLibbv+UWt9TynlMRHxKxHxzIjYHBEXRcQrIuJ1tdb8D5YBAACAda1zQaLWekZEnLGKcZ+IiCd13T4AAACw/viobgAAAKB3ChIAAABA79biMySAqbjdh8f+O5tivzQ/YnBMmh8/eHBjdsrc6enY+wxOSfNDymFpPo7lxuzr4y+mY9+1+Mdpft7ok43ZjtiWjr2xXpvm71l6U5rfd/jQxmz/OCgdW1pe7+EEe44PB/m2WXuD4ep/X1DH+ccwFa/n7RxQtqT5nVvOWYMN+vudg8rBaT4fCz3NhGkbt5xXBs4rG0uXT/OzK7CXNuYKCgAAAMw0BQkAAACgdwoSAAAAQO8UJAAAAIDeKUgAAAAAvVOQAAAAAHqnIAEAAAD0bm7aEwBWZyE2p/mj5p6c5icOT0nz4wb3b8zKFGuZDx6eluZHbD4uzf9kx680Zp9e/kA6dhyjNP/G+Lw0//roi43Z9w8flY5tawleNP5mRRnYF/bWDwwfn+Y/vel30vzAcvBaTuffazv4M3aFdad2eMEnuQ4MnFf2LV7uDaW2nFbKlF9v75AAAAAAeqcgAQAAAPROQQIAAADonYIEAAAA0DsFCQAAAKB3ChIAAABA7xQkAAAAgN7NTXsCwOoc1NL3/kfmfzzN23oSR4de6NN0t3Jkmj9l/qWN2fmjz6Vjr6/fTfMbx9ek+QWjzzdm9xv+QDp2LhbSfGZ13Y1mtRd6+wGUm3bTb/bKuGVHri156bIj21X2KV32ldrxvFTW6Xmp7XGv18fFOtN2+E1xN5z1Q8A7JAAAAIDeKUgAAAAAvVOQAAAAAHqnIAEAAAD0TkECAAAA6J2CBAAAANA7bT9hH9XWAijrXjTRFncdtW37xMFJjdlRg+PTsdeP8rafbc/LN8cXNGbb663p2APL+mz72dqFrszuvpSa9R5arKlhy+9vZnY/ZZ+yz7a37NLtdJafsrYFdF99vWeV12vVvEMCAAAA6J2CBAAAANA7BQkAAACgdwoSAAAAQO8UJAAAAIDeKUgAAAAAvVOQAAAAAHo3N+0JALOpzHRz7tXbXA5ozI4anJCO/fLo3DSvLc3Qr6lXNGZLsSMdu16V1rL3xtzP2LPsCLEnTEN+zvKqsB6Uku+n6/W8M82js23bmVl+TidqMMVHvs5P5d4hAQAAAPROQQIAAADonYIEAAAA0DsFCQAAAKB3ChIAAABA7xQkAAAAgN4pSAAAAAC9m5v2BNg7tUtj4IhoadXMHtQ6TvNS1PU2ijuXw1q+o+0Ayg/QW+v3GrNRjFrue9+0VBfT/NL6tcbsstH56dir6rfS/Na4uTFbiIV07N3KkWl+wvCkND96cJ/GbBDDdCz7mOS009qafoavCWrL7EtyPm4b2xaXKT4x2+stjdl5o0+lYy8en5fm36s3pPnmsn9jduTgXunY7x8+Os23lEMbs+y1vENahs/wbp6a5n64Xp+zda3LuXxNJ9I/P0kBAAAAvVOQAAAAAHqnIAEAAAD0TkECAAAA6J2CBAAAANA7BQkAAACgdwoSAAAAQO/mpj0BZketbV1uc9PslzxZG/VxcVvDCZ8SxzFqzGprl+nVazu2J3nsLtbtaf6l8cfT/DPLH0zzb4y/3JhdO74yHXtTvS7Nd0Tz3Oda9pU7lTun+RGDY9P8B+ee15g9Zu5p6diFsjnNp8nZdAKSJ7W0nlY6viLjcXM2mN7vvErL46rtT8zEfHt8cZr/49LbGrPPj85Jx15dL0/z7fXWNJ8vmxqzQ8rd0rEPGDw8zZ+y8NLG7LjBA9KxsLs6bj5+y2AdrzLZuby/WUyFd0gAAAAAvVOQAAAAAHqnIAEAAAD0TkECAAAA6J2CBAAAANA7BQkAAACgd9p+rjOT7KzZ1vqva1vQSerSMrGtPdjGbWc6u8a1uZVc2+vR9npmtkfeEi06tubcXPZvzAYTrA9Pcw++uJ6X5n+y49Vp/t2WNnZtbUUnZTFp4RoRcU3NW45eO/pOnterGrO2tp6nzj01zbscI6wzk36pJ7g+TnQ/bTmV1w7t965Ljt2IiL9a/L00//ToA43ZrfXmlq13M6rLjdmV9ZJ0bGub5Whus/wzm343HXvXcmSaz7bmna3t2rX4vfEe1eQotLqtT/Z0AAAAoHcKEgAAAEDvFCQAAACA3ilIAAAAAL1TkAAAAAB6tyYFiVLK75VSPlRK+VYpZVsp5bpSyhdKKb9eSjm0YcwjSilnrXzvtlLKl0opLy+lDNdiTgAAAMDsWqt3SPxCRBwQER+MiNdGxF9HxHJEnBERXyqlHLX7N5dSnhoRH42IUyPi3RHxhohYiIg/iIh3rNGcAAAAgBk1t0b3c6dab98MvpTymoj45Yj47xHxMyu33Ski3hwRo4g4rdb6uZXbfzUizo6IZ5VSnltrVZiYMWWC/ca7mmi/cnqX7WudX+txc9/vq8dXdLvvFlvKXRuzuViY3IaneOzeXG9M88vHF/U0k9nS1n/+yvHFjdlZS29Lx95v8NA0v8vgiDSHO2yGrwsybdcz4zpuzJbKYjr2n5b+T5qfu3xWmu+IbWk+qxbjdj8G/DufX/5wY/aBwd+kY3904b+k+UJsSvPpyq5nWI3iAwc2nDV5SfdUjFjxtytfj9/ttmdFxF0j4h27ihG73cerV/7502sxLwAAAGA2TbrG9OSVr1/a7bbHrXx9/x6+/6MRcWtEPKKUMsvlTgAAAKCDtfqTjYiIKKW8KiIOjIgtEXFKRDwqdhYjfne3b7v3ytcLbzu+1rpcSrkkIu4XEcdGxNdatre1ITpx72YOAAAA9GlNCxIR8aqIOGy3f78/Iv5TrfXq3W7bsvK16Q+Ld91+8BrPDQAAAJgRa1qQqLUeHhFRSjksIh4RO98Z8YVSyo/UWj+/ltta2d7Je7p95Z0TJ6319gAAAIC1MZHPkKi1XlVrfXdEPD4iDo2Iv9wt3vUOiC23G/jvb79hEnMDAAAApm+iH2pZa/1mRHw1Iu5XSrnLys0XrHw94bbfX0qZi4hjImI5Ipp7ngEAAADr2lp/hsSe7Gp4Plr5enZEPD8inhARt23WfGpE7B8RH6217ui64fG4uY901oO6rT/1RlWjdsoHE6xvjUbNr2VExGDQvO199OVc18oEu3NvH9zamF0+vigd23YMtDlycK/GbFPZL992zbe9Xs9bw5Zl6JBytzR/xNyTGrMHDh+Vjv2+wXFpPhfzjdk3x+enY9+99KY0P3/0uTQfxXIytunznHe6sl6S5nf512W5f3XUvB+Xwfrch5mMces1x+T2l0Fpvqa4ePSVdOwHl/4mzXfEtnzbybXUg4anpWOfPP8TaX7kMD/nXTa6oDF7z9KfpmPPG30yzRej+bL+I0vvTsc+cu6H0/yYwf3SfHY5562GZ23j6fwTZCnlhFLK7f78opQyKKW8JiLuFhHn1lqvX4nOjIhrIuK5pZRTdvv+zRHx2yv/fGPXeQEAAACzay3eIfGkiPidUsrHI+KSiLg2dnbaeEzsbN35nYh46a5vrrXeVEp5aewsTJxTSnlHRFwXEU+JnS1Bz4yId67BvAAAAIAZtRYFiX+OiHtFxKMi4sGxs13nLRFxYUS8PSJeV2u9bvcBtdb3lFIeExG/EhHPjIjNEXFRRLxi5fu7vS8aAAAAmGmdCxK11vMi4mWrGPeJ2PnuCgAAAGAfM9EuGwAAAAB7oiABAAAA9K6Ptp9Tk7WC5PbqOG+kM2hpyZZ98Ed7y9D8voctr2UdJ/c/nN0GQeN/7Ya7ZzfUaxqzrC1gRPcWlZNsvdlmGMPG7OBy13RsW/vZC0dfbMyurpfnE2uxKfLWnfcaPKAx29wytra09RzX5ta4WQu7SbtTHJrmL1z4b2l++vyP5vc/br7/uWFz286IO9I2sDk/YnBsOvKowfFp/prtP57ml42b2+8ttrQNvGJ8cZrfb/jwNO/SwnnU8hFQwy7n4wl+utSOaG4HHBFxbf1Oy/jtaZ61kG1r+bsQm9N8mufqSWo7PrNlv/XIbvmGUSw1ZueM3pWOvape1rL13LHD5nXiBQuvSsceOrh7mpeWY/u44QMbs+eXfNtv2PGLaZ611W57zj65/P40P3rhvmm+UY+RTB01XxNERJShn5FmTrp+tiyAU7zOWwvre/YAAADAuqQgAQAAAPROQQIAAADonYIEAAAA0DsFCQAAAKB3ChIAAABA7xQkAAAAgN7NTXsCzI5Bx/JU1uW5cw/oluGlS2/7jq6tVzZm19fvpmNvqten+R/s+PnG7Jrxt/OJrWOHlLs1Zr+w+bXp2C1xlzT/1FJzP/Pr69X5xFp83+DYND9+8KAkzffhtj28TLAH9Xic978eDJpnd8Iwe8zteatht+GrNWip5x9a7p7mxwzul+aXjS/Y6zntckPLflwj70/f5XcVwzK9c3EX5y6fleafXf5Qmh88uGuaH1Xu1Zg9ePiYdOwDh49K8yMHzfe9XzkwHdum1nxfmeR5p01y2mmVrdsRERePvtKYfXH5Y+nYUSyvak67XDT6l8bsFdue1Om+Z9VS7Ejzr4+/mOa3xk1pfkBs2es5zYIa+dqbpYOh3zmvO+n6uT7X1jvPyXOZAAAgAElEQVTK3goAAAD0TkECAAAA6J2CBAAAANA7BQkAAACgdwoSAAAAQO8UJAAAAIDeKUgAAAAAvZub9gRg1l0w3prmf7/4xsbso8vv6bTtg0tzb/uTh4/tdN+z7JLxVxuzX9v2vHTsfGxK8wPLnRqzGuN07FwspPnJw9PT/PDB0Wk+qwaDWe5/nXVin968By31/v3KgRPb9mLsmNh9b1Q13Y8iFmN7mn93/K08j+b886Nz0rF3LUem+dMXfqoxO3XuaenYO5e7pXkpbb+3yp+33OSOzy7rdkT3tTtzSMtzfs/BvRuz4QxftmfrdkTEdfWqVd/3paOvpPmXlj+R5g+be2JjVqa4TrRpm9vsznx21Zqfs0pZr89ql3NxxLT3Ju+QAAAAAHqnIAEAAAD0TkECAAAA6J2CBAAAANA7BQkAAACgdwoSAAAAQO8UJAAAAIDezW5D4ylqaVEbk2xR29ZFdr12x23T1gO+Tdar+dZ6Uzq2rQf8Wxd/O82vGl/WmD1k7ofSsQfGljQ/fvigxuzp882959e79y29pTHbOjo7Hfvl0blpfn29elVziojYVPZL84cnvc4jZrvf+eRM9qyWna+n2068rX/85CY3juU0r3Wc38E63U3nWi5p9isHNGajludkOXak+ThantNE2/r33fqtNH/74u80ZtfXq9Kxz5p/WZofVO6c5pPcWbqs3W3r9pXjS9J8S7lLY3ZjvSYd2+Yhw/y64D9vek1jtn85sNO2a8sFbnpeanmp37X4x2n+d0uva8zantPv1ObrrIiIP93x6jTfEdsbs1OGp6djDyz5dRrrS5nuhcEEre/H5R0SAAAAQO8UJAAAAIDeKUgAAAAAvVOQAAAAAHqnIAEAAAD0TkECAAAA6N0+2/Yz63w0zbafk27akrUXm2ZLwq7bvnx8UWP2z8vvSMe+Z+lP0ny/aG4VFxHxtIX/3Jg9ff6n07GHlsPTfF/1xPkXNWZ3amlDd8Ho82l+a3xvVXOKiFiMbWn+ydFZab5/Oagxu+fgxFXNadZN+nw6Ls0tLr87vjwde2XNW//dkLSi21ZvSce25ZeOv5bmXbS19luvslaMERE/Mv8TaT6IYWO2HEvp2Ftqft64epy35vxmvaAxu3J8aTp2HKM0v7Xe3JidtfQX6dgjyrFp/vj556d5l7U7W7cjuq3dbet2277yzeT4/NKoW9vPwwf3SPO5Mr/6O+966Hc4H58+/+w0/8zo/Y1Z1+e0rS3o/97R3N72afPN13AREafPPSfNN+ravWFNthM5q+QdEgAAAEDvFCQAAACA3ilIAAAAAL1TkAAAAAB6pyABAAAA9E5BAgAAAOidggQAAADQu7lpT2BaStJnNsuYjo8tvzfNz1l+V2N27vJZ6dgThyen+RPmXpjmWZ/2Lj3aN7K2NtAXjf6lMXvf0pvTsTfUq9N8kNRhf2DuCenY79Xr0vzvFl+f5t8dX9GY/eym30vHHlQOSfNZVVpOqDXGaX7V+PI0P3f0D43Z+aOt6djLxxem+XX1u43ZrfV76djlWErz2noUdNHynE+xD3v2uNvOl4eWw9P8+Qu/tKo53RGjWE7zq1v202+Mv9yYfXj53enYz40+mOY76rbG7OZ6Yzr2A0t/leYPHD4qze8+OLox67JuR3Rbu9vW7VPnnpbmv7rtOWnexXmjT6b5jsXm13NQh902PsFje0e9Nc2z9a+rR889Jc2vT64LuqzbEbO7dree51vWoLa1G9aSd0gAAAAAvVOQAAAAAHqnIAEAAAD0TkECAAAA6J2CBAAAANA7BQkAAACgdwoSAAAAQO/mpj2B2dS1P/zqe/fWOm656/y+2/q4t+WTsj3pkx4R8a6lN6T52ct/l+bfHl/cmD1l/iXp2FPnnp7m9xv+QJqz966r30nzdy+9qTG7YPTFdGzbPn7C4EGN2fPnfzEdu1QW0/yjS+9O87OW/qIxa5v3sxd+Ls2PHdw/zWfVheP89Xzv4p+m+edG/9yYfa/esKo5rXstp/ku/eXbetu33fU0O9vXtsknhiW/XDp8cHRLfs/G7MjB8enY/ZcOSPOzl5rXx1Esp2MvHn8lzc8d/WOa37J8U2P2keX8fJit2xHd1u62dfumel2a3xzNj6urz4/O6ZRzew+Z+6E0Pyo5xj669J50bLZuR3Rbuye5bredi2ud5tl4ivbRhz3rvEMCAAAA6J2CBAAAANA7BQkAAACgdwoSAAAAQO8UJAAAAIDeKUgAAAAAvVOQAAAAAHqXN9amwQSb2LY0Dm7rd9ymSx/2Nllv+w8tvyMd+/dLf5Tmc7EpzX9u0+83Zg+fe1I69pBytzRn7+2o29L8/UtvT/PPjj7YmC3HYjr2sHKPNH/2wssbs6OH90nHDltOmXdfuGeaXzL+SmN2zvK70rFX1cvS/PS5H23MnjT3n9KxbbJju8019dtp/s7FP0zzzy1/KM2XYsdez2mf12EZ6b76Nd9D2/LUYTdcGZ/dweTWxpWtNyb3GJyQjnzG/M+k+YWjLzRm3xyfn47dEfm5+h+X3prm19fvNmYLsV86Nlu3Iya7di+2PO5RLK/6vunfYt2e5ieUkxqzuy8cnY7N1u2Ibmt3tm5HRPzw/I+leRddz6fZzxNdrhnYN3mHBAAAANA7BQkAAACgdwoSAAAAQO8UJAAAAIDeTaQgUUp5QSmlrvz3kobv+ZFSyjmllBtLKTeXUj5dSnnxJOYDAAAAzJY1L0iUUo6KiDdExM3J97wsIt4XEfePiL+KiDdHxBER8bZSSv6xywAAAMC6t6ZtP8vOPi9vjYhrI+LvI+JVe/ieoyPi9yPiuog4pdZ66crtvxkRn42IV5ZS3lVr/eRazm3vdO6Fs+q7b2vr2bVtZ5dWPKOat8H6ox2/1Jh9drm5jWNExFElb3v2U5v+vzQ/bviAxmy+pWXoLOv2enfbj7Ndpba0yPvU6P1p/sGlv0nzbfWWxmxzOSAd+4yFvEXeSXOnNWZtbT3bbCl3SfOf3fQ/G7OPLb83HfuXi7+T5leNm1uLnTg8JR173KD5+LkjslasH146Mx37+dGH07xLW8/5WEjzBwwfkeYnz53emN29HJ2OHbTU+/9xOW+n+Nnlf07zqZle1+sJm/DGsxZ5Ldtuawv6sOETGrPLxxelY9vaW145vjTN7z1obqf4nze9Jh17r+ED03yya3dbi3U2kuzad0usft2O6LZ2Z+t2RMR9WtbuYzuu3V1o7claWut3SPx8RDwuIn4sIpp+ovjxiNgUEW/YVYyIiKi1Xh8Ru37q/Kk1nhcAAAAwQ9asIFFKuU9E/G5EvLbW+tHkWx+38nVPv0L9f7f5HgAAAGADWpM/2SilzEXE2yPisoj45ZZvv/fK1wtvG9Raryyl3BIRR5ZS9q+13tqy3a0N0YktcwAAAACmaK0+Q+LXIuLBEfGoWuu2lu/dsvL1xob8xog4YOX70oIEAAAAsD51LkiUUn4gdr4r4n/1/UGUtdaTG+a0NSKaP2kJAAAAmKpOnyGx8qcafxk7//ziV+/gsF3vjNjSkLe9gwIAAABY57p+qOWBEXFCRNwnIraXUuqu/yLi11e+580rt/3hyr8vWPl6uz5WpZS7x84/17i87fMjAAAAgPWr659s7IiItzRkJ8XOz5X4eOwsQuz6c46zI+KREfGE3W7b5Ym7fc/6NcHevJPs+3tFS7/y39uRd2P95uj8xmy+zKdjf3zTr6X5iS29mGfVuI7TfNDyes5qn+crxt9I879dfG2aX12vSPO5aN5fTh0+NR37uLlnp/nm2D/NJ+nIwb0as6fO/2Q69vjB96f5/9zxM43Zb21/cTr2aS3bftp8fuxfNb68MTtn9O507I7Wjx3K3Xlwt8bsefOvTMc+dO4JaX6nOLgxmy+b07Ftj+vTow+keSe1tuT5eSlm87SzvnU4lw9imOYPGp7amL176U3p2FEsp/mmlv389PnnNGb3GT4kHTtNmyJ/XIMOv68rLWN/ctNvpfmDBs2v56xeE0zbncthaV46nNSydTui29qdrdsREb/ZYe1uW7dhlnQqSKx8gOVL9pSVUs6InQWJv6i1/tlu0Vsj4pci4mWllLfWWi9d+f5D4t86dOQrKAAAALCurVWXjTus1npJKeUXI+J1EfG5Uso7I2IxIp4VEUfGFD4cEwAAAOhX7wWJiIha6+tLKZdGxKsi4kWx87MsvhoRr661/sU05gQAAAD0Z2IFiVrrGRFxRpK/LyLeN6ntAwAAALOra5cNAAAAgL2mIAEAAAD0TkECAAAA6N1UPtRy1rV0aG/tZtyWj5MtdOl93XbfERHb6y2N2Zt2vDod+83R+Wl+4vCUxuyXN78lHXtgOTjN16tBWb81vx2xrTH7u8XXpWMvHX81zWvUNL//8GGN2XMWfiEde2DZkuazav9yUJqfNPfYNH9R/eXG7C2LZ6Rj3774e2l+/PDBaX7R6EuN2XfGl6Zj2+wXB6T5jy+c0Zg9eu4p6diF2LyaKd0h7X3v2/IuG2+57w7npZofuq2b5va6rNsREWcu/VFjthQ7VjWnXWrLC76YrBOzbCH2S/NNsf+q77u2vJ7zsSnNjyzHN2Zzg3V82d5y7kjN8Hmly9qdrdsR3dbutnX7hEGez8dCmsNaWr8/LQEAAADrloIEAAAA0DsFCQAAAKB3ChIAAABA7xQkAAAAgN4pSAAAAAC9U5AAAAAAereOGxpPzqSrNIMJbuHroy+k+W9sf2FjdnO9MR37wk3/Nc2fOf+yxmySj3mf1dLTe9zW83swSuOPL/3fxuzc0T/m227pw35oOTzNn7vwisbs7oOj07Gd1JYnrSWvJd/Ps9GDlj7rgxim+ZPmX9yYPWD48HTsq7c/O81/6dYnp3l2fI8i389KS4P5+7fM/WHD/9CYLcTmdCx7r7Tsp+y9Lut2RMSN9drGbBjz6djlWEzz2rLQ3FxvSvNZVVrO1d83OLYxu3Ccv15trhh/I82X55tfk7n1fNne6dyRX1O03/n0TlzZ2p2t2xHd1u62dft5C69K8yfOvyjN267j2Hvj5BqztCy+631p9lMiAAAA0DsFCQAAAKB3ChIAAABA7xQkAAAAgN4pSAAAAAC9U5AAAAAAereO+wdNTlu3xM6tVZJ+jMuD5XToN8fnp/lbFn8jzWvSOunUuaemY58695NpvlFbe45r3m5q0NI+LL/vPM+6/LS132trI3n5+OI0/4eltzZmbS1i52NTmp869/Q0v9/wYY1ZqS0PrMsB2vakdmy7NMm2TFn7zHsM7p2OffH8q9P8zKXXp/ml46+leWY+FtL86MF90/yAsmXV24a1shxLaZ6t3V3W7YiI+w4f2pjdVK9Lx142vqBl2/kiNWp53LNq2NJGOT/vvKvTti8efznNt9dbGrPNZf9O216/Nub1ZVvb6y5rd9u6/deL/yPNty6fneZn7PfXjdmWcmg6lj0b7MN9tTfmEQ4AAADMNAUJAAAAoHcKEgAAAEDvFCQAAACA3ilIAAAAAL1TkAAAAAB6pyABAAAA9G5u2hOYlqyzdlvf7ba+wW1uKtc3Zp9d/mA69i07fjPNt8X30vwFC7/UmD1z/mXp2EmqteU579SbN7/vaHk9B2X1dbu2LQ8m2HJ4FMtp/rHl96X518f/suptt/XO/g/zz0/zuTrfmE12X5msbO7TnPfp8z+a5scO75/m/33bMxqzG+s1q5rTLoN1Wjdfih1pfnO9cWLbbjtG2Hs31evS/LOj1a/dXdbtiIiHDZ/YmP3q9uekY9uUluNvvziw0/1PyyCGaX7c8IGN2eayfzp2e701zb81/nqaXzL+amP24OFj0rHsW7K1+4Thg9Oxf7Lj1Wn+1fGn0/xvF1/XmJ02bL4miIg4fu7703ySuqyPna/Tuv04sqGtzys9AAAAYF1TkAAAAAB6pyABAAAA9E5BAgAAAOidggQAAADQOwUJAAAAoHcKEgAAAEDv5qY9gUnKes1mvWRLx0awXx9/Mc0/tvzexuzvFl+fjr3b4Kg0/8G5l6T5E+ZelObT0rm376xq63c8wcf9nfFlaf6x5fek+SiWG7P5WEjHPnr+qWl+93JMmmeH4ET7QHe+6/z1Xq/7+V3KEWl+70Fzv/PPjD6Yjl2KxTT/l9HH0vwTy//QmD107vHp2Lb9ODOOcZp/ZfSZNL9w9PlVb7vNqDQfu+xZl3U7otva3XXdvmT8lcbshnptOrbNIIZpfnC5a6f7n5a267yjyvGN2T0G907HXjj6QprfVK9L8w8t/W1jdvzgQenYA8uWNG8zweWRnh01aN6HIyJevfnP0/yPFv9rmv/90h81Zl8dfSod+6z4uTR/yPCH0nyhbErzzFSvwxxEjbxDAgAAAOidggQAAADQOwUJAAAAoHcKEgAAAEDvFCQAAACA3ilIAAAAAL1TkAAAAAB6NzftCaxH19fvpvmf7/iNNP/i6GON2SnD09Oxp80/I81Pn3tOmu+bptf4d5L9jpdiMc0/O/pgml9RL27ZQnNH8kPK3dKRJw8fm+Zdekh3VZPHVWrL69X2cmZN3O/I+Bm1EJvT/MBy8MS2ff54a5q/YccvNmY/Mv5aOvYJ8y9M8zuXwxqzS8dfTce+e+mP0/zqekWad3HD+Jo0rzGe2LZnWbZ2d1m3I7qt3V3X7a+OP9uYLdXtne57viyk+fcNjut0/9NSW87V2bF/0vC0dOylo/y8sxj5a5Kt3Scun5yO/cH556b5ptg/zdlAWnbytn3hOfMvbxnffF3w4aV3pWOzdTsi4ofnfizNn7jQvHYfWu6ejmU2eYcEAAAA0DsFCQAAAKB3ChIAAABA7xQkAAAAgN4pSAAAAAC9U5AAAAAAereh235mLRdvqFc3Zv+w9Ofp/X6nXpbmXx1/Js2fPv9TjdkPzf/HdOwxg/umOfuOG1ta+31q+f+l+WJLO7iS9Kj8vsHx6dgjByek+TRNsBPrRNu8TlNbm9YjBsc2ZvMtY5fqjlXNaZfsXP5Xi7+Xjr1i/I00P3Z4/8bs/NHn0rFfHeXrwDhGad7FxeMvt+Tnpflxgwc2ZnOtlw2TOway1zqi29rdZd2OmOzafV29Ks23Ln+oMRvF8qq3GxFx98HRaX7Y4KhO9z+r5sp8Y/bIuaekYz+7/M9p/o2W4/Omel1j9vct7YRvrjem+UPmfjDNjyjN5/JNJW//vKPlmuLWuKkx+844v66+fHxRmp84zNuh3mNw78Ysu9ZZC+Ok/eZgshckedwy/MhyrzT/8U2/3pgdM2heOyMi3rP0pjT/66X/kebfTtrWP2H+BenYBw4fleZMh3dIAAAAAL1TkAAAAAB6pyABAAAA9E5BAgAAAOidggQAAADQOwUJAAAAoHcKEgAAAEDv2hqKr1vb4pb48ujcxvy9S3/amH1m+Z/S+16KxTR/zNzT0/x5C69qzA4qB6djYZdv1PPS/NLx1zpuoblL9bGD+6YjN0Xer7wmfbkjIsoke3NPuOf4RtTWp/0Bw4c3Zu9ffns69pr67VXNaS18ePnMNP/MqHkt2FG3p2NLS73/xMHJaX55/UZjdnO9IR17xbi5R3tExJ/tOCPN75+8ns+df3k6dlPZP80z54+3pvmZi69P8y5r96OHT0vHPm/hlWl+UDkkzTPb6i1p/qGlv03zi8b/0pjVyM+1g5b99EHDU9P84HKXZNu5qZ6JO2z8HoMT0vz0+eem+RWL+fG5Pdkfrhxfmo79+6U/TvPPjz6c5oeWwxuzubKQjl2u+bXx9ri1MbuhXp2OvWZ8ZZq/ZOE307ztNcvlO0v7fr4xrzn2j4Masx+e/0/p2LsPjk7zf156R5pna/fl44vSsY+ee2qaP3vh59J8krLz9Ubdj3bxDgkAAACgdwoSAAAAQO8UJAAAAIDeKUgAAAAAvVuTgkQp5dJSSm347zsNYx5RSjmrlHJdKWVbKeVLpZSXl1KGazEnAAAAYHatZZeNGyPiD/dw+823vaGU8tSIeFdEbI+Id0bEdRHx5Ij4g4h4ZEQ8ew3nBQAAAMyYtSxI3FBrPaPtm0opd4qIN0fEKCJOq7V+buX2X42IsyPiWaWU59Za854vAAAAwLq1lgWJO+pZEXHXiPjLXcWIiIha6/ZSyqsj4kMR8dMR0akgcfX4injjjv/emF8y/kpj9tDh49P7ftL8i9P8qMHxaX5QOTjN4Y64NNmHIyK21eae33dE1g/5M6N/Ssdevj3vAz3bDeon55jBfRuzZ8z/bDp2ls8bxw0e2Jg9fPjEdOw/jP88zbP9cNJuqTeteuwg8r8+vLp+O80X6/ZVb3spdqT5eaNPpvn36vWN2Q/O/Wg69j2Lf5rmV9crGrNrx1emYy8afynN71KOSPOHzP1gY/bo4dPSsZvKfmm+veV8e2W9pDH70NLfpWM/tvyeNL+13u6NqHdY23P2yLkfTvOFyJ+XWdVliVmITWl+2twz0jy7/oyIOGfpzMZsKRbTsdmxGxHx5dG5ab5ejWPUYXS3C47W0ev0embcsvQOOjyuk4anpfkR5dg0P374oMbsz3b8Wjr2qqXL0vwr40+leea587+Q5icOT2m5h8ntLNvqLWn+54u/0Zg1rdvZura31rIgsamU8oKIuEdE3BIRX4qIj9Zab3uWeNzK1/fv4T4+GhG3RsQjSimbaq35VRUAAACwLq1lQeLwiHj7bW67pJTyY7XWj+x2271Xvl542zuotS6XUi6JiPtFxLER8bVsg6WUrQ3RiXdsygAAAMA0rFXbz7dGxOmxsyhxQEQ8ICL+JCKOjoj/V0r5/t2+d8vK1xsb7mvX7bP7/mQAAACgkzV5h0St9bZ/eHJeRPxUKeXmiHhlRJwREU9fi23dZrsn7+n2lXdOnLTW2wMAAADWxlq9Q6LJm1a+nrrbbbveAbEl9mzX7TdMZEYAAADA1E26IHH1ytcDdrvtgpWvJ9z2m0spcxFxTEQsR8TFk50aAAAAMC2Tbvv5sJWvuxcXzo6I50fEEyLi/9zm+0+NiP1jZ3eOTh02FmNb2lrpJzf9VmP2iGHe5uqwwT3yjU+vSx0TUGvLC5rkZTC5mt+Oui3Na4w7bqH5cX1r/PV0ZFu+r9o+bG67tDS/fpsK7V8OasyeMv+SdOzl47xF7L+MPp7m3dq9tclacOXnhbZ5XVvzFpfT9J3xNxuz12z/iXTsFeP8dwmLkZ+3MkcMjknz68dXp/nnR+c0ZheMPp+OnV9aSPO2dWJ7NLcFvaalBey2Dm09By2/dzpt/plpfuzgAWleurSpa1tby/rsl3hIuWuaP2/hFWl+UOMbiCPOWv6LdGxb+9mNqn1XWZ/70jRN9vDLj/3DypFp/sT5FzZmxw3un4597Y68Neenlz+Q5pkrxt9I84PKIau+765GdTnNLx2f35g1rdtdWqPfVueflkop9ymlHLCH24+OiDes/POvdovOjIhrIuK5pZRTdvv+zRHx2yv/fGPXeQEAAACzay3eIfGciHhlKeWjEfHNiPheRBwXET8cEZsj4qyI+P1d31xrvamU8tLYWZg4p5Tyjoi4LiKeEjtbgp4ZEe9cg3kBAAAAM2otChIfjp2FhAdHxCNj5+dF3BARH4+It0fE2+tt3stYa31PKeUxEfErEfHM2Fm4uCgiXhERr7vt9wMAAAAbS+eCRK31IxHxkVWM+0REPKnr9gEAAID1Z9JdNgAAAABuR0ECAAAA6J2CBAAAANC7tfhQy5l0z8GJ8Zb9/29jfujg8MZsU+zfbePaHW8opa0Z8ySbNft8V3Zp2RWyXaV0LD2PW7Y9SI6BIwbHpWN/bvP/SvMPLv1Nmp+9fGZjdss475F99PA+af74+ec3ZvcenJSOnWtZXr8wyj966Y93/Lc0n6SlWGzMvpn0Ko+IuP/w4Wn+Xzb971XNKSLivUtvTvOzxm9L86vGl61627Ms29cePpd/VNeT5n4szedjIc3rqDkrw3ToZNfOCWr73PW2a4bDyz3T/D8uvKoxe9Dco9OxH1l6T5p/ZfyZNL9u/J3GrLT8DvPgwaFpftig+XEfG/dPx9577sFpftLwtDQvHS7MR6NkJ4+IwSB/XlqvISel7fKxJe963dBy73na8pxtjgMaswcMH5mO/d393p3mS7V5/eu+bl/Skk9PtnY3rdtPGDxlzbbvHRIAAABA7xQkAAAAgN4pSAAAAAC9U5AAAAAAeqcgAQAAAPROQQIAAADonYIEAAAA0Lu8Ufo6Nh+b4ojBsdOexrpSY5zmbT2oZ1Udtzyulh7SU5X0Yt5cmvswR0RsKXdJ8+XYsaopsXoHli2N2aDt+GppZT7JVueDDvfd9rgOL8296SMinrfwqjR/1vzPNWa1pdH6MIZpPl82JWO7LZ93GxyV5qfNPaPT/U9L2/PSdt7KHD7I95WDyiFpfku9qTFbjqV0bNv62HaAZsfBXCykY/cvB6b54+ef35g9df6l6diDy13TvE3JD6ENqXQ82badlw5I1omTh6enYx84fHSaj+oozdv382al7RhIdpZBy7m47Vzd9Xyc3vdwne7kbbvpBK8ZpqltP7xrObLtDhpNet0eJeeG4YRfsGHMN2abGq6F5qP5GmlvzfBPYgAAAMBGpSABAAAA9E5BAgAAAOidggQAAADQOwUJAAAAoHcKEgAAAEDvFCQAAACA3pVa837I61EpZetJJ5100tatW6c9FQAybUvQuu2Vnj+w8Xic5oPBcC0n05sa+eMqHX4PMopRml86/mqan7t0VmN2wTi/XrixXpvmm8t+aX5wOawxu+/gIenYk+ZOS/OjBic0ZgO/d4KJGnf4OWpQ1u0C103LUzZuyQcTPK1lS3Np2W7XV7PLz+RlCvvSySefHBERW7du7bxxKxUAAADQOwUJAAAAoHcKEgAAAEDvFCQAAACA3ilIAAAAAL1TkAAAAAB6NzftCUzUatun7KtteAB61tbmqrQ10prR03Xb4/r/27v3YGtJBwEAABHJSURBVMmK+oDj39+ysCAvkUC0xLhIECHGFIIYlhIWjPhGjItupXyQBIyWQQkKpBJNMBXjWxFJtKIxGDEBhfgMClFARIyUiqUpASGwKgHCYwVE2AV2f/mje5JhnMfOvXPPvL6fra6z06fn3p65vzk985s+p5ct5bplY7SYZT0H2Yr+S6Hutew3++9f0X+/pDHJ/ssFD1xvcYzmdunOxRjwlC0b41O6lEPzwPc7cxxLk/sKlyRJkiRJM8uEhCRJkiRJapwJCUmSJEmS1DgTEpIkSZIkqXEmJCRJkiRJUuNMSEiSJEmSpMaZkJAkSZIkSY1bPu4OLKk5Xs9VGqz/esgDF4rW1Jjkta9jnAuOL6GI/vn+zM0D7j+bz4ukhZvVUTsH9HxaH9cs6xeL/r26c1zvzRkSkiRJkiSpcSYkJEmSJElS40xISJIkSZKkxpmQkCRJkiRJjTMhIUmSJEmSGmdCQpIkSZIkNc6EhCRJkiRJatzycXdA2hKZ/Vffdm3f4Q14Sun/lM7qauizydfH5Inw+wBJQ1rcwD2xBo1Rvgds3qDnvC//HhqS74gkSZIkSVLjTEhIkiRJkqTGmZCQJEmSJEmNMyEhSZIkSZIaZ0JCkiRJkiQ1zoSEJEmSJElqnAkJSZIkSZLUuOXj7oCGM69rMc/r416MZAmfs0HLU/vnkNS0CT4u9RvDHL+0peY1Vub1cY+Tz/kCTPAYNOmcISFJkiRJkhpnQkKSJEmSJDXOhIQkSZIkSWqcCQlJkiRJktQ4ExKSJEmSJKlxJiQkSZIkSVLjXPZTUyGWmTsbVizl+kIuByUtKZeJ1LxzuW81YUCYDWQYjt6g134/Hhemk5/yJEmSJElS40xISJIkSZKkxpmQkCRJkiRJjTMhIUmSJEmSGmdCQpIkSZIkNW6kCYmIeGZEfCYibo2IjRFxc0RcGBHP69J2VURcEBHrI+L+iPh+RJwYEVuNsk+SJEmSJGnyjGzZz4h4F3AycBPweeAOYDfgAGA1cEFb2xcB5wMbgHOB9cALgfcDhwDHjKpfkiRJkiRp8owkIRERx1OSER8HXp2ZD3Ts37rt/zsBHwE2Aasz89u1/i3AxcCaiFibmeeMom+zZl7X153PRz27FrPu95y+BDRn5vVYvygT/JTN7N8zN/feF4ubhDuzz5kmysAwW8T7FYDs8xqJRb5G5tWkHhsGhcpk9noyLPqVEBErgLcBP6FLMgIgMx9su7mGMnPinFYyorbZALy53nztYvslSZIkSZIm1yhmSDyLkmA4HdgcEc8Hnkw5HePKzPxmR/sj6vbLXX7WZcB9wKqIWJGZG0fQP0mSJEmSNGFGkZB4Wt1uAK6iJCP+T0RcBqzJzNtr1T51+6POH5SZD0XEjcBvAE8Aru73iyPiOz12PWnLui5JkiRJksZhFCcv7V63J1NOn3kGsCPwFOAi4FDg023td67bu3v8vFb9I0fQN0mSJEmSNIFGMUOildR4CDgqM9fV2z+IiBcD1wKHRcTBXU7fWJTMPKBbfZ058dRR/i5JkiRJkjQ6o5ghcVfdXtWWjAAgM+8DLqw3D6rb1gyInemuVX9Xj/2SJEmSJGnKjSIhcW3d9kog/Kxut+to/8TOhhGxHNiTMtvihhH0TZIkSZIkTaBRJCS+Srl2xH7RfUHd1kUub6zbi+v2OV3aHgo8ArjCFTZmTObiihqXfcpiRSy8SJJGpd+RPgf+82CtmRcDysD7+xoZVkT0LZNqsaEyzxadkMjMHwNfAH4NeEP7vog4Eng2ZfZEa5nP84A7gLURcWBb222Bv643P7TYfkmSJEmSpMk1iotaArwO2B94X0Q8n7L8557A0cAm4LjMvBsgM++JiOMpiYlLI+IcYD1wFGVJ0POAc0fUL0mSJEmSNIFGccoGmXkTcABwJrA3ZabEasrMiUMy8/yO9p8FDgMuA14CnAA8CJwErM10jr4kSZIkSbNsVDMkyMzbKYmFE7aw/TeA543q90uSJEmSpOkxkhkSkiRJkiRJwzAhIUmSJEmSGmdCQpIkSZIkNW5k15CYRAu9MuY0rxU76DFnnxbLlvKRT/C6werOv5gkzbr+R3rHAWlxwlfR/PBPvWDOkJAkSZIkSY0zISFJkiRJkhpnQkKSJEmSJDXOhIQkSZIkSWqcCQlJkiRJktQ4ExKSJEmSJKlxM73sZ0zhup+bN23qu3/Zsv45pBiwvOa4lh/aPGC/mTHNg8zeB6VBr1310Oc4v7nP8w2wbNnkPuf9um6oSJKW0oDhsy/HqNEb9H5m0FM+6e8x/RwoSZIkSZIaZ0JCkiRJkiQ1zoSEJEmSJElqnAkJSZIkSZLUOBMSkiRJkiSpcSYkJEmSJElS46LfMnTTKiLu3G677R617777jrsrkiRJkiTNjKuvvpptt92W9evXL3pN0VlNSNwI7ASsq1VPqttrxtIhzQvjTE0x1tQE40xNMdbUBONMTZiXOFsJ3JOZey72B81kQqJTRHwHIDMPGHdfNLuMMzXFWFMTjDM1xVhTE4wzNcE4G57XkJAkSZIkSY0zISFJkiRJkhpnQkKSJEmSJDXOhIQkSZIkSWqcCQlJkiRJktS4uVhlQ5IkSZIkTRZnSEiSJEmSpMaZkJAkSZIkSY0zISFJkiRJkhpnQkKSJEmSJDXOhIQkSZIkSWqcCQlJkiRJktQ4ExKSJEmSJKlxM52QiIg9IuJjEXFzRGyMiHURcXpE7DLuvml6RMSuEXFcRHwmIq6PiPsj4u6IuDwi/jAiur6OImJVRFwQEevrfb4fESdGxFZNPwZNr4h4eURkLcf1aPOCiLi0xuW9EfGtiHhV033V9ImIZ9Zj2611nLw5Ii6MiOd1aesxTUOLiOdHxEURcVONmxsi4tMRcXCP9saZuoqINRHxwYj4ekTcU8fFswfcZ+h4ckydb8PEWUTsHRGnRsTFEfHTiHggIv4nIj4XEYcP+D2viogra4zdXWPuBUvzqCZbZOa4+7AkImIv4Apgd+BzwDXAQcDhwLXAIZl55/h6qGkREa8BPgTcAlwC/AT4VeB3gZ2B84Fjsu3FFBEvqvUbgHOB9cALgX2A8zLzmCYfg6ZTRDwO+AGwFbADcHxmfrSjzR8DHwTupMTaA8AaYA/gvZn5pkY7rakREe8CTgZuAr4E3AHsBhwAfCUzT2lr6zFNQ4uIdwKnUI5Pn6XE2K8DRwHLgVdm5tlt7Y0z9RQR3wN+C7iXctx6EvDJzHx5j/ZDx5NjqoaJs4g4B3gZ8EPgckqM7UM5xm0FvCEzz+hyv/cAb6w//zxgG2At8CjghMw8c/SPbIJl5kwW4EIgKX/U9vr31foPj7uPlukowBGUAWxZR/2jKcmJBF7SVr8TcBuwETiwrX5bSpIsgbXjflyWyS5AAF8B/gt4d42b4zrarKS80boTWNlWvwtwfb3PweN+LJbJK8DxNT7OArbpsn/rtv97TLMMXeoYuQm4Fdi9Y9/hNW5uaKszzix9S42bvev4uLrGxNk92g4dT46plvr3HibOjgX271J/GCWZtRF4TMe+VfVnXg/s0la/ssbehvb4m4cyk6ds1NkRRwLrgL/t2P2XwC+AV0TE9g13TVMoMy/OzC9k5uaO+luBD9ebq9t2raF8y3hOZn67rf0G4M315muXrseaEa+nJMN+n3LM6uYPgBXAmZm5rlWZmT8D/qbefM0S9lFTKCJWAG+jJFRfnZkPdLbJzAfbbnpM00I8nnJq8Lcy87b2HZl5CfBzSly1GGfqKzMvyczrsn56G2Ah8eSYqqHiLDPPysyrutR/DbiUMvNhVcfuVgy9rcZW6z7rKJ9bV1De+82NmUxIUDJbABd1+RD5c+AbwCOA3266Y5o5rTftD7XVHVG3X+7S/jLgPmBV/VAg/ZKI2Bd4B/CBzLysT9N+sfaljjZSy7Mob9T/Fdhcz/E/NSLe0OO8fo9pWojrKN8QHhQRv9K+IyIOBXakzAJrMc40SguJJ8dUjVK3zwhgnP2SWU1I7FO3P+qx/7q6fWIDfdGMiojlwCvrzfaDSs/4y8yHgBsp584+YUk7qKlU4+oTlG+v/2xA836xdgtlZsUeEfGIkXZS0+5pdbsBuAr4IiUBdjpwRUR8LSLav7n2mKahZeZ64FTKNZd+GBF/HxFvj4hPARcB/w78UdtdjDON0kLiyTFVIxERjweeSUl8XdZWvz3wWODeGlOd5vIz6qwmJHau27t77G/VP7KBvmh2vQN4MnBBZl7YVm/8aTH+AtgfODYz7x/Qdktjbece+zWfdq/bkynnsT6D8m31UygfFA8FPt3W3mOaFiQzT6dcAHo55bolfwocA/wUOKvjVA7jTKO0kHhyTNWi1Vk3n6ScenFa+2kZeJzralYTEtKSiojXU66Oew3wijF3RzMiIp5OmRXx3sz85rj7o5nVGvsfAo7KzMsz897M/AHwYspVvw/rtSyjtKUi4hTKFeTPAvYCtqes4nID8Mm60oskzYS6nOwngEMoq7S8Z7w9mg6zmpAYlMFs1d/VQF80Y+qSUB+gLPFzeJ2W2s7409DqqRr/RJkq+pYtvNuWxlqvTLzmU+vYc1X7hdsAMvM+yipVUJbKBo9pWoCIWA28E/h8Zp6UmTdk5n2Z+V1K4uu/gTdGRGvKvHGmUVpIPDmmasFqMuJsyiywTwEv73JhTI9zXcxqQuLauu11/s3eddvrGhNSVxFxImV96v+kJCNu7dKsZ/zVD517Ur6ZvGGp+qmptAMlZvYFNkREtgpldSCAj9S60+vtfrH2GMq3kTfVD5lSSytuer3haU0v3a6jvcc0DeMFdXtJ5456TLqS8j50/1ptnGmUFhJPjqlakIjYGvgXYC3wz8Dv1WuVPExm/oKSjN2hxlSnufyMOqsJidbgd2REPOwxRsSOlGk09wH/0XTHNL0i4lTg/cD3KMmI23o0vbhun9Nl36GUFV6uyMyNo++lpthG4B96lNaSUpfX263TOfrF2nM72kgtX6VcO2K/zjGyenLd3li3HtO0EK3VC3brsb9V31p21jjTKC0knhxTNbSI2IZy3aVjKDNdX5GZm/rcxTjrlJkzWShTThM4oaP+fbX+w+Puo2V6CmUKfQLfBh41oO1OwO2UD5gHttVvC1xRf87acT8my/QU4LQaN8d11O9JWSnhTmBlW/0uwPX1PgePu/+WySvA52p8/ElH/ZHAZsosiZ1rncc0y9AFeGmNjVuBx3bse26Ns/uBXWudcWbZ4gKsrjFxdo/9Q8eTY6qls2xBnK0A/q22+SiwbAt+5qra/npgl7b6lTX2NrTH3zyUqE/AzImIvSgHnN0pb7yuBp4OHE6ZBrMqM+8cXw81LSLiVZQLcm2inK7R7dzBdZl5Vtt9jqZcyGsDcA6wHjiKsqTUecBLc1ZffBq5iDiNctrG8Zn50Y59JwBnUAaxcynfNq4B9qBcHPNNzfZW0yAi9qCMkY+jzJi4ivJm/Gj+/436+W3tPaZpKHX2zYXA7wA/Bz5DSU7sSzmdI4ATM/MDbfcxztRTjY+j681HA8+mnHLx9Vp3R/uYt5B4ckzVMHEWEf8IHAvcAfwdZfzsdGlmXtrxO94LnES5iPR5wDbAy4BdKV+mnzm6RzT5ZjYhARARjwP+ijIlZlfgFsqA+NZ8+BIsUk9tHwb7+Vpmru643yHAnwMHUzLy1wMfA87I/lO5pIfpl5Co+18IvAl4KuVUvB8CZ2bmx5vsp6ZLROxGWWb2KOAxwD2UN1xvz8wru7T3mKah1POqX0c5r3o/yjT59ZTrR5yRmRd1uY9xpq624P3YjzNzZcd9ho4nx9T5NkycRcSlwGEDfuRbM/O0Lr/nWMrxcT/KjLHvAu/OzC8O2+dpN9MJCUmSJEmSNJlm9aKWkiRJkiRpgpmQkCRJkiRJjTMhIUmSJEmSGmdCQpIkSZIkNc6EhCRJkiRJapwJCUmSJEmS1DgTEpIkSZIkqXEmJCRJkiRJUuNMSEiSJEmSpMaZkJAkSZIkSY0zISFJkiRJkhpnQkKSJEmSJDXOhIQkSZIkSWqcCQlJkiRJktQ4ExKSJEmSJKlxJiQkSZIkSVLjTEhIkiRJkqTG/S80C6CFtnCMBQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 279, "width": 530 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "random_str = '2a5e'\n", "# image = gen_captcha(random_str, fig_size=(100,44), fonts=fonts,font_color=(20,150),same_color=0, font_size=(22, 25), rotate=20,\n", "# font_noise=0,offset_w=(-1,3),offset_h=8, line=(3,5), shortline=(150,250), line_width=(0,1), line_color=(150,250), point=(0,0),\n", "# point_color=(70,120,220,255,70,120),frame_color=(190,200),wavy=(0,0), bg=(240,255))\n", "image = gen_captcha(random_str, fig_size=(200,70), fonts=fonts,font_color=(0,250,0,250,0,250),same_color=1, font_size=(50, 55), rotate=10,\n", " font_noise=0,offset_w=(-3,1),offset_h=2, line=(0,0), shortline=(0,0), line_width=(2,2), line_color=(0,100,80,230,0,90), point=(300,450),\n", " point_color=(250,255),frame_color=None,wavy=(1,1), bg=(250,255))\n", "im = [image]\n", "print('random_str', random_str)\n", "plt.figure(figsize=(50,10))\n", "for i in range(len(im)): \n", " plt.subplot(2,2,i+1)\n", " plt.imshow(im[i])\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABIEAAAWCCAYAAACD1ffbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XeYldW1+PG1pzMzMJRBqopYUFEpgkhVxAZii97YkphEU343elNvrjGJ6d6Um8Tcm3JvqlETWzSK2OhVpCkoiooFpPdhmBmYun9/nMO799rMOQzDlAPv9/M8Pq531jvn7Dnnnc3Mnnetbay1AgAAAAAAgGNbVnsPAAAAAAAAAK2PRSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIh80Ys9YYc7Ex5m5jzB+bcP4bxpgL22BoADJEU+eHNJ//v8aYb7fkmFqKMcYaY05px+f/sTFmpzFmQ3uNATjWtOecZYz5oTHm/jT5t40xY5s7tsMcy/XGmA3GmApjzNlt8ZwA4sEYc4oxxqbJp50L0XJYBEKzWWvvtdbe3oTzBlpr57TBkAA0UXIxt8YYUxp8/NXkIke/I3n8ps4PaT7/89baH6TKJ8e/L/mLyhZjzP3GmOLmPl8mauyHJWPMSSLybyIywFrbt31GBrS9o3XOMsZkJ+epA/81eHNXhTHmhiY89gBr7fzmji2V5GLPhcGHfy4in7PWFltrX2/p5wTaW3Iu2WaMKfI+drsxZk4TPneOMabJ84QxZqAxZpoxZpcxpswYs9wYM6mZQ28yY8xlxph5xpi9xpjtxpi5xpirkrkL/T8ihV9TMr/bGHNjisd+KDkXVyQff5kxZkwbfE0HvUfJsXy3tZ/7WMQiEADE1wcictOBg+RffQvbbzjROLKbeOqV1tpiERksIkNE5ButN6ojZ4zJaYGHOVFEtllrd7TAYwFHm6NuzrLW1icXVIqT89UmEZnofezRthtpesaYLBE5XkTeaO+xAK0sW0S+2AbP84yITBeRniJynCT+iFPemk9ojLleRB4XkQdEpK+I9BCRe0TkyiZ87qUi8pSIfMpa+0iaU+9NzmclIvJHEXnSGGOOdOxoOywCodmMMd81xjyUjH8d/KWr7sDK7IHysXYdLIDGPCgin/COb5XEDw0iImKMuSL5V/ZyY8x6/68txph+yb++32qM+dAYs8MY800vH80PyePHk3fs7En+dWqgl7vfGPM7Y8xzxphKERmf/NgPm/JFWGu3iMiLklgMOvCY+caY/0qObatJlGp08PJfN8ZsNsZsSv51KSrxauSvYp80xixo7Lmb+BrdZoz5UERmNfL5WcaYe4wx65J/mbzfGNMpmZ6XPOfAvPptEXleRE5IHje7dAU4Sh0Tc1YK+cm/au81xqwyxgz1ni+6Y8ckyiUeTnVuyBhzrUmU5ZcZY2YZYwYkP/6wiPQWkeeT88k3JfHLqRGRN4wxbx/B1wJkup+JyNeMMZ3DhDFmlDFmafJ7f6kxZlTy4z8SkbEicuB3nl8f4vxSETlJRP5gra1J/rfQWrsgme9ijJlqEnfq7E7Gfb1xzDHG/MAYszD5vT4t+ZhijClIzgE7k9/bS40xPYwxRkR+ISI/sNb+0Vq7x1rbYK2da639TLoXxBgzWUQeE5GbrbVPNeVFtNY2iMjfRaR78r9D/VwTPmd/Y8z85Nf3ooh0S3He2SLyaxEZm3ztdxhj/lVEbhCRu5Mf+2fy3BONMU8lX9cdxphfNeVriRsWgdAirLV3eH/lGiMiu0Xk6XYeFoD0XhaRTsaYM0ziL9k3ishDXr5SEr9wdRaRK0Tk/xljrgkeY4yIDBCRCSJyjzHmjBTP9byInCqJv4S9IiJ/C/I3i8iPRKSjiDS64JJK8oemiSLyrvfhH4vIaZJYGDpFRPpI4i9hYoy5XES+IiIXJ3MXHs7zBZryGl0gImeIyGWNfP7tIvKx5BhOFpEuInLgB5ZxIiLeHQM/kMRf8j5MHje7dAU4Sh0Tc1YK10hikatz8rn/+0jPTX5tD4rInZL4BW2GiEwxxuRaa28SfVfSj5KPJyIy0Fo74Mi/JCBjLROROSLyNf+DxpiuIvKsJL6nukliQeVZY0w3a+03RWS+iBz4neeOdOeLyE5J/FzykDHmGmNMj2AMWSLyF0nc4XuCiOyTxEKH72YR+ZQk5qE8b7y3SuIunOOTz/v55OcPSH7sH4f5elwpibniemvtc039pOQ8/AkReU9EDtyhnO7nmtCjkpjXS0XkP0Xk442dlCxNvUNE5idf+1Jr7W+Tn39v8mPXmsQd189K4nXvJ4nX4rGmfj1xwiIQWpQxprskbiO801r7anuPB8AhHfjL+iUislpENh5IWGvnWGtfT/4V6TUReVgSCxq+71lr91lrV4rIShEZ1NiTWGv/bK3da62tFpHvisggY0yJd8rTyb+QNVhr9zdx7E8ZY/aKyHoR2SYi3xERSf4l7LMi8mVr7S5r7V4RuVcSvzCKiHxURP5irX3DWluVHE+zNPE1+q61ttJau6+Rh7hFRP7LWvtBcpx3i8jNJlGWAeBgR/Oclc5ca+2L1tr65Nc4uAXOvVFEplhrZ1lrayWxOF4iIiNaYLzA0e4eEbkz+bvLAVeIyBpr7YPW2jpr7cMi8pakLqVKeb611orIeBFZK4leW5uTdxWeKiJird1prX3CWluV/Pf/R3LwfPUXa+07yZ8fHhP3vV4ricWfU5Ilp8utteXi7qTZfJivxXgRWSMiC5t4/l3GmDJJLLz/l4h8K3lXkEgTf64xxvSXxPz7HWttdbJ/bJMXoFIYKYkFpf848HOXtbapX1Os8EMmWowxJlcSK89/P0QdKYDM8aAk/tL0SfHKKkREjDEjjDGzk7fU7pHEX5pKg8/f4sVVInJQc2aTaIz6Y2PMe8aYckn8QCTBY61PNUBjzIFyhQpjzC1e6hprbUdJ/LXpdO/xukuiT8jy5G3SZSLyQvLjIokSCP/5Uj73oTTxNUr3+L1FZJ13vE4Sf+3r3vjpQOwdzXNWOuG4ilKdeBjnqvkl+UvaBkncGQnEmrV2lYhMFZG7vA+H/yZL8jjV90za8621G5LVEidL4o6fSknOW8aYQmPM/yXLpsolUQLe2egeY6nmqwclUQb/iEmUtf80+XvYzmS+V5ovvTHfFpFqSfxxLf/AB40x3/bmMv8upR9bazuLSAcROU9EfmmMuSTFa5Lq55reIrIz+cc4/9wjcbyIrE0ukCMNFoHQkv5HEvXk32rvgQBoGmvtOkk0W50kIk8G6b+LyBQROd5aWyIi/yuJfhGH62YRuVoS5VclkrhFV4LHSrllqLXWb6IalmSItXauiNwvib9GiSRuSd4niZKGzsn/SpLlqiKJv5D5O2sdHzxkpehmsz3TfG1NeY1Sfm2SKMc40Ts+QURqRGT7IT4PiKVjYc5qQ2p+Sf4lvq+4u6eYYxB33xGRz4hb5An/TRZJ/Luc6nvmUOdHrLXrReQ3InJW8kNflUT51ghrbSdJloBLE+Ysa22ttfZ71tozRWSUiEyWxB2Sb0tigfq6Qz1GoFISc2qJiDyeXFASa+0PvLnsjkbGYZN3Xb4sibuiRNL/XOPbLCLdjNevMXluKo3NV+HH1ovIiabpG4zEFotAaBHGmM9J4hbGW7zbAQEcHW4TkYustZXBxzuKyC5r7X5jzHmS+MWoOTpK4i9MOyWxuHJvs0ea2n0icokxZlByDvqDJP4ydZyIiDGmjzHmQE+ex0TkU8m+IoWS+AuYb4WIfCT5V7pTJPH6pHKkr9HDIvIVk2ha21ESt4M/nPwatomITd4yDcA5FuastvCYiFxlEls+54rIv4vIXhFZnMxvFRHmF8SWtfZdSfSV+bfkh54TkdOMMTcbY3KMMTeIyJmSuGNI5ODvmZTnm0Tj5+8ZY04xiWbJpSLyaUksmIgk5pl9IlKW7C30naaO2xgz3hhzdnKxo1wS5WENyRK0r4jIt40xnzLGdEo+9xhjzO8P8VrsFZHLJbEg9vemLqQYYw4sRB3YVTDdzzX+870nIq+JyHeNMXnGmHHiFpIas1VE+h5YoPI+5r8fiyQxb9+b/BmugzFmdFO+jrhhEQgt5SZJfBNu8m4bvLu9BwXg0Ky171lrlzWS+lcR+X6y78490vzmeg9I4hbfjSLyprgfgFqMtXZ78nnuSX7oPyTRGPDl5G3WMyTxFzex1h5opDr7wDnJz6lO/v+Xkvir1VYR+asc3BDWd1ivUbLMpMIYMzL5oT9I4gfQ+SLyviR+Qfticpx7JdEocXGyrG3YIV4GIBaOhTmrtZjEDkJfFxGx1r4hiQayv5PEX+EvF5Grkv2BRBKLW99Lzi9fapcBA+3v+5IsqbTW7pTEXTVflcRiwtdFZLK19kDT41+JyPUmsZvXfx/i/BpJ3EU4QxILNask8XPGJ5OPdZ8kyql2SGKOeeEwxtxTEi04yiXRG22uJErExFr7D0nsmvVpSdyVs1VEfih6w55G7wK01pZJot/aaSLyQJr+hAd25KqQRHP6P4jIn5K5lD/XNOJGERktIrtE5JsHvgaRRn9emi6JvkVbjTEHyuT+KIl+bbuNMf+w1tZJ4v04QxJ3BX0oIteneO5YM4kFQwAAWo4x5vsi0tda++n2HsuhmMQOOqtEJD/5AwSAmDma5iwAaC5jzFUi8n1rbbrm8zjGcScQAKBFGWOMJG6H/qC9x5KKMeZaY0y+MaaLiPxERJ5hAQiIp6NhzgKAI2USW6hfJyKN3UmJGGERCADQ0l6RRPPRP7T3QNL4nCR67rwnIvUi8v/adzgA2tHRMGcBQLMZY0okUXZ1goh8r52Hg3ZGORgAAAAAAEAMHNGdQMaYy40xbxtj3jXG3NVSgwKAw8FcBCATMBcByBTMRwBSafadQMlt496RRAfxDSKyVERusta+2XLDA4D0mIsAZALmIgCZgvkIQDo5R/C554nIu9ba90VEjDGPiMjVkthKs1FdSrvYPif2FhGRhoYGlcvK8m5KCtal/HPVeQEjRh1b2+DFwbnGPzf8PJviPJGsrOworqut1TnrXs7c3Nworq2pUefl5uW5XPAY2Vmp3xI1ruB1qK9zj5OTqx+jwXsd6uvrVc4/t7KyQuUKCgrcY5jg/fJ2DPRfo71796rzigoLvaPgtcxxr2V5ebn+vOIiN8Zs/fVU11RHcbb3GIln8F6jBv2m5+a4x6kJ3hPj5Q66Nr1cfYN+/fzrKtsbZ7i4ar2xZAXXlH/UELw//tcXjkuyvM/UD6ne5wKTp3I7d+2K4rzcfP2J3rAbgtfvwHu+fftWKS/fEzxjuzrsuai0tNT269evbUYHoNUsX758h7W2e3uPI4m5CIipDJuLRA5zPmIuAo4NTZ2LjmQRqI+IrPeON4jIiLSfcGJvefylR0VEpKqqSuU6dOgQxSb4Bbp63/5GzxMRkXr3i3F2dq5K1Va7X/Rra4PFjxx3bpbRL0NdXerHLC4ujuKtW7apXKe6blHco3uPKN64caM6r3fvvlG8JXyMjp2jOFy4qqtzG9cUFBao3M6d26O4tEepyu2v3RfFe/bsUrnS49yYFy9ZpHKnDzw9iquy9PtVVOAWabK9BaH5c+ep84YNGRrFJliwKSrpGMUvzpyhciPGjoziLp26qtx7G9ZEcbcuJSqX6y+UVesFtl5d3eNsWr9B5bK7dYnifdX7Va6oi8uVVVSqXK33HpV44/SvPRGRuv1uLPnBQl+et5hTuVcvxHXp2imK9+7XuewO3rWZq9dkysr3RPFpuf1U7qGH/h7Fx/fWOVvvHmd/hd4oqSA7saD3jbu/IBnmsOeifv36ybJlbIwAHO2MMevaewwe5iIgpjJsLhI5zPmIuQg4NjR1Lmr13cGMMZ81xiwzxizbtX13az8dADTKn4u2b99+6E8AgFbAXAQgEzAXAfF1JHcCbRSR473jvsmPKdba34vI70VEBg4+09ZUJu6I6FzcRZ23YYO7M+OM/gNUbq91pUJVlftUzr8LZd8+XYrUrZu7E6ouS5fS5OW5O2l27typciUl7m6cqkp9V8ie7e4Oi/ff/kDl9m97J4q7ened7C3Xd3C8/PKSKD6hzwkqd8YZ7u6YvAJ9t8/cuXPdc+3Xr0PP3u7Oo9dXrVS5swadFcUnnniiyn24fq0bywl6LCuWr4jiIaOGqVxdtXdXUoErNxp7/jh13spXl7txnHOOym3b5O6CmnjJpSr3wuyZUXzO4LNV7oRe7rKrrdHvT6d8d6fYjl36ctxV5967bp30XXKbt7o7pEp79lC5hx/8RxQf17u3yp3t3em0f6e7/mqr9V003bxrqrZKj7nGu2uoR2d911P5zrIoXrFiqcqdeOpJUdz/lJNVbv7Ls6O4zyD9mNdcOTmKc3N0Odi+Cldql2P09ffywsR165dZZojDnouGDRvGtogAWhpzEYBMccj5iLkIiK8juRNoqYicaow5yRiTJyI3isiUlhkWADQZcxGATMBcBCBTMB8BSKnZdwJZa+uMMXeIyIsiki0if7bWvtFiIwOAJmAuApAJmIsAZArmIwDpHEk5mFhrnxOR51poLADQLMxFADIBcxGATMF8BCCVI1oEOlxVlfvk1ZdfExGR888/X+XO6T8oite8t0blupS4/kE51Xq3rn59XI+bTVs2q9yuja6fymsrV6lcfb0rfe3cWfcnGjnS9X2prKpWufxc13Pm3LPOU7njCt1OW0899VQUZwdbnJcUuR3GNga7VG3Z5L6Gmjq9o1mvXr2iuLZQ75K2p8x9rWFR7+KX3K5fXbtOUrlsb2e0gaeeqnKdit3OW68seV3lLp1wcRQvW7o4ik86UfcVqt7j+t10KeikcrbW9ZaprdCv85DTB0bxu2+9p3IdznR9bHKCvdF37XTNx0/qfYrKbV3nXut63bJHTunaL4r3BWO5dfItUVy+T++Stmie69PTyevns3mDbgMx6bLLo7hrnr7edpe53kidu+j31da73k+XjbhI5eYsmhPF3Qv1Y44fNjaKZz+j//2/9tpro7g62EEtp4O7HoqK9Fg6dkrksrMzaXf4zHGrF4d1tn9p5ef+SXD8qBe/0srP3VxvB8c3evFrQc5/PW8Pcv/txf6/Dj8KzrvFi/ulefzKIOfv3/h4kPuapDbXi98Pcud68TlydPiKF/82yPkzws1B7jdeXCCpNfd6wMH8bUH+Pcg91pYDERH/X5gJXjw7OC9bMtMvgmN/PigKcju8+Mte3C/N4z8RHF/rxeF1/h0v/l6Q83/uCx/z+jTP7/+UuTnI9fTiNv1l4TAsCY5/5cW9gpz/01v4fXGSNE94fQDA0YKfpQAAAAAAAGKARSAAAAAAAIAYaNM7PHOzc6VnSR8REanarrfJ3rhnaxSf3Ps0lVs035UznT5Abx//5MNPR/EFYy9UudJu7mbWnqP6qty777ob9Fe8qrdUn7bFbU/eo4e+obSqyt1Qun+//hpGnee2C7/qyiuieO9eXWBQ0sltF/7UU7pRf6+ebswVlfrz1rzttqDv1r1U5YqLC6N4d/kenSt0284vmDtf5YYMGRzFb72jb8jv3NmNs3yb3pL+mcddiVHPUlcG16tEb6F+/uARUTznhZkqd/kVrkRq667tKjfgBLfleW5wmS6d566Hm6+7SeU+XOduhJ/y8DMq16ub2xZ+8wZ943PfzsdF8frNm1SuuLMri5t0zTUqZ093hRCdu7qSrLrThqjzXlnoysaq9uxVuauvujKK31m5WuVOPb1/FO+pKle5Iae69+7Vl1eo3EWXuRvvT+2nS/TWv/9uFHc7rrvKVVa46zs3VxcWDjw7MZaCDnpb+bi6Ljh+0otvlNY3w4u/GeROkcwXvn6jvHhakPNntGuDnH87/n94cVheMtSLw1IAf4YJb+/3j78hqYVlUH4B8vAg55d1fCzI3ZvmOdrS/wbHL3jxy0HOLym5I8j5ZSv/meb5mns9nCoISz7v8+Ku0r78sswSL87kvaj/z4vD6+srkppfSO6Xg/06OM//62tYhvRvXvzJIOe/Zm8FOb/s8hMpxici8khw7H9vhf9urE2T+3qa52htflnXQ0Hub2k+z39/vhTkftfE5/6/4Jj5B8DRijuBAAAAAAAAYoBFIAAAAAAAgBhgEQgAAAAAACAG2rQnUG1NnWxZm9hEc9+uGpWrr3EbiTYExcd1e91W4iU5usLd7HObAr+5VPe0qfJ66tRU6z3BrVdcfdXFV6tccUdXuZ6bq7eknzp1qssV6A1vZ77oqqv97dwrqoLeQaNct4OunTqq3IBTXC+c7Gz93KXdXO+dtevWqVxXb5v7iooKlavZ554/O08/5oJ5C9yYe/dUubded/1pSouOU7nKCtefZtv6nVH83D+mqvMmXDTOPbfejVwWzZkXxYPPO1flyra4HkEdc/XrPGH0hVH89D+eUrkRQ1z3ja5Fum/S3h2ukjzcPn7zux9G8TkDdD+f3VWuh8/c6Qv1F5HrOo+UV7wRxbW1+ovNbnDXcM8eum/S7Glus9zKSt33Z/Nm17vo7GGDVK5zJ/e9cMnFl6vc5k3u807o3UPl3n7bfZ/06qlfo14nHx/Fa977QOUKChNbxpuM7ubQdm4Njv3eAOuk5X0YHPvdsD4T5MLtlzOFf3WfHOT8rX07BDm/c9X3g9yPvdjvCXRXcJ7fc+aGIOd/t/45yPnf8acHOb/vzxtBzu/SFf61xe9pMSDI+T11ekv7GRgc/9OLwzH7vpXmOOwJ1BLXA0QGB8cPeHHY/6q1TQ+O/WvY/6mvQTLXGC8Ovw/S8bvlXeDFYf+eM714aJDz38uwT81f0jz3L704/MHe77j4UpAL57tU/hAc+z3CLpe2VejFv0x51sH896dbkPOvzbw0jzEmOD6c6wMAMgl3AgEAAAAAAMQAi0AAAAAAAAAx0KblYEayJD8rcUPmmPPGqZz1ymWWLV6mcvlZ7ubPRXP05rRdCl05y/e/+QOVy8lypU/duukbyHfs2BHFD/xBbzJZXuHKf774b3ojyRKvBGfMGH1jaH6RK8Pav8/dXHrBBReo807o5zYFXfPueyqXm+tuWJ05Wxd19O3lbqw+8cQTVW7vXjfmcOv6999/P4q7H6dvgs0tKIri6kpdolezz22o2bmkWOVsjnu/Jl/pvr4Lxuj39Tf3/TyK8/KNym3b5UqWnpvxgsrlZLuSo7xcfXOuNa4Ea8IFF6rcJ274ZBRX7a5UuT3b3MbC3TrrssJ7vuU2bd5dXqVyvU9y27Qve01vxb6vzr1m/U7uF8X++yEikp3lvvY31uiyxYFnuCKTsmpdyldes8993nvvqNxub8v4HWU7VK6rt/X7r+/WBQF5Be4a2759u8oVFLvrYfrMGSq3rzZxXZks/T7G1VXB8RovbqlyMP87+SNB7uNefE2Qm9VCz3/AC2lyh1MK0MmLn27mWJpajLg/OPZLKdYHOX87+fIg529xHm4f7xfz3hnk0v2FxS9nKAhyNZIZxjbz81YGx+EW2L6WuB7Q/n/N2+bF/wxyv/VivzSwNYqKlwTH5zXzcVqixKfIi/elPOtgi704LCMb5cXVQe5hL/54kPNLicN/t5pqcnD8ey9u63IwX/ahT2lUZXCcrgTMR/kXgGNFe//sAAAAAAAAgDbAIhAAAAAAAEAMsAgEAAAAAAAQA23aE8haK3V1iV4yOcFW5WU7yqJ45PmjVG7BnLlRXFGuK3kLcuujuChP9635+0N/j+KlS5eqXKW3ffykyVeoXFW16ybRrbRI5R5/3G2BPneW7tmTn+f6wHz729+O4sUL9aacO3bujuLV7+j+MOePdF/7pMlXqtwjjz0WxXnB62c7uC4T27dtU7mBZ7oNSf0tx0VERo8eHcWzZukeMDnZ7vLYU6Z73DTUuU2VBw50m5yuXvWKOu+Jx1y/pcsmXqhyy1911e83/YvuePLAo3+L4i7dOqvc5k2uj81NN35C5b70ha9G8UWjx6vc6hWuwj7H6Ev/m993G0//c4ruTrFk5atRbIp1B4+brrvWPf6atVG8dsUmdd6FF7gOGyPGjVC5RYvcJtQjJuieSvXGvc57q/W137PYddtoCPr0TLraVfC/9tQzKtehyF0rM2bNVLkhw86N4ism6evvqWcTj2MMPYHayhe8uCjI/dSLFwW5lu63MT84rvPitugH4X894TbJE1J8zsjguJ8Xh31r/C2bXw5yv/Hi8UHO79lxe4pxNOYeL+4T5Pp58Y4g9zUvrpcjd09wfGoTP++5NI/zWpB7RVpea/STQdOFr7/f6+cnaT7P/5ejNd7Dx4Pj5vYEagnzvPgHKc8S+X5wfLwX/0+Q87/Pws/z5+h/D3I/S/P8TbUgOB7c6FmZ5eHg+Fkv/qoAQLxxJxAAAAAAAEAMsAgEAAAAAAAQA227RXyWkeyCxLrT7vLdKteltEsU79iib4KvqXPFBz169VS5hmp3U3xdXZ3Kvbbq9Sjes2ePyp3Qz22xXlGht+VetMSVKeV3yFc5yXY3NI8aO1qlrp3kSrnu+7nbTHjezLnqvMFDh0RxTZXePLTa2979kb//TeWWvOzKysZeoAsTcnO9jTLr9euwfq3bsPqiiy7Sj7nEbao6eaLeBHS2t0V9bb2+efviCRdHcV72ve5z5ujyok5dXIne3Ll64+qcfPeY+/br92DFymVRXPOqfu7qGveeP/vcFJWzNe79eeXlV1Vu/163+fJFF+rXocYrcHlmui52KO3trjmbq0uh/vigKznsdULvKG7I02PO7+Suo4r9+j3vN8CVda14SxdPDBx0VhQXd+qkcjlF7jHLKvTG1lOmuRufq7frLe+r97jXevyES1Vu5qw5Ubxnb7DJdkPy+Sxrx63l/4JjvzBxXpDzv2PC7W79UiG/kDOYzZq8LW64DW+4/XpLC7c/9sviPghyj6R4jKeC4xMbPSvBfx06BDl/W/jmllX8NDie6sUzJbXOwfGFXtwS5WA9D31Ko7oHx0O9eFuQ89+fHzbz+dJdD2h7vwyO/aLsLpJaa5eDtbffebH/E1o47/q+HhwXNHpWQrpC7LEp4iPhl8bOCnK/9eKdQe7HLfAFWA5+AAAgAElEQVTcfpOGC5v5GKcExyd78ZQgN0QAIF74bQ4AAAAAACAGWAQCAAAAAACIARaBAAAAAAAAYqBNewKJEbHJ5gvVQVeJvbWuc0Vuse5AkVXg1qoGDh6ocq8s8rZ+z9VV5uWVrg9Qp266n8qeCrclfffeJSpXVrkrim+8+kaVe/KpJ6N4+pznVa4w13WTOGuAG2dBoe4yMXeh22xz6CC90eaCua7zxwUTdN+a4cOHR/Gs2Xo79wbrqsWrq3UHhY997GNR/MTj/1C58ePdBss5Wfp1Hzni/Ciuz9Ov35z57vnLK11/p6Ii3cXivJHDotjYGpUrKHbb3H/nXr1Z8f79ro/NJRMnqdzGTa7rRF2D/lqzstxjDveeW0Tk+afd+7Vwid70urjQVe0XddCdUkaOcI+zY6/uZbXyDbfZdNkuN67hw4eq8xa9NNc7T/e8uuYqtxX76rdWqNy+Kvd90bN7b5XbVuYeZ3+N/n7K96657MJildu3z/UkqqnX73ltvfteq6/PVbkVr64WEZGqoI8VWs73gmO/18JAaR7/O7c0yC304klBzu85szvI+TPtk0HO71sRbtl8bmMDTPJ7/VwX5I7z4rA3UlGKx0vXAyjk9/I4LuVZB/dGSsfvxRT2BFrjxU3toSIi0uswnj8V/71rak+o0PA0x+8GOf89D6/vdK9nU68HtA3vJ62D3uNrvDjs2eVfw37nunXBef6/UmGvKr9T3quS2orgOOyx5vuoF6f7Hgz5/dfCbdr9DnsTpGnS9QAKTT70KUckfG3v9+LfBDn/fe0W5FpiS/qWkG6eeiDILU1xHoDDM8CLw/59/9bMx/T/7fhjkFvgxeGixtVefLMXp+uvFifcCQQAAAAAABADLAIBAAAAAADEQJuWgzWYBqnJSpStdCzVN/FbbwvyaS9OU7lrLnflMssX6y20Bww8LYprgtKg3//J3eRfVlamctnZ7kb0Lbs2qVz3nm4D3Fnz9Qa+Wd5en6Wl+ibY+v2ugOL1Faui+M4vflGd17WH+7zcYAv6T33m9ihesnixyo0c47agHzVqpMqVdHE3NM+ZM0flHnnUbWM+ZqTePHTFCvd6nj1QF5zk5boblWuyalVu8PBBUbz+/XeiePeOzeq8Aq/MausWvXnwZ276dBRPmaI37MwucoUKJluvVRZ1ctfO/lpdBtWnZ48ofu2V11Xu5k+60r4J43Sp3V9/d38Uv/7WmyqXtd/dAN6lQJdIDTvz9Cju0KnQJUydOq/j6e467XncKJXbsN7dGJ9TrbdzX7/6jSjeH5Si9e3fzx3U6vene7ErAirbrq/9vGz3bb+/Vm80fe+P3YbYP7r35yrXp3f/xOfnpdvwFkfiw+DYf1fDLZX945eC3Oe9+DUvzg3O849fCHL+lfHrILfHi78Z5PzbbMMten1rg+NxXnxDkPPLqVrjLxdhuVFL8G9fPj/INbX8ZEdw7G/N3RJbxIclc2d48aYg11uaJixv8f9VbghyfjnY2iDX1OvhcEr00DLC0tTnGz3rYH4Z5LNBzp+Lwu9Hv7wgLD3yLQ2OL05zbkmanG99cHyvF98T5FqiXDOd1i5T+l1w7G8Dn+77LFO3iE8nnIObW+QeXh9x5P/UGpZr/8WLw/LwQV6crsyzuWqCY7/5xuo0n7fBi/u03HBanF+WG85Fi7zYL00fHZznl26eJqmFP38+6sXhvOT/7BD+TLtIUvN/q90e5PzfXN9O8xgh/5rb6MVfP4zHaGv+b6DfDXIve/HeIHd2M56LO4EAAAAAAABi4JCLQMaYPxtjthljVnkf62qMmW6MWZP8/+H01QOAw8ZcBCBTMB8ByATMRQCaoyl3At0vIpcHH7tLRGZaa08VkZnJYwBoTfcLcxGAzHC/MB8BaH/3C3MRgMN0yJ5A1tp5xph+wYevFlem+1cRmSMi/3Gox6pvqJc91Ym+JmX7dX+TrAa3HnXpJN2vZcbs6VHcpTBYzM5xXQa+871vqVTZLte5oqhI9yAaNcr1Zbnyar3x5pf+/ctRbIKtt4cMPyeKX1ule85kG9fH5uc/cd0bfvWLX6nzho86L4r3VFao3Kc/d1sUf/7Of1W5J590mzGPv1hvQFpd7cY5dOgQleve3fU4mvKU7r2TY9zrnpurO4YsXuKqN089T2/uXNDBXTqnnHZyFI+65aPqvFNP6usOrO6T85f7/xzFpaV6U9hNO11FaEVVucoVl7h+N7U1+jH7e31yRo/Q1a+vLnP9j6Y/rzugrF/2VhRfcZn+t3Tq009E8RmDdDeEk72eVMOGu9c9P+gdlJPlOqWU79HX/gm9XbeNjRs3qlzPvq7LQHmVvlYee/qfUVyaq/v07HzfVeJ2K9WdP2ytq+694ILxKvfKctdBZse2XSq3aEGiR1VVlf6eaCstORdlqnBCbmrTtsLg2F/dT7WFeihd/55wy2bfgDS5kP/den2Q86/EbwW5sPbZ5/cg6pTyrLbn9xL4Zcqz0usRHId9m1qa37NnWJC7zYu/FOT8nhCfCXJ+f5ewJ1VrXA9tJQ7zkW94ivhw+D2uPh/kmjpPpevlE97qcHKjZx2a39nw50HO/2kuT44tYU+Qpv7709ZbxL/oxd2D3NA0n+fPN2FPqvua+Nybg+Pw+mgP7T0XPejF4fd1e7o3OE7XB6ilPR0c/5cX/zbINbWXy2vBsd83b0+QO92L/X5XU4LzlnnxG0GusxeHvX0+58Xlklr4/eEffyzI+T2Bwu/rW9PkrvXinwQ5fy7y+1NlUk+g3cHx2DQ5/+ftsOfV/GY8d3N7AvWw1h6YC7fIwT+rRowxnzXGLDPGLKssr0h1GgA0R7Pmou3bw7ZzAHDEmjQfMRcBaGXMRQDSOuLG0NZaKwc3Dvfzv7fWDrPWDivqVHykTwcAjTqcuci/Ow4AWlq6+Yi5CEBbYS4C0JjmbhG/1RjTy1q72RjTS0S2HfIzRKSkcyeZeNVEEREpztM3/25e78pgiks6qFx+kbuJfPt2fTPmrm1u5fq6ydeo3D+feCqKCwr0jcLbtrtN7H70nz9QuTu+dEcU332P3gC5e4+uUbxvub6zqVOhu1H51k+4m9dys3WpzksL3Nbvuyv1TXxf9LaT//JdX1O5ZSvcJoqz585Subu+ebd7vqCsa/uWrVF8Ql9dGtTQ4AoAKsu/o3KdOrniitv+XW9z372ruwF4wEn9o/i++/RNtRPGuhvb3nhtpcrdcsMno/jPD9yvckWd3XMXd9LFLlWV7ubGjh07qtwrr7iSr+oqvelnQ7XbcPurX/qKyn1u4i1R/OKjj6pcSWe3eNmza1eVm/nM1Cie+oQrG+t5Ql913sY170RxaTf9GPX73U19hd30jdXbN7gNSF97U9+suXy22xh8+Gi97fxJpe75N++rVLmPXPORKL7723er3LPPPRPFVZXVKlfSMTHurCwjGaRZc1Fz+eUyYamBf7ts+NOWv23q2iAXlsg0R/4hjo9UWA4W3obaVAu8eHmQ848flOaZ6cUXpTyrbXzgxWHJnF8W01Uyh/9XofDWYr/M66dBzv++CLdz/02a52vt66EdtOl8dEC47e6TXjwnyP27F385yPWW1uWXT7XGvyJhWWxz3eHFJwW5H8jhC7dlDpu3ZIrqQ5+SES714nA7+oe9OPx30C+tCEtaC5r43HcEx+H1kUHabC66zIufCnLTvTjdvwUtxS/5+s8g55ex+tvAhyV+LWFLcOz/W5eufCqds4LjT3vxtUHOLynyGziEpbyrvPjJIOc//olBbr0XXx3k5khqD3jxx9OcF/pGE88Lf+7zy8HSLXj4P++EJXOt4f95cf8g578PHYOcX+4a/p7h/xb4sjRNc+8EmiKuRO9WObj8EQDaAnMRgEzBfAQgEzAXAUirKVvEPyyJPzQNMMZsMMbcJonF90uMMWtE5GI5eDEeAFoUcxGATMF8BCATMBcBaI6m7A52U4rUhBQfB4AWx1wEIFMwHwHIBMxFAJqjuT2BmqWhoUH2JfuT+H1qRETWvu06KJQOL1W5M05zHRVWV+lN/q67xm1A+z8/0f1ohg5y1XPr1q1TucHnuOrK4qBh9XHd3PMPGaQ371uy2FXfjx2j+7A8eNefojjf63lUVak7aJw3ekQUL33tFZUr21cWxR2L9YbHe8pdRfOGzRtUbsVK1y9o3dq1KtfN6zNj63QV4fRp06K4a0lnlftwnXuO/Bx9qfTr63rOvLJkaRSfP2SEOm/JArcB4e6dO1XuW1//fhR/46vfVblP3PbJKO7YTW8K63/thcW6f1R9nddfJ09v4Dp08DlR/LOf6j+K3PkR1/Hi7nu+rXJZ+dlRnJ2rX4ehw91GytNmuA2cr73mKnVeYbG7HnJz9Lj217oNlret0xsxdvF6EI0ePU7lFi5eEsV791SpXHV1fRR37KVfvwbrKv/HXzRG5aqqXO6tVe+o3DlnDxQRkQ6F+jWPE//WyQ9SntX2wu28m7NVZDq3HfqUJrnQi8P+Eyk7eh+Glu6FdCT8XhHhNp/ptrnOFGHPK78LXWWQ82fFw3kPLvTi5l4PTe3lcSwbeYjjTOHvT33Eu5I04rst9DhPHPqUY9LnDn1KRvD7SaXrFRLOKS3x70O6ayMTtotvD/1SxCK6/11rCP+d8HvXhb0Lf+TFYe+6o0E4Z/6iiZ/n/xt5XpDzewJtkKbb5cVh/5krvPilIDfViw+nJ1A6dV4c9oHyfSJNzv9N/L+ObDhNMtmLw55AFzTxMcJrP7vRs9JrjX+HAQAAAAAAkGFYBAIAAAAAAIiBNi0Hy8nOli6dEjfCV5bp7dW7dnZbuNfX1qpcfq5XPtOgNxZd95YryrjzX+9UuUcfeiSKT+jTR+VWvvpaFPc/pZ/KVZTvdbl+egPInBy3bvbSgoX6a+jSPYo7e1/Ptp3b1Xlz5rgNo4u76pKvTh1dSVZtfZ3KLVvuNs29+mq9Kd+DD/01ikeM0CVZ9Q3u9ays2Kty+/e7MiLbSW9Gd+VVE6O4OltfKksWuRsA87PcJtfvvLFGnVdb5TYP7pTXReUuv8KVTH3/Hr3pcHGOex26Fh6ncudc7Mr8cnL19TBvvitaGH2e3gxx+bLFUVxXHdwo6pVrVQVLo5s2uZsk18/WhR3derpyrZ/99tdRfN8ffqfOy892D1pVrq/9bn4ZXr1KSXmFe3+KO+tyvT/+5f4oXrtlo8qdfMppUbx7p94Ac+68GVHsl/yJiBx3XI8ovugyvbHtc88mSgcrq/Q1hMzT5dCntLu8Q59yzDgayr8OR9GhTzlscboe4qq1/+rYGtvOx0npoU85qmRSeTBax/8Fx/5vZTcHuUu8uFaaZ54X/zPNea+lyf0qOP5HmnPv8OKwRLs5FqfJnZMmF/K3nQ8bUvm//SwJcn45ZVjO1Nz5+24vnhfkLvPir6Z5jC+miNvb6uD4J14cltqtkcPHnUAAAAAAAAAxwCIQAAAAAABADLAIBAAAAAAAEANt2hOorq5edm5PbCx38om6unHKMldduem9TSp3/aRro7ikSG/nXlRYGMXDB+uNkv2ePc8884zKjR/vNmG79fZPqtw933BbhP/t/odU7mOfcpvadeqk+/kUvu86Jdz7Q1e5990ffUed9/o7blO+vv1PULkv3/WVKH7yySdVbt4iV+24ZNlSlSsudq/Lm6tXqVynkvOjuLpOV8JOnOgqJqdOnapyVVWuH83WsnKVu/7qj0TxR65w8d/+8IA6r0cX12Nmzoy5Kvfkn9x73qlAV6OPHXFRFM99WW94PXjYWVE8bIje8HDqM+41mz1tpsqNGzsqijsW6W3Of/iz30Zx/3MHqZxd53olnXHOmSr3/nrXk2r60kVRvP7Ddeq8LsXuWpn23PMqd93V7vou371H5bp1c32mtu3S/YimL3TX98ixevv4GS+7nk2TJ+pK33FjXM+oOXPmqFx9veuV9O57b6jcyDFDRESkuLhQAAAAgLbk/4Z4V5Dr7sVh752W8KoX39fMx3j8MM69xoub2xPI/y32jSDXz4snHcZjnu7Ff05z3thDHDfHB8HxL7w47Gvmf+1H410vHwbHf230rAT/t9p9TXz8o/E1AQAAAAAAwGFiEQgAAAAAACAGjLXhJm2t56yhZ9nH5ybKdarKK1WuZ9eeUTz3xTkqd+F5rnRr/64qlfvg7fejePyoC1TuogsnRHFOjq58y852m9E9OUWXXT077dko7lyqS75qvHKZwcMGq1zf7FOiePYzrhTpl/+jbxqsz3Hbpm8v19vHT583LYobchtUrtbb1LCqVr9+hd4W59X79Wv00ktuI7kxo/S23wW5BVGcFWzQN2em225dcnQJUGGuu/FsQL8BUXzn7V/QY97rxpxt9CbARYVu4+Qv3HmHyu2scOVnHbvoDYn3VruSqbwOeh3z1//zsyjeV6VLq4o6uK3s9+/T27Tf711zBYX6a338n+7mzaJuHVVuwiWubG37zm1R3Kd3T3Xerq3ufe7VrbvKPf7wI1F8xcTJKldT6+0Zn5Orcrkd3Ovy1NRnVa6kq9skfNxQfYPklVdeGcWPPvqoynX1xla2V79GRcmSw0kXXCcrX1l1VO/GO2zYMLts2bL2HgaAI2SMWW6tHXboMzMTcxFwbGAuOtifvPj2IOf/BvWqNN1nvfgPQe5ULx4kqfnbu9cHOb8s6ktB7hJpmnDr+s978YIgN1panr9F/XgvLgvOe9qLJ8vRYWpwfKUX/0uQe6yJj+lvLf/PlGe1HP833sMp8/ObgoSlfV/z4sVNnIu4EwgAAAAAACAGWAQCAAAAAACIARaBAAAAAAAAYqBNt4i3pl7qOyQqEks66D4vO72eKcW5umfKktnvRfG5Z52vclneRmi76nRl59/mu14ruSV6vevJKVOi+LEV0/VjlnR2n2dLVC67wbVCWTznPZVbUVUXxZNvcP2IdhTrrb1HXTI8il9arqv6dntbve+vrlO57DzXJ6ews87tqnDbwncs0a/fJVdMjOLHH5utchdf6saZV6R7Ce0qdO/JuHE3qty8WW578o1vuud+aLau1tz4wcYo7nFcscq99LJ73XcFm/7ZLtlR3PP001Vuz5vust1VqXta3f6ln0bx8GGnqdybK91W89XVu1SuosZVytrcWpW79torovjFF/S1sniWq+7dudO9z10vu0ydV2hcL6HtW8pVbtyFl0bxrHnzVe6iiy6M4pxgyXbGNFfNe8V4/X2Rne1evxkzV6rcl778OzeuoqEqt2OH6wO0cOGbKterbx8REamqDCuoAQAAgNa1PU1uTYr4cDznxVc18zHa2srgeIIX+7/t/Do472jpA+QLt7Lf78XZ0jx+T6r7Up7Vcq7x4sPpCdTFi8cEue958eVNfDzuBAIAAAAAAIgBFoEAAAAAAABioE3LwRoarOyrqhYREWv0U+fluC3Ht23bpnIDermNBFev1uVTGzevj+LdNZtU7uyR7iarDvn6JrHRo92mfG+t+lDlxo13pTzPPKrLmy4Z526ye//tt1SuIcttgT7laVcmZLN1+cy8+a7kp9Z0ULnp01250cWXXKpyeyrctvDZ2dUql5+fH8U1NTUqV1W5M4oLCwtUzv+87BxdBjVqlLvZbNq0F1TuX669OYpnTJ0bxX/844PqvDHnudK37qV66/Vzzz03iiurdYnUm2+5Urs1a95Wub0VrgTskgn6NVq53JUwLZq/SOUmXj4qiufPf1Hl3n///Sju1bOPynXr1i2Ka2v1ezl+vLseKsr3RvFLC19S5xUUuNe9srJS5S697GIXX6q/nhdffD6Kt+/YqnK9eh0XxXkF+n2tq3fXwNhxZ6vc2rVro3jBfH19X3ypu/ZHjdafV1WZuOkyJ6xLAwAAAFpZS2zh3dGLK4LcBi/uI5lrhRdfHOR2evF/ePEXWm84bWZhcHy3F38qyH26iY/5xRRxW6gMjm/34m8EuXO8uDbIzWjGc/PbHAAAAAAAQAywCAQAAAAAABADLAIBAAAAAADEQJv2BMrJzpbOnRIbnO0Otsle/4Hrd9KjRw+VW7HylSg+rd+ZKndiv+OjuLxGbxzY4LVvKSrspHL76xqiuH//fir30iLXs6dHz1KVmzHDVd316n6cyjXUue3qa63rydLtOL1l++79bpz1DXodrmOhq1StqdF9f3r0cI9TtldvO9+1s9t+vWafSkm21/fngrFjVW7p4iVRfPrZuvo1v4PrVzRmjN6Mbv68OVFcXeM26DvrrLPUea+/7no4bd+2VuVGjHTndinsonI7d7qK1uKSfJWbMMFtfrdgwTKVq9vvXrOshgaVmz/fVZLW1+vePmWb3SaKY0eMU7ndu91rfeLxJ6rcA/c/EMU9e/aM4vHjL1Ln/f3vf4/iW2/9hMo9/Mjforhr184qN/Rc1w+r/0knqdyjjz0cxTm5+jravsONuXtX3S+oQ767QAo76Iulvtb14+raWT9mv+N7Jz6/Q64AAAAg3vweJm8EuW2S2jtePDLI+b81TWnOoNrZ9cHx+V58SjMf863gONU28CL6Do85XnxGcF5dmudb4sVdUp7V9v47OF7gxeuCXFN7ArWn8Pp+JEUsItLXi/cEub1y+LgTCAAAAAAAIAZYBAIAAAAAAIiBNi0Hq69vkMqyxGZoXTt1U7mGTq7EZNNmXdZ19iBXNrTlQ50r7ui2Hd9XrUtbcnJcGUxZmd4EcPmy5VE8bux4/Xn1rvxo1VJ9A97xx7vys6GDh6lcjfcUaz5wm7d9uP1NdV5OkVt7K+7UUeXKK1xp1VNPP6lyN9w0MYoLgi3BN21eH8WF+bqkqNArFaqt1pvKbdrgNkO0Vt9MNnqsK0WqFl1aNWjQoCheMGtJox8XEWnwyrPK92xWuQUL3E18NbJf5SZOnhTFs2YtVrnps6ZH8ajh+r179y23nfyEcaNVrmyXKzlc9bp+zL3V7qbIZ595XuXGjXPlYX2O661yXtWfnHXOwCh+7pnn1Hmn9j85iv3yMhGRG264wY2xXOf8mzWfe/FZlcnJy47ih73SMBGR2z51m3u+LW+rXLa4QW/Z8KHKzXjePX9hB31tnjt0RGJENeHGhAAAAIgbvwTs5cP4vKo0n9dXjm7dDnHcHMuD47AEzOf/xrY45VnpNRz6lHZxS3C8yIs/05YDaSE3BcclXvyHIPeKF5sg55dULpKmOeSdQMaY440xs40xbxpj3jDGfDH58a7GmOnGmDXJ/2dSySCAYwxzEYBMwFwEIBMwFwForqaUg9WJyFettWdKorfVF4wxZ4rIXSIy01p7qojMTB4DQGthLgKQCZiLAGQC5iIAzXLIRSBr7WZr7SvJeK+IrBaRPiJytYj8NXnaX0XkmtYaJAAwFwHIBMxFADIBcxGA5jqsnkDGmH4iMkQSJYY9rLUHmrxsEZEeKT4tkp2VIyWFXUVEpLpCVxsW5LnePmPG6C26577oeseU9tSVlaec4jbbe2et7t+zcd2mKO7VXw/vjAFuq/nFL+vqua2b3PbkV196nR7L9KVR/PIivT352ee43kW14nrhDBo8WJ33yuuusvOiy/TGiHv2uH4rK15foXLzF8x1j1+3ReWKS9x63sTxV6ic32Zm/vy5KtfvBLfl+bbt61Wueq/bRr1bzxKV27rRbU7XIT8visvKytR5/pbxHQrOVLkXZz0VxZdcrnv7LFrqKoTzCzuoXF5eURS/9/4aldu0yb3nH36o+/ecfOJxUby3XPePKvV6/Zx88skq99Jcd33U1NSoXIE3trkz5kXxxMsmqfNmeH2MZsyYqXJXTHZb3ufl6W9Ja13V55lnDVS5+fNnR/FHb7pB5Va/674Xehbo1++k493jvPf2VpW7+KLLojg7K1/lnn32BRER2bu3Utrbkc5FANASmIsAZIL2moua2n8kkzRnO+32FvbCCY/jIlzNPNZWNyeliA9H2C8olSbvDmaMKRaRJ0TkS9bacj9nrbUiYlN83meNMcuMMct27UjXxgoADq0l5qLt27c3dgoANBlzEYBMwFwE4HA1aRHIGJMricnlb9baA1tWbTXG9Erme4nItsY+11r7e2vtMGvtsK6lXVtizABiqqXmou7du7fNgAEck5iLAGQC5iIAzXHIcjBjjBGRP4nIamvtL7zUFBG5VUR+nPz/04d8tgYr9ZWJMrCchjyVOr6P2xBwwfSXVO7cEedG8eKX9I2HQ0rcluRnnnGWyr0ww23Tvert1Sp3XB+3/XVdvS4Nmnj5hVG86KX5KldQ4LZf37tHb2v++hq3edumrWvdGMdepc7btNOVcm3fskPlSnv0ieLBg/V26zPmuPKpa66bqHKPP/7XKP7bI4+o3MjhF0fxxEmXqNy0qbOiuEdXXT716hK3tf2ubD1OqXHvX/eS46N41crX1Gm23pX9XX75BSo3duzYKJ63QJepDR423I1x+kKV65Dn7moddN55Kpdn3Lbpq1fr97wof0AUdyrS5W2nnnSG+7w3dVnhZePda/3CjBdUbug57tpc8dqrUTxzmi75uuSyS73z9EaPWcZ9G9bW6Wsqy/sO7VKqN3coKHIllFOm6m+/yZMnR3FumS7rqqpwG3N2LemvcnvL3E2Effvo66FDduJ1z5JcaQ8tOhcBQDMxFwHIBMxFAJqrKT2BRovIx0XkdWPMgSY1d0tiYnnMGHObiKwTkY+2zhABQESYiwBkBuYiAJmAuQhAsxxyEchau0BS9xia0LLDAYDGMRcByATMRQAyAXMRgOZqcmNoAAAAAAAAHL0Oa4v4I9VQb2X/3sQW2zlGP/X+Brel+tChw1RuxSuu14rNrlO5l5a4nj17gm2/+/Zx/U4asvTW3gMGuh5EHYrrVa56n9sCe/QY3XPmiYfdttz9jx+icsMudNutz5zltpnftHmzOm/Aaa7/zKsrV6nc/ho3lk6di1TuX/7FbVe/eed7KvfxWz4dxbv26G3aly183Y0lX0aeDp8AACAASURBVO/QtnOX6/Uz+VK9Gd30F6dF8dgrzle5Lh17RvEjf50axX1L+6nzqr0eN48//rjKTbpqXBSff75+/GenPR/Ft3/qTpX78/1PRHF+QbbK7d7pvr4cqzdDeG/N+1F86ilnqNzyl12fnqxs/ZgzX3D9fbJE595YudrLuV45F4+/VJ03/YUXo7iiWm9Oub/WXftnnj1A5aoq3CYPJ3Ttq3L9T3HX98knn6RyTz/ryr+vPk9vJJmX5/o5DRkyUuVeWrg4iuvr9dbyHYoS/bDC1wcAAAAAcHTgTiAAAAAAAIAYYBEIAAAAAAAgBtq0HCxLsqUwK7E1e4/S41Vu44btUdwhX29pXbnPlcR0Le2kcps2ue3We/TQJTE7d1REcXa+Lg3Kz3Xba1dWrFe5Hj27unF9sEnlTjnt1Cg+ofepKjd1utua3Ta4Pm0ffLhOnVe+25UD1dbocfX3SsqqanXZ0OYtbiz5xfo1+nCrKznrWFyscqMvGBXFZZv1FuTjR7q+cU8/+rzKFea6x5k/f57KSY0rffro9TdG8Z7t+vH9Ur6bbrpR5R5+/I9RfMVHLla5G29x5y5cOl/lrrv+miieO22xyllp8I70GufOHa5MrnZflcqVFLv3fNCgQSq3aPFLURx+w9TXuvK9kaNdadWLXvmXiEhpz9IovnSELhWb8rwr3Vq9ukHlzh0+2I1/506V69OnTxRv3bFd5S6//PIonve8fu9GjBjhxl9XrXI2tzaKO5ToreB3VmwVEZG6el2SCQAAAAA4OnAnEAAAAAAAQAywCAQAAAAAABADLAIBAAAAAADEQJv2BKqqrJJlCxM9YrLMap20rv9IXYPuUzJm/OgobrC6l8vuCtfnZcjgc1VuwbwVUVxfq7eIX7Lw5SgePkr3J6ood/1VSjp3VrmVO11/n9071qjc2ImuJ4ytc+trSxa+qs7LMm6L7oI8o3L+VuLDx+jeNEVFbsvuWtmncjkFLlcT9GyprXe9kYpLdL+gsj27ozgvW/eAkXo3zgvHjVIp0+C2r58+3Y053+jXq77e9Twq21OpcpMmXxnFM2c/q3Lnjz4vik86+QSV21vhxlzfoN/XrCw35iyrX9s8rw9UbU2tytXXu9dzyaIlKtfg9XfKz9ev0T5ve/eXFrhrqriDfp0HnzMkimfPmqtyEy+9LIrnLJyjcnPmuOPzR49Qublz56bM1VS7a2DYqHNUbtES93nDhuvvmZps139r7hLdI+rCSYnvw1/8olAAAAAAAEcf7gQCAAAAAACIARaBAAAAAAAAYsBYaw99Vks9mTHbRWSdiJSKyI42e+LUMmUcIoylMZkyDhHG4jvRWtu9HZ//iDEXpcVYDpYp4xBhLKGjej5iLkqLsRwsU8YhwlhCzEUtL1PGkinjEGEsjcmUcYhkxliaNBe16SJQ9KTGLLPWDmvzJ87QcYgwlkwehwhjOVZlymuZKeMQYSyZPA4RxnKsypTXMlPGIcJYMnkcIozlWJVJr2WmjCVTxiHCWDJ5HCKZNZZDoRwMAAAAAAAgBlgEAgAAAAAAiIH2WgT6fTs9byhTxiHCWBqTKeMQYSzHqkx5LTNlHCKMpTGZMg4RxnKsypTXMlPGIcJYGpMp4xBhLMeqTHotM2UsmTIOEcbSmEwZh0hmjSWtdukJBAAAAAAAgLZFORgAAAAAAEAMtOkikDHmcmPM28aYd40xd7Xxc//ZGLPNGLPK+1hXY8x0Y8ya5P+7tME4jjfGzDbGvGmMecMY88V2HEuBMWaJMWZlcizfS378JGPM4uT79KgxJq+1x5J83mxjzKvGmKntPI61xpjXjTErjDHLkh9r8/cn+bydjTH/MMa8ZYxZbYwZ2V5jOZYwFzEXNWFM7T4fMRcd+5iLoufNiPmIuSjtODJiPmIuah3MRdHzMhelHhNzkR7HUT0XtdkikDEmW0R+IyITReRMEbnJGHNmWz2/iNwvIpcHH7tLRGZaa08VkZnJ49ZWJyJftdaeKSLni8gXkq9De4ylWkQustYOEpHBInK5MeZ8EfmJiPzSWnuKiOwWkdvaYCwiIl8UkdXecXuNQ0RkvLV2sLfNX3u8PyIivxKRF6y1p4vIIEm8Pu01lmMCc1GEuSi9TJmPmIuOUcxFSqbMR8xF6WXCfMRc1MKYixTmotSYi7Sjey6y1rbJfyIyUkRe9I6/ISLfaKvnTz5nPxFZ5R2/LSK9knEvEXm7LceTfN6nReSS9h6LiBSKyCsiMkJEdohITmPvWys+f19JfLNcJCJTRcS0xziSz7VWREqDj7X5+yMiJSLygSR7d7XnWI6l/5iLUo6JuciNISPmI+aiY/s/5qK042r3+Yi56KCxtPt8xFzUaq8rc1HqcTEXWeaiRsZw1M9FbVkO1kdE1nvHG5Ifa089rLWbk/EWEenRlk9ujOknIkNEZHF7jSV5a98KEdkmItNF5D0RKbPW1iVPaav36T4R+bqINCSPu7XTOERErIhMM8YsN8Z8Nvmx9nh/ThKR7SLyl+Ttl380xhS101iOJcxFAeaig2TKfMRcdGxjLmpEe89HzEUpZcJ8xFzUOpiLGsFcpDAXaUf9XERj6CSbWLJrs63SjDHFIvKEiHzJWlveXmOx1tZbawdLYoX3PBE5vS2e12eMmSwi26y1y9v6uVMYY60dKonbYr9gjBnnJ9vw/ckRkaEi8jtr7RARqZTgtsK2vm7R+piL2m8uEsm4+Yi5CO2mPd7TTJiPmItSyoT5iLkohpiLmIsCzEUtoC0XgTaKyPHecd/kx9rTVmNMLxGR5P+3tcWTGmNyJTGx/M1a+2R7juUAa22ZiMyWxO18nY0xOclUW7xPo0XkKmPMWhF5RBK3Gv6qHcYhIiLW2o3J/28TkX9KYuJtj/dng4hssNYuTh7/QxITTrteK8cA5qIk5qJGZcx8xFx0zGMu8mTafMRcpGXIfMRc1DqYizzMRQdhLjrYUT8XteUi0FIROdUkOonniciNIjKlDZ+/MVNE5NZkfKsk6j5blTHGiMifRGS1tfYX7TyW7saYzsm4gyRqXldLYqK5vq3GYq39hrW2r7W2nySui1nW2lvaehwiIsaYImNMxwOxiFwqIqukHd4fa+0WEVlvjBmQ/NAEEXmzPcZyjGEuEuaiVDJlPmIuigXmoqRMmY+YixqXKfMRc1GrYS5KYi46GHPRwY6JuShsEtSa/4nIJBF5RxI1jd9s4+d+WEQ2i0itJFbvbpNEPeNMEVkjIjNEpGsbjGOMJG4Ne01EViT/m9ROYzlHRF5NjmWViNyT/Hh/EVkiIu+KyOMikt+G79OFIjK1vcaRfM6Vyf/eOHCdtsf7k3zewSKyLPkePSUiXdprLMfSf8xFzEVNHFe7zUfMRfH4j7koGktGzEfMRSmfP2PmI+aiVntdmYssc1ETxsVc5MZyVM9FJvlFAAAAAAAA4BhGY2gAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAAAAAAIAYYBEIAAAAAAAgBlgEAgAAAAAAiAEWgQAAAAAAAGKARSAAwP9n787jZDvKuoH/SnYIEAIxBAIGWWRxAY2AgBpklUVEENkkURZREHgFBVlEBHwFfBEQRTYJsgqyiqggAgpKIEjAhLBKIIGsQCAgW0K9f5xzQ93KTN+ZubP0vfX9fj73c5/Tdfqcmp7uZ7qfPlUFAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBGIIpZT3lFKO3ul+AEkp5cRSypFzXEopLymlfLmU8v4d7tqWKqXcupRy8k73AwCAcSkCrUMp5eRSypmllMs0tz2glPKuNdz3XaWUB6zjXDcopbytlPKlUso5pZQPllLusMGur1kp5XallH8rpZxbSjmrlPLuUsovzG1HllJObfbd7Wea279cSrnnKsd+eSnl26WUr80/19tKKdfZ6p9ps5VSrltKOa+77cGllH/ZqT4xnn05H9Vab1Br3dXPWyS5TZLDaq03ns93uVLKs0opn5vzxafn7Sv1/V8hL128lPL6Usp7SymXW+FnuVYppc7HPbeU8plSyu9u9GfZSaWUV5dSHt/ddnop5RY71SdYVnPOvPUKtz92zgNfK6WcWkr52xX2OaaUcl4p5dDu9j+c88k9mtsuOt92+Lx9WCnldaWUs0spXymlnLDSl1JzP742//tmKeX8ZvszTfy1+fhfb7Z/eu7jt7v9fmUTHjpgC5VSblFK+Y85P3xpfv/yk6WUo0sp72n2O3l+jV+pu/+HupxzTCnlKaucq5ZSrrXC7Sc2eeP8OQft2l6Um05sjtvmpHM28zFi8ykCrd9Fkjx8G87z90nenuTKSb4/ycOSfHUrT1hKuXuS1yb5mySHJTkkyR8kufMa7nvbJG9M8mu11lcv2PWPa60HJLlqkjOTvHBv+72VSikX3ek+wAL7VD5a5fX0A0lOrrV+fd7n4knekeQGSW6f5HJJfirJF5PceA/Hv0SS1yc5MMlta62r9rHWekCt9bJJ7pnkSaWUW67359lOchFsvlLKUUl+Ncmt5/cmR2TKP+0+l0lytyRfSXLfFQ7zpUw55CKrnOZlSU7JlOuuOJ/vjH6nWusfz3npgCQPTvKfu7Zrrddo4gPmu/xYc9u/z7c9vd2v1nqhghawPOYvq96S5M+THJTp89GTknxrlbt8Jsm9mvv/SJJL720/5i/nduWXf0/y0CaPLMpNN2gO0+akA/e2T2wtRaD1e0aSR5VSLvTkLqXcrJTygbmS+4FSys3m25+a5KeTPHeujj53D/tfKck1kryw1vrt+d97a63vmduvUEp5S5mu1PnyHB/W9ONdpZQnz5Xkc8v0Df6ub9AvWaYrcr5Ypm/0P1BKOaSUUpI8M8mTa60vqrV+pdb63Vrru2utD1z0gJRS7pTkNUnuXWt941oexFrrN+b73LA71gNKKR+bf65/LKVcrWn7+VLKJ+bH68/nn+/oue0ppZRjmn2vVUqpq/T32qWUd87V9rNLKS8rpVy+aT+1lPK7pZT/TvL1FQ7xb0ku0lS7b5TkWUmOnLdPn49zmVLKc0opp8x9frcPcmyyHc9H8z53KqUcP+eU/yil/GjTdnIp5dGllI8k+XqZviU/uUxDo+6f5EVJfmruy5OS3C/J1ZPctdb60TkPnVlrfXKt9a2rPRCllEtnKlZdNMkddxWV9qTWemySj6XJRWX65v4Nc479TCnlIe155hx6Tinlo6WUx5R5iFfprgCYb3t5KeUPV+nz40sp/zPn6RPLfNXl3PaAMl2V+ZxSypeS9Ff8PCzTB9MnzI/da0spr81UpHvbfNvD5n2PLKW8b/7dfq6Ucu+1PDYwgJ9M8s+11k8nSa319FrrC7p97pbknCR/lOSoFY7xT0m+nZULRLvOcUyt9eu11vNqrR+qtf7j5nQf2MddJ0lqra+qtZ5fa/1GrfVttdaPrLL/yzK9T9rlqExf3sO6KAKt33FJ3pXkUe2NpZSDkvxDkudk+qbnmUn+oZRyxVrr47J7VfWhi/bP9I33p5K8vJTyi6WUQ7o+fF+Sl2T6VunqSb6R5LndPvdO8muZPhBcvOnvUUkun+Rq83kfPN//h+bb/m6dj8edMyWkuy/6gNYrpRyQqZL9qea2uyX53SR3SXJwkmOTvHJu+/5MRaPfTXKlTJXwhVcFLDp9kqdkuqrh+kl+MMkTun3umeTnM11R0PuZJOc31e4PJXlEknfN21ee93tOkutmegN4UKYPcSsWpmCDdjwfzUXQv07yG/N9n5/kzWW6KmeXeyW5Y5IDa60XDKWstb44u3+r9MQkt07yT7XWr63jcbhEkn9M8s0kd5mLzHtUJjdPcr35Z0wp5fsyfSv3gUzfyN0mye+WUm413+2PklwlyeFJbpfVP/itxSeS3DxTTn5qkld2j+/NkpyUKR8+rb1jrfU5SV6XqXB/QK31l2utv5zpCsvbzrc9p0yXfb8lU8Hwikl+IsmJe9Fn2J+8L8n95i9+jigrX81zVJJXJXl1kuuWUn6ia6+Z3kM8sZRysVXO8RellHuWUq6+mZ0H9nmfSHJ+KeWlZfqy+wp72P99SS5XSrnenK/umeTlW95L9juKQBvzB0l+u5RycHPbHZN8stb6svmbnldl+nZ5taFUq+5fa61Jbpnk5CT/L8lp8zfC106SWusXa62vq7X+b6313EwfHn62O/5Laq2fWOGKm+9k+iBwrbni/MF5yMQV5/bT1vlY3DLJJ5O8d437P6ZM40TPzVTEab9Ve3Cm4WIfnz8oPiXJjUspV01ypyTH11rfVGv9TpI/S3L2OvuaJJkfl3fMVzScOR+rf/yeXWs9da0fJnvzG8H7Jfnt+ZvF82ut/15rPX8jx4MFdjQfJXlQkufXWo+dn+cvzXQZ802b4z+n1nrKGl9PV8z689BlMw0Ze2mtdbVLqHcz56H/TfKeTMWvt8xNP5XkcvPlz9+utX4qyYszvdFKknskeWqt9Zxa6ym5cAF+zWqtr6m1njZf7fTKTI/xEc0un6u1Pm/Xt4MbPM2vJvn7+W/GebXWs2qtH95on2F/Umt9eZLfzlTQfXeSM0spj97VPhdtbpnklbXWMzINFbvfCsd5c5Kzkqw019ovZyq8PyHJZ+arJn9ys3+W2aPmqxTPKaVs6D0SsH3mz2C3yFRMfmGSs0opb17hAoDWrquBbpPpi6LPb3lH1+a/mvzznJ3uDIspAm1ArfWETB8YHtPcfJUkn+12/Wymb5JXsnD/uQDx0FrrNTNd8fP1zJf7zcMRnl9K+Wwp5auZhicd2H2DdXoT/2+SXWPIX5bkn5O8upTyhVLK0+eCxRfn9t0mPVyDJ2T6wPfG9pv/UsquIQoXDDeZ/UmdxoleI1NB6tpN2w9k+rbsnPkD2tlJvptpfqKrZBpTn/nxqUlOzQaUUq5cSnlNKeXz8+N3TKari1qnXPie63JopmEpn97L48BCO52P5u1HNn/4z8l0VeFVmmOt5/X0xaw/D52dqUjz0lLK7XbdWEpph21+rZRyQZ/mPHRAkkcnOTLT63XXz3P17uf5vUxXDmbuW/vzbDhXlGnSxw8357luds9Fe5uHkul3IQ/BKmqtr6i13jrTlb8PTvLkJo/8apKTaq3Hz9uvSHLvVa74eXySxyW5ZHf8L9daH1OnuTMOSXJ8pvdMZQt+nD+ttR44/+vf1wBLqNZ6Uq316FrrYUl+ONP7p2ctuMvLMo34ODrLNRTsx5v887Cd7gyLKQJt3BOTPDDf+1D1hUwfHlpXz/eqs/0woD3tf4H52+a/yJQYkuSRmYZv3aTWerlMw5OSaZjTQrXW79Ran1RrvX6moQZ3ylRN/nimDxx329MxOl9PcodMwxleu+uNUZ3m79g1XOqhK/Tj5CT/J8mfN8WjU5Lcv0kgB9ZaL1WnOTtOy1QMmn7Q6c1T+4H269l9YrQrZ3VPy1S4+pH58Ts6F37sFg3bWqmtv+20JOclueaC48Bm2cl8dEqmK2Pa1+2l56uJLrjbOn6Wf0lyu9KserYWtdbXZ3oM/q7MkzzPV9C0k6R+obvP+bXWp8/9+43m5/lk9/Nctta66yqq09PkokxFll3HOy9TbtljLiql/GCS5yX5zSRXnItSH8vuuWhPj9tactEpkYdgj+b3R69N8pF8L7/dL8kPlmnVvdMzDZW9Uqb3Pf39355pWOlvLTjH2Un+NNOHvIM29ycA9nW11o9l+nL6hxfs89lM02LcIdNihHb0JwAAIABJREFUGLBuikAbNA8R+NtMq+QkyVuTXKeUcu8yTQ76K5nmm9k1xOCMTHPPZE/7l2ni5yeVaXLj7yvTxKy/nmkcaDINffhGknPmuTyeuNZ+l1JuWUr5kfmqoa9muhrnu/OVNb+TaZLRXyvTEs3fV6ZlC/tJEvvH4txMq/hcNdOcFqutkNHf7x8zfYO/6/Lpv0ryuFLK9ea+HlimFcuS6XH88VLKncs0ufLDM82TscvxSX62lHK1Mk2S214V0btspqLRV8o08fSjFuy7kjMzTQzdju0/I8nVmiLYdzJV559dpom3LzI/lmt6bGA9djgfvTDJg0spNymTy5RS7lhKuewGf5xdK+m8rpRy3fmcVyzTEqULl6WfC08PTfKmMs31s1Z/kuTRZVqZ7D+TfLuU8sgyTaR/kTln7poH5DVJHjvnp8OSPKQ71oeT3Ge+3x0zXea9kgMyFWzOylTXfmCmK4HWo/89rnTby5LcqZRy1/l3e3BpJu6GwVxsfl3v+veAXflqzjU/n2llwmNLKT+VqYB640xD6m+Y6YPZK7PCkLDZ4zJdOXiBUsrTSik/PL/+Lpup8PupWusXVzwCMIz5fc4j5/cTmT+X3Cvfe4+1mvsn+bm6+iIYF+ly3cU3sdvsBxSB9s4fJblMMs3Tk+mqmkdmGs7we0nuNH/rkyTPTnL3Mq169Zw97P/tTJOO/kumQs0Jmb5dPno+1rOSXCpTAeV9mVamWKsrZ5r8+auZxpG+O9OHhNRa/y7Jr2T6gPeFTB8mnpLkTc39V/xmutZ6TqaxqddJ8jdlmlx1LZ6R+cPX/A3cMzNdUfTVTN/G3W4+/hlz356Z6fG6ZpIP5XtLKP5Tkjck+e8k70/y5gXnfGKmN3Vfmfd73Z46WUr511LK78x9+XKSpyf54DyM44bz+U/ONJ/ArmFqD8s0DONDc5+fnDVcrQUbtCP5qNZ6XKYrcJ6b5MuZvgk/eqM/xDynz60zXRXz9vmc78/07fux7a6r3P+l88/xD6WUtU4e/+ZMw2bvP1/Nc4dMOeLkTHn2+ZmWqk+m/HHG3Pa2TEWhdh6ihyW5a6bVhH45q+SiOq388efzz3Zapqs7j11p313KtKJaO8/HC5L85JyHXj3f9tQkT51ve+hcILxLksdmWsr6uEwfcmFEb830Jdquf7+T6bXxuUyv2acn+c06rX54VJI31Vr/u05z+51eaz09U/680/wl3G5qre/N9JpuXTrT+5NzkvxPpqsu25UAv1ZK+enN/TGBfcS5SW6SqfD89Uyf607I9D5mVbXWT8/vv1bzmOye6/6136GUcp9SioUiBlWmC0Bgz8q0fPEf1VpvuMedt74vF8lUqLp7rfXfd7o/wPYppfxXplz0xiXoy28n+cVa6632uDMAAOwwVwKxJvMQrLtl+hZ5p/pw+3kIxiUyTUj9nVz4GzdgP1ZKuUGmJd0/tEPnv2op5Wbz0JHrZZrb7A070RcAAFgvRSD2qJRy+UzDCK6e5Ek72JVbZLqU+qxMw8TuWte4HDSw7yulPC3TEKxHzxMj7oRLZJoH6dxMw9Vel2m4GAAALL29Gg5WSrl9prHRF0nyolrrn2xWxwDWSi4CloFcBCwL+QhYzYaLQPOcLJ/INBnwqUk+kORetdaPbl73ABaTi4BlIBcBy0I+Aha56F7c98aZlrj8nySZVya5S5JVk8uVrnSlevjhh+/FKYGddvLJJ+fss89eplXO5CIY1Ac/+MGza60H73Q/ZnIRDGrJclGyznwkF8H+Ya25aG+KQFdNckqzfWqmJe5Wdfjhh+e443ZsXmFgExxxxBE73YWeXASDKqXs1NxQK5GLYFBLlouSdeYjuQj2D2vNRVs+MXQp5UGllONKKcedddZZW306gBXJRcAykIuAZSAXwbj2pgj0+SRXa7YPm2/bTa31BbXWI2qtRxx88DJdJQnsJ+QiYBnIRcCy2GM+kotgXHtTBPpAkmuXUq5RSrl4knsmefPmdAtgzeQiYBnIRcCykI+AVW14TqBa63mllIcm+edMSw/+da31xE3rGcAayEXAMpCLgGUhHwGL7M3E0Km1vjXJWzepLwAbIhcBy0AuApaFfASsZssnhgYAAABg5ykCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGcNGd7gAAAABshlO67W828bW3syNc4IwmfljX9rYmvlzX9ptN/JhN7dHYXAkEAAAAMABFIAAAAIABGA4GAADAhn2r235eE1+va7vdFvfl17rtezbxsg4HO6Hb/j9N/J9d20FN/Iiu7Xc2rUd7p3bb7e/koV3bS5r45K7tHk18yIJj7qSPd9u/0cQf6Nqu2cTP6dqOXOP5Fj1X1sqVQAAAAAADUAQCAAAAGIAiEAAAAMAAzAkEALCPumm3feyCfdt5F47e/K4sdOcmfkvX1s8dsay+0sR/2rW9tolPbeJrdfs9vonvvhmdSnKNJv6Pru3QBfdr57F4fNf2r0188a6tnc/l6V3b9y84305q5954Rtf25Sbuf1/tktT3DL32tXznVfdK/nGrO5Lkb5v4Elt8rud227/YxIdt8Jj36LbbOZVu0rX9VxPfsWu7cRPfYoN9uWsT9/PN/Mwaj9HPk3OdJr7Dgvtdv9t+eBO/tWtbljmBju62278PN+raXt/Ed+3avtDEl1pwvkXPlX9ZcL+WK4EAAAAABqAIBAAAADAAw8EAYPbpbvuaK+4Fy+N93fbZTXzwdnZkBS9s4n4I2L7oL5v4613b25r4wCbulwD+5Sb+p66tHWZ1Xtf2W038oK7t8Cbul+l+dBPfr2t7QRMf3bX9dRP3ebEdwnCfru3tWQ79sJGPNXG/3PYBTfxHXVv78/V/D35yA/3a39ypic/v2vphSpvt7AXb/ZL0y6p9zL7WtR3exJfs2m7WxP2w0o80cTsc7Cvdfl9q4mt0bec28UW6tm838Se7ths08QFd22uauF/G/upZXTsc9aAF++2k73Tb7ZDAS3dt923iR3dtX23ifjjYWp8ra+VKIAAAAIABKAIBAAAADEARCAAAAGAA5gRix7TjJU9dda/F/r7b/n9N/F9d27VW2S9JbrnB8wP7l9t12x9s4suv4zjHNXE/t0e71GtZxzFh2X2m227nfXhgE78w+6Z2qeJ+nofV9Euvv7iJ/6Zra/PPN7u2dqn3fqnyVzbx7bu2WzdxP8fEs7M2N+y22+WJ+/dT7dwYF1vj8bdC/75u0ZLUrf/bbT+rifu5hMwJtLv+yoL1/M3ciD6PPLKJH7vF594s7Xw7n9vgMc7ptvvX6y79HGTt8uqv7Np+pImv1rW1r61+Lpz3N/FhXdsXsjZf6rZf3sTPWHC/x3TbT1vj+Ra5RBP3Obl13IK2fi6m9rG+c9d2yILjbMZzpeVKIAAAAIABKAIBAAAADGCfGA7WLsPZX/rXXlL1ga7tU028Fcv8Pr3bbpd5O6aJj9qCc2/UCd32k5r437q2djnC/tLjdgnNS2R1z2zia3dtn2/iN3dt7SXlD+/aTmni3+ra2p/nmV1b+/u6a9fWnu8K2Tkndtt/0MTvXXC/fghL+7MuurRwI8+H0xccb3/X5pR+KOI7mviLXVt/CflmO6Xb/uEmbi8Z3epLs/fGJ5r4WV1be7nxx7u2dpjnnzVx/7Oe1sT9EqNtDrtO19Ye57tdW/vYHt61tX8P/rVrO6KJX9q1XT/L77Ru+wlN3A9vO6OJL9e1tb+vRUuZf6Lb7p8f7Kz2ddG/32kvdb93E++rw8HWOgRskXaIVL/Mb6tfXvmJTXxS19a+dziwa3tyE2/W+5t2Ceord207OQSs1Q99W6t+mEVt4utu8Jhsnnc28S26totn77VDj351Hff77TXu941uu1/6fa0+2sR9XrpZVvYr3fb1mvgFXVs7xOzJXduDmrj/fLhR7c/z511b+z7pKguO8Sd72N5OJzfxNbq2n2ji1219V1blSiAAAACAAeyxCFRK+etSypmllBOa2w4qpby9lPLJ+f+dvHgCGIBcBCwL+QhYBnIRsBFruRLomFx4sYHHJHlHrfXamUZB9BNyA2y2YyIXAcvhmMhHwM47JnIRsE57nBOo1vpvpZTDu5vvkuTIOX5pkndl9ykQNtVZTdzPi7IZ47PX49NN/NSubbPL7P08H+1cLOtZlvKTTfzTXdtDm7j/C9HOk/ObXdv5TfynC87dzgHxewv265dyfNSCfdulCv+na1s0Fr2d7+Zvu7YPN/GRC46xFb7VxL/Qtd2tifsX2FebuP/93KuJ+/lI9vb5sGUv9D1Yhlz05Sa+UdfWzlvz8my9dp6C3+/avprN9e1uu53j6Gc36Zi3auJ+id77NnG/HOltmrh9HP6y2+8NTfxXXVv7uuvnBGrnrXlV13bjJn5u1/a2Ju6XDm3n4npc19aOy180T85Oulu33c7L0M+V1+pfmO28Am/o2trnx626tvb58bwF59tKy5CPlkX7HuDkrq2d7+/4re/Kbtq5t57StfWfmLdSP19l+zd40XudXps3+rlP2qWez+za3tLE65njpPX2brvNb6/Y4DF3Uv/3p31sH9K1tXnqtlvTnb2yv+eiflnu9u/p727B+e67Stzr/+b/YhP3S6Nvhs9328c08UbnWGvfR/bz+S1q67c3w5uauH9sL5J9z+FN3C9538652ueUtm3RnK6bYaNzAh1Sa901N+Tp2fp+AqxELgKWhXwELAO5CFhoryeGrrXW7F4w3E0p5UGllONKKcedddZZq+0GsFfkImBZLMpHchGwXeQiYCUbXSL+jFLKobXW00oph+bCV59eoNb6gsxXuB9xxBGrfkBb5PAmfm3X9u4mPnIjB1+n9rLQo7u2t2Rzva3bfmMT98tTL9Iuzf6+ru2HFtyvXcLuM11bu/z6ouFgv97Ez+/a2mEk53Vt/TKzq1nPUqT9ssatRY/DVmuXp/7vrm2twx0f3223l4b3S9Du7fNhJ5dcXMG25qJFwzDbS3U3Y5nSPWmHNP1S17bZl+ef2223z4GNDgfrf1E/2sT9z9PqX/P3aeJFuei3VomT5ENN/Iiu7dZN/P4Fx++1ly/fpGtrt/vlldtLoh+wjvNtp/t023dd4/36/RYNrWifHz/atbXPj40Ob9kia8pHm5GLdtIJ3fYfNvFbu7Z+ufJRtO837tW13bmJ77+OY7avg0VDjjdrzE87BUH/OntaE/dLRL+nifsh55vtdt32Py3Yt/271Q+hbvXLa/fDw/YR+00uene3fakmXvQ6OKnbbpc8v0wT96/PZXJqE/dDvv64idf6Yb7/DN1+1uqHu7evpSd2be2Q8H45937461q1Q8w2Ovyrn8biaSvutT7tZ7R+aOJa9dPF3KWJ+yk7XtbE6xkufOqed7mQjV4J9OZ877lzVHZ/3wqwXeQiYFnIR8AykIuAhdayRPyrMs0D+kOllFNLKffPVFC/TSnlk5m+KF2yiwOA/Y1cBCwL+QhYBnIRsBFrWR1stSvl+gU7ALaMXAQsC/kIWAZyEbARG50TaBgv7rZPbOJ+bGW/vYw2OvdNv1TxV5p40TKC7RLu/dwh7fwdD+/aPtfEP7DH3q3su912u0TsXbq2Q5v42V1bP0fI3jqy235nE691DqDeF7vt9jiXXHC/nZwLaX+2FctnfrrbPrmJ770F59tq/RKq/7DB43yhiS+/xvv0r5d2jqDXd23tu+sf7Nquv8bzLfKFbrufw6vVzvV0zCace5F+roV2aZmNzpHxuW77mgv2bZ8fG31usHnaJbX7ZZMf2sRHbn1XltZnm7idS+yIbr+/aeJlXvq4zYs/07UtmqviFk28TJPMtPOF9P1vf3d/1rW182P2uWgZl4zf3/TzPvXbqzm+275uEy/rPED91NwvaOJ+Xp5FueNFTdzOLXjrbr923qT+s1b7mensru1dTdzPEbdR/Xw+G9Ff7rbVl799q4lv0LW9vYmvseAYfY5c67xDi54ra7XXq4MBAAAAsPwUgQAAAAAGYDjYCtplMftLRl/SxAd1bWu97LXdrx+y1Dq/2/7ugrZWPxRlMyp9/dLIP7bgfK1rNfGi5Zv7IViboT9mu/z6ossXH9ptP3hzunOB9fw+vtPEp3Rt/9LE/7dre2YTe5Hvu9rX/B91bX/ZxOdtQ1+W1Vua+IFrvE9/2ezRTXxo19Zegv2Mru0lWZuPd9vtJcr/0bW9Y8Fx7rNKvEy+1W2/r4n7S7P/Muwr2mV/P9y1tdv9a2St2vcR/TFu2sQbXXL859exbzvcZNGS4/3f5HbI+y2b+K+7/bZiuPBm+HK3/cYmfs06jrOsS8S3+vdF7dDUfsnrdgnn/u+w4WC7+0a33b5G+uFZ7dCkrXif+p1u+9sr7rVx/WeFjWo/z/VDEf+wiRcN/3pFt71ajumXKu+3W+1nlf495sWa+EYLjrHIud32dZr4lV3bLbOc2se5n2agHWJ6SNd2XBP3U8kseg+41ufKkxcco+VKIAAAAIABKAIBAAAADEARCAAAAGAApgtZwW83cT+O/Bc34fjPaeKNLj++6Bd3ZLf9zpV2WoPPN/FLu7bnb/CYW60d094vp/jCJu6XvG/14253cgnXdrnqey7Y7ze77V/dgr7sej7046zZOu2Y31/v2i7TxF/Z4PHXuuR4P5b+xCa+zTrO1y473o+RXqt+fo3Dm3itcwL9/jrOd8tV4j35dBPfpGt7ZBP3808csI5zLIsPNfHju7bPNPFRXdtPhH3FzZt4o8t+t6///m/URuZU3JN2afandG23X8dxWu2cV3fu2q7XxO0Szcs6B1Dv9G67fazXk5eWZYn4/+22L73G+/W/r0s28cU33p39VjsvX/+aaPXz37V/KzY6r2H/fvRVTdzP2dUuc94uh37HDZ57sxzbxP38nv32Wv3zBu/XOnbPu+yVPjd8d0HbsmrzwVu6toc18ce6tnb+o2O6tusvON9mP1dcCQQAAAAwAEUgAAAAgAEYDpbdl8FMkrc38Xu7tjMWHKdduq0dnnF2t9/DV4l7L+62237+/YL7bVS/XH07xOhHu7Z7b8H5N0M7TOXrXdtd1niMRZcobob+UuNFldh7NPGturZ2mfsndW03a+L+EtxLLThfa7Xnw2f7Hdk0J3XbZzbxz2bzrXXJ8X7py/s28T9uXndW1b6u/6Zra8+/TMMu2tdZf4n8E7azI9ugXSL2Hxbs1y8R3+a0d3dtvqFiGT2tiT/ctbVDUXZyGPlGXa/b3leGZKzmJd32J5v497q2dljHc7u2drjry/a2U/uhOzXxdj9nLtZt32+VeJm179f39dfcelyu2170+XpfcPNu+4NbcI61PlfW+l7Y+ywAAACAASgCAQAAAAxAEQgAAABgAOYEyoXn3mnn8/nhDR6znevneV1bP+/HsnhUt/2BJj6ua1vW6uHVm/hVXdslszbP6bYfsfHurOjIbvudC/Ztx3VeacFxfrxrO6iJX9u1rXWc9GrPh36uJSZ1lXg93tBtv3mVuHf+grafbOJrdW1vXUundsCXuu3/08Sv7trWOsfVdrtKEx+9Scdsl9ju/25ttv5xPmQTjtnPw/HkJn5P1/YzC47TPz9gu/zrgrZFS/uupl+eul9meDud0G3/SBP3c7/dfov7shl+q9tu39vdtGtr5yO55oL73TcA+4dl/SwPAAAAwCZSBAIAAAAYgOFg2bzl1g9t4nYp3KM26fhboV1avF9O8+1NfNVt6MtmaIeDHbrqXos9fA/bm61dir0f5tAPAdvb4+/JWp4P+8qym9utHZK1nse89dg9bK/mK932gU3cDuu8/Lp7tH2+2cQP7NraJXuvvA192Wy32vMua3LfVeLt0A4D7YeYHr3GY/TLlq71W6hvdtv984PdtX83lmnJ4e1+/vbD2DfDu7bgmMuin/5gmZ47G9Hnm4evEgOMyJVAAAAAAANQBAIAAAAYgCIQAAAAwAD2iTmBzmri/+3aTl9wv1ObuP9BD27iS2+kU9vgtt32j27wOO247od1be0ywy/v2trH5cQFx79iE+/0fB1Pa+KndG3HN3G/BOhOapf+/o2urZ0T5uZd27eb+EldWzsnxB26tr19Pqgcr+z8VeL9wcW67Z/YhGP28yY9oImP7tou08SfX+PxD+y2L7PiXlvnvU381K7tZU18xewbvtXED+na2rnYfm7BMf6q2/6BJr5J19Y+Px7QtR3dxK9fcD4AAC7M5zkAAACAASgCAQAAAAxgnxgO9qAmfuM67nfkgrZXN/GvrKs32+dqe9heqzc08XNX3Su52waP/4gm/rMNHmOzXLaJr9C1XXI7O7IOv9jE/RCZZzTx47q2SzXxT3dt72ri7+/a2uETW/F82J+9qIn/s2t7fxN/pmu7RxP/QNf2mCZe1qFBl+u2+6GWG9Ev3/yKVeKN6oce9UMtt9ppTfyRru3cJl7W33nvoCZ+a9fWDiN9Tdf2lSa+VNf2tia+RNfWvp7658NmPD8AAEblSiAAAACAAeyxCFRKuVop5Z2llI+WUk4spTx8vv2gUsrbSymfnP/vL7wA2DRyEbAM5CJgGchFwEat5Uqg85I8stZ6/SQ3TfKQUsr1M41ieEet9dpJ3pHdRzUAbDa5CFgGchGwDOQiYEP2OCdQrfW0zNMb1FrPLaWclOSqSe6S702789JM05A8eis6+YY977IUTtvzLjvil5q4rrrX/uG3Von3Fb+0h+3NPsdGng9HbFZH1mkZctEDVol32uW77X3hdX7jbntf6PN63H2VeH/ws3vY3gzt82PRc6Nswbn3ZBlyEYBcBGzUuuYEKqUcnuRGSY5NcsicfJLk9CSHrHKfB5VSjiulHHfWWWftRVcBJnIRsAzkImAZyEXAeqy5CFRKOSDJ65I8otb61bat1lqzypd1tdYX1FqPqLUecfDBB+9VZwHkImAZyEXAMpCLgPVaUxGolHKxTMnlFbXWXStMn1FKOXRuPzTJmVvTRYCJXAQsA7kIWAZyEbARa1kdrCR5cZKTaq3PbJrenOSoOT4qyZs2v3sAE7kIWAZyEbAM5CJgo/Y4MXSSmyf51ST/XUo5fr7tsUn+JMlrSin3T/LZJPfYmi4CJJGLgOUgFwHLQC4CNmQtq4O9J6svwHGrze0OwMrkImAZyEXAMpCLgI1a1+pgAAAAAOybFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGUGqt23eyUs5K8tkkV0py9radeHXL0o9EX1ayLP1I9KX1A7XWg3fw/HtNLlpIXy5sWfqR6Etvn85HctFC+nJhy9KPRF96ctHmW5a+LEs/En1ZybL0I1mOvqwpF21rEeiCk5ZyXK31iG0/8ZL2I9GXZe5Hoi/7q2V5LJelH4m+LHM/En3ZXy3LY7ks/Uj0ZZn7kejL/mqZHstl6cuy9CPRl2XuR7JcfdkTw8EAAAAABqAIBAAAADCAnSoCvWCHzttbln4k+rKSZelHoi/7q2V5LJelH4m+rGRZ+pHoy/5qWR7LZelHoi8rWZZ+JPqyv1qmx3JZ+rIs/Uj0ZSXL0o9kufqy0I7MCQQAAADA9jIcDAAAAGAA21oEKqXcvpTy8VLKp0opj9nmc/91KeXMUsoJzW0HlVLeXkr55Pz/FbahH1crpbyzlPLRUsqJpZSH72BfLllKeX8p5cNzX540336NUsqx8+/pb0spF9/qvsznvUgp5UOllLfscD9OLqX8dynl+FLKcfNt2/77mc97YCnl70opHyulnFRK+amd6sv+RC6Si9bQpx3PR3LR/k8uuuC8S5GP5KKF/ViKfCQXbQ256ILzykWr90ku2r0f+3Qu2rYiUCnlIkn+IsnPJ7l+knuVUq6/XedPckyS23e3PSbJO2qt107yjnl7q52X5JG11usnuWmSh8yPw0705VtJfq7W+mNJbpjk9qWUmyZ5WpI/q7VeK8mXk9x/G/qSJA9PclKzvVP9SJJb1lpv2CzztxO/nyR5dpJ/qrVeN8mPZXp8dqov+wW56AJy0WLLko/kov2UXLSbZclHctFiy5CP5KJNJhftRi5anVy0u307F9Vat+Vfkp9K8s/N9u8n+f3tOv98zsOTnNBsfzzJoXN8aJKPb2d/5vO+KcltdrovSS6d5L+S3CTJ2UkuutLvbQvPf1imF8vPJXlLkrIT/ZjPdXKSK3W3bfvvJ8nlk3wm89xdO9mX/emfXLRqn+Si7/VhKfKRXLR//5OLFvZrx/ORXHShvux4PpKLtuxxlYtW75dcVOWiFfqwz+ei7RwOdtUkpzTbp8637aRDaq2nzfHpSQ7ZzpOXUg5PcqMkx+5UX+ZL+45PcmaStyf5dJJzaq3nzbts1+/pWUl+L8l35+0r7lA/kqQmeVsp5YOllAfNt+3E7+caSc5K8pL58ssXlVIus0N92Z/IRR256EKWJR/JRfs3uWgFO52P5KJVLUM+kou2hly0ArloN3LR7vb5XGRi6FmdSnbbtlRaKeWAJK9L8oha61d3qi+11vNrrTfMVOG9cZLrbsd5W6WUOyU5s9b6we0+9ypuUWv98UyXxT6klPIzbeM2/n4umuTHkzyv1nqjJF9Pd1nhdj9v2Xpy0c7lomTp8pFcxI7Zid/pMuQjuWhVy5CP5KIByUVyUUcu2gTbWQT6fJKrNduHzbftpDNKKYcmyfz/mdtx0lLKxTIlllfUWl+/k33ZpdZ6TpJ3Zrqc78BSykXnpu34Pd08yS+UUk5O8upMlxo+ewf6kSSptX5+/v/MJG/IlHh34vdzapJTa63Hztt/lynh7OhzZT8gF83kohUtTT6Si/Z7clFj2fKRXLS7JclHctHWkIsactGFyEUXts/nou0sAn0gybXLNJP4xZPcM8mbt/H8K3lzkqPm+KhM4z63VCmlJHlxkpNqrc80eeWgAAAgAElEQVTc4b4cXEo5cI4vlWnM60mZEs3dt6svtdbfr7UeVms9PNPz4l9rrffZ7n4kSSnlMqWUy+6Kk9w2yQnZgd9PrfX0JKeUUn5ovulWST66E33Zz8hFkYtWsyz5SC4aglw0W5Z8JBetbFnykVy0ZeSimVx0YXLRhe0XuaifJGgr/yW5Q5JPZBrT+LhtPverkpyW5DuZqnf3zzSe8R1JPpnkX5IctA39uEWmS8M+kuT4+d8ddqgvP5rkQ3NfTkjyB/PtP5jk/Uk+leS1SS6xjb+nI5O8Zaf6MZ/zw/O/E3c9T3fi9zOf94ZJjpt/R29McoWd6sv+9E8ukovW2K8dy0dy0Rj/5KIL+rIU+UguWvX8S5OP5KIte1zloioXraFfctH3+rJP56Iy/xAAAAAA7MdMDA0AAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAAgAEoAgEAAAAMQBEIAAAAYACKQAAAAAADUAQCAAAAGIAiEAAAAMAAFIEAAAAABqAIBAAAADAARSAAAACAASgCAQAAAAxAEQgAAABgAIpAAAAAAANQBAIAAAAYgCIQAAAAwAAUgQAAAAAGoAgEAAAAMABFIAAAAIABKAIBAAAADEARCAAAAGAAikAAAAAAA1AEAgAAABiAIhAAAADAABSBAAAAAAagCAQAAAAwAEUgAAAA4P+zd+dhth5lvbB/z2GUGSQikEBQEOWgAicyKDIpyiCinx4EUQiiiKLAOcgkoAER0YNM4hEZgzIp8yAyyKgoQ5jBgEzBhASSAGFSOAL1/bHWhkpld+/u3j2s3XXf17WvVK1a630r3aufvfq336qXCQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAE4pCq6o5V9eoNPveEqnrmsn2lqvpSVZ3vMM5dVfX0qvpcVb1tq8cBjmxVdUpV/fiy/btV9ZRl+9iqalV1/k0c65uvP4z5XL2q3l1VX6yqex7OsYC9sZc/x1upXQc5hs9IwLaqqh+tqg91/W9+/jqMY/5GVX16+Xvhtx/+LDlcQiAOqbX2rNbaT2zhdf/eWrtYa+3rBxtffvi5ate/SVWdNjzthklunuTo1tp1NzsHYP9prT2itfarO/H6qjq+qv5peOzEqnr48NT7JXl9a+3irbXHb3UuwJ5a2Z9jn5GAvdBa+8fW2tU38tyqekNV/erw2Fi7LpDk0Ul+Yvl74We2d8ZshRCIdR3Ov1BtkysnOaW19uU9ngewD2xjTbtykg9s07GAvbHmz/HhXMW8i3xGAlbd5ZJcOD4zrRQh0KSq6gFV9dHlJdD/WlU/u3z8+Kp6c1U9pqo+k+SE8V/Gq+pxVXVqVX2hqt5RVT+6xjnWvNS5qt60bL5neWngnZP8fZIrLPtfqqoHJXlKkhss+w/d7q8DsPuq6piqemFVnVVVn6mqJ1TVd1fV65b9s6vqWVV1qTVe/81lp51fqarTq+qMqvqd4bnPr6pnVtUXkhy/xutTVd+X5In5Vs05p6ruluSOSe63fOxlVfW6JDdN8oTlY9+zXV8bYHcc5Of42VX1F1X1iqr6cpKbVtWtq+pdy887p1bVCd3rD3zGucty7HNVdfeq+qGqeu+yfjyhe/75qupRy/r2sSS3XmduPiPBPlNV96+qTy5/9/pQVf1YVf237neyz1TV31bVZbrX3KmqPrEce0ide2n8harqscvPPqcv2xfqXvtTtVjuek5V/XNV/UA3Nl6t880rnuvgVx0e7P/nD5P8aL5VQ59wkNp1/yQHlpads6y7rIC9vsqDvfPRLH5wP5XkfyZ5ZlcMrpfkuVkktxdI8gvDa9+e5GFJPp/kXkmeV1XHtta+stGTt9ZuVFUtyQ+21j6SJFX1iSTPbK0dfeB5VfXJJL/aWrvhFv4fgRVTi39df3mS1yX55SRfT3JckkryR0nelOQSSV6Q5IQk997goW+a5GpJvivJ66rq3a21f1iO3TaLOnenJBdKcv+DHaC1dnJV3T1DzamqH05yWmvtwd1jb8iiXh3W3kLA3mit3az/Oa6qE5P8YpJbJfmpJBdMcv0s6sYHklwzyWuWteXF3aGul0XtuVGSlyZ5ZZIfz+Lz07uq6nmttTcm+bXlca+d5MtZ1Li15uYzEuwjVXX1JL+V5Idaa6dX1bFJzpfkt5P8TJIbJzkryeOT/HmSO1TVNZL83yS3SPK2JI9IcsXusA/KokZdK0lL8pIkD07ykKq6dpKnJblNkpOS/FKSl1bV1VtrX92O/6fW2oOq6kcyfBY6SO36myQfT3Kp1trXtuPcHD5XAk2qtfa81trprbVvtNb+JsmHkxxYT356a+3PWmtfa63950Fe+8zW2meW43+axS9VG1o7CkzvukmukOS+rbUvt9a+0lr7p9baR1prr2mtfbW1dlYW68dvvInjPnR5vPcleXqSO3Rj/9Jae/Gy3p2npgEsvaS19uZlrfhKa+0NrbX3LfvvTfKcnLcu/cHyua/OItx5TmvtzNbaJ5P8YxahT5LcLsljW2unttY+m0XoDczh61n8vnSNqrpAa+2U1tpHk9w9yYNaa6ctw5kTkvx8LVZR/HySly0/I/2/JL+XRdhzwB2TPGxZb85K8tAs/nEtSe6W5C9ba29trX29tfaMJF/NIjQCIdCslpcXHrhE8Jws/oXrssvhUw/x2t+pqpOr6vPL116yey3Aeo5J8onxX4Oq6nJV9dzlpdJfSPLMbK6u9HXrE1kETQcbA1jLuWpFVV2vql5fi6Wrn8/iF7axLn26a//nQfoXW7avkPPWKWACy6ti7p1FyHPm8vPOFbLY1+tF3e9jJ2cRGF0uQ81orf1Hkn5T5Svk3HWk/+xz5ST3OXDc5bGPybk/GzExIdCEqurKSZ6cxWWJ395au1SS92exHCM5d8o8vvZHs7ibxu2SXHr52s93rz0ca54X2DdOTXKlOu9eYY/IogZ8f2vtEllcuryZunJM175SktO7/mZqy8GeqzbBHMaf9WdnscTrmNbaJbPYM2yrn3fOyHnr1OHMDTiCtNaevVy6eeUsfp7/OIvPRLdsrV2q+3Ph5ZWEZyTpl39+W5L+9uqnL491QP/Z59Qkfzgc9yKttecsx/8jyUW6137nVv+3tvg69pgQaE4XzeKH9qwkqaq7ZHEl0EZcPMnXlq89f1X9Xhb7d2zFp7PYv6Pvf3tVXXKLxwNW39uy+GDzyKq6aFVdeLmm/OJJvpTk81V1xST33eRxH1JVF6mq/57kLkn+Zovz+3SSo6vqgsNj37XG84H96+JJPtta+0pVXTeLPYO26m+T3LOqjq6qSyd5wCGe7zMS7BNVdfWqutly4+avZHGV4DeyCJb/cPkP9Kmqo6rqtsuXPT/Jbarqh5efSU7IuUPo5yR58PI1l81iudiBm148Ocndl1cz1vLz1q2r6uLL8Xcn+cVabFh/i2xu+X3vYJ+PfGY6AgiBJtRa+9ckf5rkX7L4Qf3+JG/e4MtflcWmh/+WxWWHX8kGl1pU1ROr6ondQyckecbyMsXbtdY+mEVB+9jyMZcswj7TWvt6FhsVXjXJvyc5LYvN5x+a5DpZXFn4d0leuMlDvzHJR5K8NsmjlvtzbMjyDhYH7nL4uiw2gf1UVZ29fOypWazjP6eqXnzQgwD70W8meVhVfTGLX7D+9jCO9eQsPkO9J8k7M9Q4n5FgX7tQkkcmOTuLm/J8R5IHJnlcFlcbvnpZZ96SxWbzaa19IIuNo5+bxT+efSnJmVns7ZMkD89i0+f3JnlfFnXl4cvXnpTFZvRPSPK5LD4fHd/N515ZfBY7J4u9hTb02aaq7lhV/a3eH5fFHkafq6rHLx87IV3t2shx2X3Vmqu4AAAAYBVV1cWyCG2u1lr7+F7PhyObK4EAAABghVTVbZZL3S+a5FFZXPFzyt7Oiv1ACAQAAACr5bZZbPZ8epKrJbl9s4yHbWA5GAAAAMAEDutKoKq6RVV9qKo+UlWHussBwI5Qi4BVoBYBq0I9Atay5SuBqup8Wdwh6uZZ3N3l7UnusLzzFMCuUIuAVaAWAatCPQLWc/7DeO11k3yktfaxJKmq52axbnHN4nLZy162HXvssYdxSmCvnXLKKTn77LNrr+fRUYtgUu94xzvObq0dtdfzWFKLYFIrVouSTdYjtQj2h43WosMJga6Y5NSuf1qS641Pqqq7JblbklzpSlfKSSeddBinBPbacccdt9dTGKlFMKmq+sRez6GjFsGkVqwWJRuoR2oR7D8brUU7fnew1tqTWmvHtdaOO+qoVQrIgZmoRcAqUIuAVaAWwbwOJwT6ZJJjuv7Ry8cAdpNaBKwCtQhYFeoRsKbDCYHenuRqVXWVqrpgktsneen2TAtgw9QiYBWoRcCqUI+ANW15T6DW2teq6reSvCrJ+ZI8rbX2gW2bGcAGqEXAKlCLgFWhHgHrOZyNodNae0WSV2zTXAC2RC0CVoFaBKwK9QhYy45vDA0AAADA3hMCAQAAAExACAQAAAAwASEQAAAAwASEQAAAAAATEAIBAAAATOCwbhEPAKvov4b+Bbr2Dw9jf961r7nO60YP79pPGcbO7trfP4z9n659w3WODwAA282VQAAAAAATEAIBAAAATGBfLwc7q2sfN4yd1LWP2oFz/1HXfsQw9vmuvUop3NeHfr9k4UnD2Ke69nW69qOH5113g+d+1tB/Vdf+qw0eY/Soof9/u/YZw9gPdO1HDmM33eL5d9PTh/6fdO1Th7Frd+0nDGM/uM45xvfH7F4+9B/UtS80jL1tB87/z137x4ax/vv4lh0491Y9s2uPP58f6tpXGsYe3LV/eYPnuvPQv3DXHpd4vaFr/8ww9i9d+zvWed2rh7Hv7NpjXbxN1z5lGLtkds9fD/2+bnxkGLti1/69YexOGzzfM4d+/x740DDWvwcePIxt9D0As3hd1x7/Pvhc177UFo//j0P/IV37ncPYZbr2r3Tt3x2et69/AQFYcauUQQAAAACwQ4RAAAAAABMQAgEAAABMYF8tyX3/0P+5dZ67E/sAPbtr9/uD3Gh43qomb38w9PvbJr9gGOv3HHlY1/7J4Xn/1rXHWzbfumuPt1Du9+wZ9+jo+8cPY/0+Rn8+jD2/a3/fMPa0rn2rYezkrn1sVke/V9K9h7EXde3/MYzdt2vfchj7YNe+xDB24P1x+oZmtz/ds2u3Yaz/Wr5yB849/vz8etce94A4ZZvPff2h3+95tpk9s/q9xf5iGOtvzf7wYewuXfsGw9hV1zjXuJfYfbr2m4axfo+zcW+fK6xx/CT5h3XGer8z9B/atT84jF1vg8fcDk8e+v33Z6zJf9q1f2UY+/Guvd7Xa9xbrn8PXHMY698DdxnGxvcA5/bZrv3Tw1j/Xh/3fdoJz+jax3ft8e+lk3Jk+M+uPe73+Jyu3X+dxxrV/x18x+2YVM7993WtM7YZ/ffk5sNYX9NeNoz1n4Xv3rXHv8PGz5yrYvy5OKFrv3YYO2dnpwKwY1Y1jwAAAABgGwmBAAAAACZwxC0H+8zQ75cinTiM9bcBvskOzOX1Q/+uXfvbuvZ4e/qt6i+5H5dnjMsnNqq/7ffjh7Hf79rjkrZef1vhvxzGXtG1x9sI97cL/tlh7Atde1w20i/XGm9b3i9ZGC/VXu/78Ntd+4HDWH9r1GPXOcZu6/9f7zOM3WyDr3vKMNbfdny8/PvA++MLmVf/tRtvMz7e8nwnz50kV+/aPz6MPWGbz/2Vof/VLR5nXIa1lt8a+n2NGW8lvtZysLHeXKhrj/WsX2L6E8NYf4v49ZY6jfplI2MNu0jXvtomjrndNvr9SJI7dO0ThrFPd+31vkabOV//HviTYWx8D8zo7K79N8NYvxTp7cPYMTsznW/63NC/70GfdeTql2/98zD20q79vV37wcPzfqlrj0ukjl/n3Pfv2uPXuV+OfNFhrP+5e8wwdruuPS5Ne2LXHv++O6Frj79I9EuV+2Vj4+fDVVoO1tew6w5j/fYB4xLgq3Tt8esOsMpcCQQAAAAwASEQAAAAwASEQAAAAAATOOL2BBr3eTlf137vMHaTrr1d+/J8oGuP+9j0czuha//QNp17p7186H/vQZ91Xv1+IeNeIRfu2uNtS9/dtW8zjPX70fz1MDZ+3XufWmdsPS/s2v8xjF17i8fcaf3tW8d9Bdbzpa493uZ8XPffO/D+GG8PPZP1vj474eNd+7HD2Du69niL3iPdyUO/rx3jrcTX8oyh33/vxj3VbtK1x/2INvo9H29/3t8aeayl/R4ulxnG3rjGvLbq1kN/rPNrOWPon9C1x79Pf2AzE9qg/j0w/t2x0ffAftbvh/gjw9g9uvb/2YW59O4/9Pv9ES+4w+ce39v954rx/fydGzzmO4b+i7r2uKfNuJfMAeP3oN8b54+GsePXmctvdu1x37d+T8ovDWN36dr3GMbG+tB7yhrtQ/ls1+4/H35teN43uvZe/4v05br2Z9d8FgfT70/1omGs3yfrLsPYbXdmOt807t/0x137NTt87p3wiaH/v7r2q4axS3btX+7aY73Z6M/dK4f+mV173H9xPc/q2uNeaf0+d+OepE/t2pfexPl200lDv98Pbfx7pN9n7M+HsY1mBuu9HzZqr+suAAAAALtACAQAAAAwgSNuOdh4m+TeePv4U7r2VpeDnT70+9twjpfV/mTX/t/bcO7d0C+n++EtHuOhXfviw9h4u+XeHddoj26x6Rkd2t8N/f5yyd8bxvqlB7cfxsZb8x6u8fat917nuRdYo50kX+/aHx/G+uUu1xnGbtK1zzeMHXh/XGydObG9+hrzu8PYFbfh+I/v2vfaxOtuuc7Y5bv2WD/X079nHzKMHd+1r7zB4623jOstGzzGZvzn0L9Z1x4vS1/Pjbv2uFxzu7156N9wnef2yyXGW96PtWIrvj70+/fA8cPYRt8D+9njD/2UXdP/PI3LhvrL/39xF+ay3f7H0N/Kz+T489Evb/zYOscfl0H27/s/Gcb678G7h7Gf7tq/k+03fk1+u2v3S8DG+rIf/hX683s9gRXQvxfHZTz/X9fezLYFW/Xlrv3sYewSu3D+nTQuP+2Xhz5rGOuXv/561z5xeN5Gt3e4yND/toM+67zGZbj9liqvHsb6JbqPHsZO6NqP2+C5d9sHhv4Tu/aVhrHXd+3x78V/69rj3wG99d4P47LMteyHGgwAAADAIRwyBKqqp1XVmVX1/u6xy1TVa6rqw8v/ruo+TcA+oRYBq0I9AlaBWgRsxUauBDox512R84Akr22tXS3Ja5d9gJ10YtQiYDWcGPUI2HsnRi0CNumQewK11t5UVccOD98239o+5BlJ3pDz3hl01423Z+vX0m1mX54vdu1bDWN9lf3DYezErt3f9ve71znXVveYee3QH+fS6/eZWW+Pmc3ob7XYH/9vh+et0j899PtYjF+H/hau91znGM89RH9V9LeqfecwdqV1xrZjb4+dciTVoq16/tDvb8M57kG2He65Rnt0raH/yK69XXt29euZx/11HrtN59hJ45r5I2H/gfHW4v3eHucMY/178xeGsad17V/a4lx+c+j374FV/P7PUI/WMu7fdPeuPe4Jst7+YbN4ztD/ate++jC23h4QvT8b+v1+FC8dxn68a//cMHajDZ5vPfcd+v1eLJft2uvt5fHyoX+bw5rRoZ069I/e4Ou+d+h/aBvmcrj2uhaNtx3vPXMnTriO/nehcW/BrdxCe5U8eeivVyu+q2v3+8eN++r2ewKNe6W+omvfYBjr98Iav67979vjfq+PyMaM37ufPuizVsudN/HcW3ftce+qfh+lK6xzjM28H9ay1T2BLtdaOzDPT+Xce0YC7Ba1CFgV6hGwCtQiYF2HvTF0a61lnRsmVNXdquqkqjrprLPOOtzTARyUWgSsivXqkVoE7Ba1CDiYrd4i/tNVdfnW2hlVdfmce9XCubTWnpTkSUly3HHH7egdb8flYP0yrEut87pvDP2f79rfNYyNt8btvb1rj7cVXctmlhf1l/Refxh7+AbPtxn9rT1/axj76679wq6905fwbsarhn6/BGxctnbbHZ7Lbntr137TMNbfsvNRw9h6l/WuqJWsRVv1yqH/jq691WLdJ/2nDWPrXWq6E/ov+nhL+n/s2q8fxo6EpVW/doj+Rr2xa99ki8fo3Xroj8su1jL+nfmrXfupw9hruvZ6y8HGH7r+PfCPw1j/HjgSvv9LG6pHR0ItWs+4rOfkrr3RJe2b0b9nt/oZ4/KbeG6/VGijy4RG7wVCBIcAACAASURBVO/a6y213er6nK+sc5ybDmO/3LU/s8XzjfrPzeP74apdu78N9FXWOd5PDf1V/aH44NDvl62OS4L32BS16M1Dv/+9b7332054Qte+4TA2Lqnfiq0s90nO/Xf5Ues8b/ys0NeRuw9jn+7azxvGtuPv6/Gz6nUP+qz94WtDf73vUW+r74feVq8Eemm+tfztzklesg1zAdgstQhYFeoRsArUImBdG7lF/HOS/EuSq1fVaVV11yz2Bb15VX04iwtUHrneMQAOl1oErAr1CFgFahGwFRu5O9gd1hj6sW2eC8Ca1CJgVahHwCpQi4Ct2Oo2Eytp3BNoo7eFf9fQf/VBn7WwlS/YhYZ+f+vdb9vC8XbKl4Z+vzfSe4axft+KjX6dd9ujh35/K8St7gF0+6G/3fsfPGboj7ey36j+fXqzYazfs2Pcg2a9PYEOvD/GPbTYPk85RH8tTxz6/dr09+fwjTXsght83bjBwF269nuHsX7vqsvmyPMHQ7/f3+0D2bgbd+2d2KDhLV17vM3073btcT+813Xt8e+Du61zvv7/4S7DWP8eGPcuOxLfA/vZJ7v27w9j/S2Cx1uen5PD1+8Xs97PxHq3GT9jGPvOw5rRwb22a/efnz4/PK//+o0/Ext1v00898QtnmM9/69rj3ta9J9bNrovy5Fyi/jRKn2Gn0W/H9YLhrHxcz/n3l/vTpt4Xb+J1BeGsWO69oeHsY3uiTvqfwcd998d/845EvS/K50+jD2za4+17gI7M52DOuy7gwEAAACw+oRAAAAAABPY18vB/tdBn3Ve46VrG70E//8N/f62eM/p2j+7wePthf7/4ZbDWH/59FuGsSvvzHS21XiL+O3w3EP0t1t/GfllhrF++cSPbOKYH+nax67zvPH9feD9MV76OZP+Utq/3sTr+ls5jsvzXpvDN14+utHlWhv11i2+7mND/xnrPHejt8W81dD/u41PhyTX7NoXHcb6DSTGZTx9zX/YMLbekpb+PbAd3//kvO8Bdt7Tu/a4dPyP12iv5x1Dv6+RLxvGxtuHr4o/Gfr9csr+lvTj54Sf3Jnp7KoLd+3tWLZ6pNwinr33+K593z2bxWrrb+H+9a79fZs4xlO79rhVRX/b+XGp1kaXg42/Y9y/a49bU1w4a3ts197o7/2b8fauvd72J+PWC9+/znP737cfsekZbR9XAgEAAABMQAgEAAAAMAEhEAAAAMAEjvg9gfpb2J02jO30rcvHWxx/dYfP/Q87cMwHdO13D2Pv7NpHwh5A+9Elu/b/HMYe0rX/ahjr188+dhh7Y9d+8zrnfsDQP/D++I91XrPf/dUa7b1210P098p3D/39vM/DQw7RXxUX69pPGsbG/nbo3wM78f2vQz+FbfDgNdqH0u8tdemuPe4bMe7puCq+OPSP79ovGcZ+s2s/vGtfIvtPf5vu8Tbpt+3aL96FuWyHl3btcR/Pe3Xt+w9j475qbL9x/7D+75TLZ2eNn5/3cs+Z9Yz7tL2wa//GFo/5Bxt83uMP/ZSDGmvD7br2Zmrmvddo77ZrDv3+FvFnD2P972G/MIy9smtf5XAndQiuBAIAAACYgBAIAAAAYAJH/HKw/hLiMdG6zg6f++1D/zu69jE7fO6t+urQ7y////Iw9j1bOP4Th/6vb+EYh+PZXfuOw9gHu/bVd2Eu2+3JQ/+BXft6w9hn1xnrL0Mcf0b698e4NGR8fwCwN/olv+Pf6+v5aNdebyndzw3952/iHHtlJ24z/oKh/8KDPmvhz9Zob8Z+XjK7yn66a79uGPuTrj0u+fC5aOc9cOi/ZhuO2de+jw9jx3btcXnResuNntC1bziMXWtj09qUvu4/Yxi7+w6cb7t9behvtfatyi3iR/177Khh7Oe79vmGsRd17f+9ifNt5nPAAa4EAgAAAJiAEAgAAABgAkIgAAAAgAkc8XsC3aprf32Xzz3edm+rt+HbTRca+uNtBY90v7hGez+4+NB/whrtw9G/P9Z6b2z1FpYAbI+vHPopK+FSXftI3O/m+EP0Z9XvSXUkfl/Xc+ND9Ney3h5bbN2rt+k4P9O1x9uTHwnGPXSe2rV/bRgb95lZRdv1O9qq3CJ+q8bv1cU2+Lr13g8b5UogAAAAgAkIgQAAAAAmcMQvBwMAAID94htd+ynD2F269gV3YS6c1+ld+2XD2G279rjE61+69h8MYy9d53wbfT/cY51j9FwJBAAAADABIRAAAADABIRAAAAAABOwJxAAAACbcpOu/cYtHuO2Q/9IvIX7b+3AMZ/ZtX9jGBv7G/HrQ/+JWzjGdvnLof+lrn2f3ZzIYTiqa39qGLtu1/7iOmNPHsYuv875tvv94EogAAAAgAkIgQAAAAAmYDkYAAAAm/KGvZ7ABh2JS8zutEZ7PxiXph2JLtC1f38YG/vbYaPvh9rg8VwJBAAAADCBQ4ZAVXVMVb2+qv61qj5QVfdaPn6ZqnpNVX14+d9L7/x0gVmpRcAqUIuAVaAWAVu1kSuBvpbkPq21ayS5fpJ7VNU1kjwgyWtba1dL8tplH2CnqEXAKlCLgFWgFgFbcsgQqLV2Rmvtncv2F5OcnOSKWdzR7xnLpz0jyc/s1CQB1CJgFahFwCpQi4Ct2tSeQFV1bJJrJ3lrksu11s5YDn0qyeW2dWYAa1CLgFWgFgGrQC0CNmPDIVBVXSzJC5Lcu7X2hX6stdaStDVed7eqOqmqTjrrrLMOa7IAahGwCtQiYBWoRcBmbSgEqqoLZFFcntVae+Hy4U9X1eWX45dPcubBXttae1Jr7bjW2nFHHXXUdswZmJRaBKwCtQhYBWoRsBUbuTtYJXlqkpNba4/uhl6a5M7L9p2TvGT7pwewoBYBq0AtAlaBWgRs1fk38JwfSfLLSd5XVe9ePva7SR6Z5G+r6q5JPpHkdjszRYAkahGwGtQiYBWoRcCWHDIEaq39U5JaY/jHtnc6AAenFgGrQC0CVoFaBGzVpu4OBgAAAMCRSQgEAAAAMAEhEAAAAMAEhEAAAAAAExACAQAAAExACAQAAAAwASEQAAAAwASEQAAAAAATEAIBAAAATEAIBAAAADCBaq3t3smqzkryiSSXTXL2rp14basyj8RcDmZV5pGYS+/KrbWj9vD8h00tWpe5nNeqzCMxl9ERXY/UonWZy3mtyjwScxmpRdtvVeayKvNIzOVgVmUeyWrMZUO1aFdDoG+etOqk1tpxu37iFZ1HYi6rPI/EXParVflarso8EnNZ5Xkk5rJfrcrXclXmkZjLKs8jMZf9apW+lqsyl1WZR2IuqzyPZLXmciiWgwEAAABMQAgEAAAAMIG9CoGetEfnHa3KPBJzOZhVmUdiLvvVqnwtV2UeibkczKrMIzGX/WpVvparMo/EXA5mVeaRmMt+tUpfy1WZy6rMIzGXg1mVeSSrNZd17cmeQAAAAADsLsvBAAAAACYgBAIAAACYwK6GQFV1i6r6UFV9pKoesMvnflpVnVlV7+8eu0xVvaaqPrz876V3YR7HVNXrq+pfq+oDVXWvPZzLhavqbVX1nuVcHrp8/CpV9dbl9+lvquqCOz2X5XnPV1XvqqqX7/E8Tqmq91XVu6vqpOVju/79WZ73UlX1/Kr6YFWdXFU32Ku57CdqkVq0gTnteT1Si/Y/teib512JeqQWrTuPlahHatHOUIu+eV61aO05qUXnnscRXYt2LQSqqvMl+fMkt0xyjSR3qKpr7Nb5k5yY5BbDYw9I8trW2tWSvHbZ32lfS3Kf1to1klw/yT2WX4e9mMtXk9ystfaDSa6V5BZVdf0kf5zkMa21qyb5XJK77sJckuReSU7u+ns1jyS5aWvtWq2145b9vfj+JMnjkryytfa9SX4wi6/PXs1lX1CLvkktWt+q1CO1aJ9Si85lVeqRWrS+VahHatE2U4vORS1am1p0bkd2LWqt7cqfJDdI8qqu/8AkD9yt8y/PeWyS93f9DyW5/LJ9+SQf2s35LM/7kiQ33+u5JLlIkncmuV6Ss5Oc/2Dftx08/9FZ/LDcLMnLk9RezGN5rlOSXHZ4bNe/P0kumeTjWW7gvpdz2U9/1KI156QWfWsOK1GP1KL9/UctWndee16P1KLzzGXP65FatGNfV7Vo7XmpRU0tOsgcjvhatJvLwa6Y5NSuf9rysb10udbaGcv2p5JcbjdPXlXHJrl2krfu1VyWl/a9O8mZSV6T5KNJzmmtfW35lN36Pj02yf2SfGPZ//Y9mkeStCSvrqp3VNXdlo/txffnKknOSvL05eWXT6mqi+7RXPYTtWigFp3HqtQjtWh/U4sOYq/rkVq0plWoR2rRzlCLDkItOhe16NyO+FpkY+iltojs2m6dr6ouluQFSe7dWvvCXs2ltfb11tq1skh4r5vke3fjvL2q+qkkZ7bW3rHb517DDVtr18nisth7VNWN+sFd/P6cP8l1kvxFa+3aSb6c4bLC3X7fsvPUor2rRcnK1SO1iD2zF9/TVahHatGaVqEeqUUTUovUooFatA12MwT6ZJJjuv7Ry8f20qer6vJJsvzvmbtx0qq6QBaF5VmttRfu5VwOaK2dk+T1WVzOd6mqOv9yaDe+Tz+S5Ker6pQkz83iUsPH7cE8kiSttU8u/3tmkhdlUXj34vtzWpLTWmtvXfafn0XB2dP3yj6gFi2pRQe1MvVILdr31KLOqtUjtejcVqQeqUU7Qy3qqEXnoRad1xFfi3YzBHp7kqvVYifxCya5fZKX7uL5D+alSe68bN85i3WfO6qqKslTk5zcWnv0Hs/lqKq61LL9bVmseT05i0Lz87s1l9baA1trR7fWjs3iffG61todd3seSVJVF62qix9oJ/mJJO/PHnx/WmufSnJqVV19+dCPJfnXvZjLPqMWRS1ay6rUI7VoCmrR0qrUI7Xo4FalHqlFO0YtWlKLzkstOq99UYvGTYJ28k+SWyX5tyzWND5ol8/9nCRnJPmvLNK7u2axnvG1ST6c5B+SXGYX5nHDLC4Ne2+Sdy//3GqP5vIDSd61nMv7k/ze8vHvSvK2JB9J8rwkF9rF79NNkrx8r+axPOd7ln8+cOB9uhffn+V5r5XkpOX36MVJLr1Xc9lPf9QitWiD89qzeqQWzfFHLfrmXFaiHqlFa55/ZeqRWrRjX1e1qKlFG5iXWvStuRzRtaiW/xMAAAAA7GM2hgYAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgAAAAgAkIgQAAAAAmIAQCAAAAmIAQCAAAAGACQiAAAACACQiBAAAAACYgBAIAAACYgBAIAAAAYAJCIAAAAIAJCIEAAAAAJiAEAgAAAJiAEAgAAABgAkIgNqSqjq2qVlXn3+u5HExVXb2q3l1VX6yqe+71fIDttVs1qKquVFVfqqrzHcYxqqqeXlWfq6q3bef8AADgcAiBWGlVdXxV/dPw2IlV9fDhqfdL8vrW2sVba4/fvRkC+0lr7d9baxdrrX39YOPLIOqqXf8mVXXa8LQbJrl5kqNba9fdwekCAMCmCIE4j1W92ucQrpzkA3s9CeDwHaE1qHflJKe01r681xMBAICeEGgfqar7V9Xzh8ceV1WPr6pLVtVTq+qMqvpkVT38wHKH5dU2b66qx1TVZ5KcUFXnq6pHVdXZVfWxJLcejnuXqjp5ufzqY1X1693YTarqtKq6T1WduTznXbrxW1fVu6rqC1V1alWdsMb/z/cleWKSGyyXZ5xTVXdLcsck91s+9rKqel2SmyZ5wvKx79mWLyiwKfuhBq237Kyq3rRsvmdZa+6c5O+TXGHZ/1JVPSjJU/KtuvXQw/26AgDAdjnS/7WVc3tukt+vqou31r64/AXrdkl+NsmJSc5MctUkF03y8iSnJvnL5Wuvt3z95ZJcIMmvJfmpJNdO8uUkLxjOdeZy/GNJbpTk76vq7a21dy7HvzPJJZNcMYtlEc+vqhe31j63PN6dsrhy55pJXlNV726tvbg/QWvt5Kq6e5Jfba3d8MDjVfXDSU5rrT24e+wNSZ7ZWnvKpr9qwHbZVzVo1Fq7UVW1JD/YWvtIklTVJ7KoPUcfeF5VfTJD3QIAgFXgSqB9pLX2iSTvzOIXriS5WZL/SPLxJLdKcu/W2pdba2cmeUyS23cvP7219metta+11v4zi1/cHttaO7W19tkkfzSc6+9aax9tC29M8uokP9o95b+SPKy19l+ttVck+VKSqy9f+4bW2vtaa99orb03yXOS3HhbvxjArlODAABgtQmB9p9nJ7nDsv2Ly/6Vs/iX9TOWS6rOyeJf37+je92pw3GuMDz2iX6wqm5ZVW+pqs8uj3erJJftnvKZ1trXuv5/JLnY8rXXq6rXV9VZVfX5JHcfXgscudQgAABYUUKg/ed5SW5SVUdn8a/xz87iF6mvJrlsa+1Syz+XaK399+51bTjOGUmO6fpXOtCoqgtlsTTjUUku11q7VJJXJKkNzvHZSV6a5JjW2iWz2PdnrdeO81rrMWA17LcadCjqEQAARwwh0D7TWjsryRuSPD3Jx1trJ7fWzshiqcSfVtUlquq/VdV3V9X/397dB9telfcB/z7DS3xL5TWUAvGahNHQNIK5MRCMg4oWWxJM27E4JiEt1pmIDSSmBs1b49RRp1OjaaMJEYXMGK2DWmlrVUStRhPCRbG8mUApKJSXi8EJOlGCrv5xNnaxuPecfV723ufe/fnMOOdZv2fv3+/h7n0fOMvfb63VHn94b5JfrKpjq+rQJBd2uYOTfFeS3UkeqqoXJHn+Osr87iR/1Vr7RlU9Iyt3C+zNPUmOraqDh2Pft47rAXOyH/ag0dh/7klyeFU9cR3nAACAhTAJtH/64ySnT34+7Oey8ovTjUnuT3JZkqNXOccfJvlIki9kZY2P9z+caK09kOQXs/JL2v1Z+QXq8nXU9/Ikr62qB5L85uQ83zHZUefhtT0+npXFW++uqvsmxy5OcsLksZJVF3IFFmKf7kG9qvr9qvr97tC/TXLppP+8qLX2xaysKXTr5NjfW0cdAAAwV9WaO9kBAAAA9nfuBAIAAABYAiaBAAAAAJaASSAAAACAJbCpSaCqOqOq/qKqbqmqC9d+B8DW04sAAADWtuGFoavqgCR/meR5Se5IcnWSF7fWbty68gBWpxcBAABM58BNvPcZSW5prd2aJFX1niRnZWX73z064ogj2o4dOzZxSWDRbrvtttx333216Do6ehEsqWuuuea+1tqRi64DAGBfsZlJoGOSfLkb35Hkx1Z7w44dO7Jr165NXBJYtJ07dy66hJFeBEuqqm5fdA0AAPuSmS8MXVUvq6pdVbVr9+7ds74cwB7pRQAAwLLbzCTQnUmO68bHTo49QmvtotbaztbaziOPdMc2sOX0IgAAgClsZhLo6iTHV9WTq+rgJGcnuXxrygKYml4EAAAwhQ2vCdRae6iqXpHkI0kOSPKO1toNW1YZwBT0IgAAgOlsZmHotNY+lORDW1QLwIboRQAAAGub+cLQAAAAACyeSSAAAACAJWASCAAAAGAJmAQCAAAAWAImgQAAAACWgEkgAAAAgCVgEggAAABgCZgEAgAAAFgCJoEAAAAAloBJIAAAAIAlYBIIAAAAYAmYBAIAAABYAiaBAAAAAJaASSAAAACAJXDgoguA7eanh/Evd/FPzLMQgM6zuvhdQ+64eRYCAMA+y51AAAAAAEvAJBAAAADAEtivHgd71TD+X1384XkWMnjFMP69Lv78kDtxxrXM28e6+E1D7sYuvmfIHdPF/3zI/VoXP24dtVzYxU8ccv+miw8Ycv1fkpuH3HldfFEX71iljt8cxu/v4tuH3Hd18Y8NuTd28Q+tcj0W74EuPnrIfbyLnzGHWnp9jzx9yJ3axR+YQy3zdN0wfkMXf27IfamLHz/knt/Fbx5yR0xZy8uH8fd28S8PuYP2EifJlV3c95iPDq8b/xl6n+zi1w+5G7r4viH3pC7+1SH3L1e5HgAA8+dOIAAAAIAlYBIIAAAAYAmYBAIAAABYAvvcmkBfH8af7uK3D7l5r6/R69f9uWivr9r/fbaLTxpy/76LnzzkvtDFLxpyd3bxJeuo5YIufvWQO7mLa8i9rYs/M+T6tTeelOncNoz7tX2ePeTu7+Lzh1y/hsuNQ+6wKWth6zzYxV8ccv16ukpWgAAADjZJREFUZd8ecuPfi1naNYzP7OLdQ+6UGdeySB8cxt/fxb815Pq/11cPuZ/s4oeG3HumrGW8Xr+mzj8Ycv01fn7I3dXFv9vFq60BNPpIF5895H6qi8f1iPp++tIh1/972NplAACL504gAAAAgCVgEggAAABgCexzj4MdPoy/uZAq9qzfird//OONw+vGbX/n6Q3D+MNd/MkZXG/cDn1a/aMo/3qVc46PAK72hf67XfzOIffWLj5vyN3bxVetcs5p/dE6Xvu4Ln7NkPuRLv7skDszzNvTu/iGvb4qedYwHh+t2Wr9d+OfDrm+F41be5+c2RofmfvBLr5/yB2yxdf+9Q2+75nD+NQuvnaD5zxqGF/SxeO287/Uxd8z5Pre9JgN1jJuCz+tl3TxW4fc/+lij4MBACyeO4EAAAAAlsCak0BV9Y6qureqru+OHVZVV1TVzZOfh862TGDZ6UUAAACbM82dQJckOWM4dmGSK1trxye5cjIGmKVLohcBAABs2JprArXWPlVVO4bDZyU5bRJfmpXlZMYlJWbiG6vkXriO126Fm4Zxv5X5W7rYOgib87fD+MFVcqt9oe/p4nGL+H49j51D7qldfOqQe20XvySzdesqub8z42tvB9utF42uXyXXr6/z47MuJI9c36vf6vvdw+v6dXnGvzvj3wMevQ38dV38tA2e855h3M9i/tmQ67eyP2zI9Z/Xf+ziZ2+wrvW4vIsfN+RmvbYUAADrs9E1gY5qrd01ie/Oo9e2BJgHvQgAAGBKm14YurXWkrS95avqZVW1q6p27d69e7OXA9gjvQgAAGB1G90i/p6qOrq1dldVHZ1H7qL9CK21i5JclCQ7d+7c6y9o+4qvdPFPDrmf6eKXdvF4Sz9r+1YXj4+wnNTFj13HOfvtlr9/yF3UxWcPuZd38bi19C90cf+o2I511LWa27v4V4Zcv9X4uHV1b9cw/tFNVbTtbMte9PVh/Lku3uj25Kv5yDD+uS5+XxeP35NLuviHh9z4WA/J7w7jL3XxxRs8528P46d08R8MuRd08R8Oub/s4l/r4o8Or3v89KU9wre7+E1D7j908R8NuSNXOeexXXznRooCAGDdNnon0OVJzpnE5yT54NaUA7AuehEAAMCUptki/t1J/jTJU6rqjqo6N8kbkjyvqm5OcvpkDDAzehEAAMDmTLM72Iv3knruFtcCsFd6EQAAwOZsdE2gpfHgMP4nXXzMkPudGdeyTH6ji28ccv9jg+d8/ZSv+9Yw7reFfsqQ+/gGa9mbS4bxK7t43LK7XytptVv6xvdtdjEcW4ev7bPD+G+7+JQtuka/Lfe/GnL9M3GrbdHdr1f2vE1XtH/q11T61SHXj0/f4Pnfuo7X9t+jcbv607r4Mxuspfffh/FruvhrQ65fd2g9W9Lfsa6K9qy24BwAAMtk07uDAQAAALD9mQQCAAAAWAIeB1vDO4fxbV08br190GxLeYRx9dtXb8E513Nbfb8Iy8e24NpvG8av30ucJP9wC663mg/M+PyrecUwvqCL/908C2FT/ucw7h8jPHyD57xqGPePgI2P7uztkb37h/HNXfwb2ZhbhvHxGzxP79ANvu+BLn7CBs8xbr3+C138yiE371XIPzXj8/ePip4z5M7t4rEXzfPffQAAbI47gQAAAACWgEkgAAAAgCVgEggAAABgCVgTaA1/M4y/1MXfswXnP2kYP62Lr13lfReuMd6bcQ2LD3fxJ6c8x1bp1wEa18J5bRdP+8+2P/qhLTjHuHbVj27BOVnduCbQqVtwzsuH8b1dvBWf6c8O40u7+IpV3vcDw7jt8VWP9sVh/INdPK5ddMiU55zWuL16v9bPRUPuD7r43Ozfburirwy5l3bxVq0BdGwX37lF5wQAYHXuBAIAAABYAiaBAAAAAJaAx8HWcMEa42n82TA+pYs/P+RO3MD59xXjVu+/3sVvGXLj42HL4mszOOe4Xfi0j+tMez5WfKOL/3zI/fwWnP91a4yn8UvD+L928bjV+/7m/3bx2UPuy138J0PuR2ZTzrZ0Qhdvtk9M444tOEdtwTkAAJaJO4EAAAAAloBJIAAAAIAlYBIIAAAAYAlYE4iZelUX/6ch974ufuEcatmu+rVkHjvk+nWULpxDLWzcn3bxg0Pux+dZyCo+PYx/YiFVzMfVw/jMLn7WkOvXRnribMrZJ5zWxeN/HHxsjnUAADA77gQCAAAAWAImgQAAAACWwD73ONhjhvE3p3zfuI1sf8v/VzdeDmv4UBf/zZD76S04//nD+M1bcE7Ym9O7+Mp1vO+EVXLXd/HfX185U/laF1875F4+g+ttF28dxvd28WVDbhxPq3/M7zMbPMd2cl0Xn7OwKgAAmCV3AgEAAAAsAZNAAAAAAEvAJBAAAADAEtjn1gT6xtov2XZOHsZtIVWsGLcZn/W249ev/ZKl169ztcjvBmvbF7fJfkIXP7SwKh7tqcN4q7/771xjzKN9ZdEFAAAwc+4EAgAAAFgCJoEAAAAAloBJIAAAAIAlYBIIAAAAYAmsOQlUVcdV1Seq6saquqGqzp8cP6yqrqiqmyc/D519ucCy0osAAAA2Z5o7gR5K8srW2glZ2ejqvKo6ISsbS13ZWjs+yZWZ/UZTwHLTiwAAADZhzUmg1tpdrbXPTeIHktyU5JgkZyW5dPKyS5O8cFZFAuhFAAAAm7OuNYGqakeSk5JcleSo1tpdk9TdSY7ay3teVlW7qmrX7t27N1EqwAq9CAAAYP2mngSqqickeV+SC1prf93nWmstSdvT+1prF7XWdrbWdh555JGbKhZALwIAANiYqSaBquqgrPzS9a7W2vsnh++pqqMn+aOT3DubEgFW6EUAAAAbN83uYJXk4iQ3tdbe1KUuT3LOJD4nyQe3vjyAFXoRAADA5hw4xWtOTfKzSa6rqmsnx16T5A1J3ltV5ya5PcmLZlMiQBK9CAAAYFPWnARqrf1JktpL+rlbWw7AnulFAAAAm7Ou3cEAAAAA2DeZBAIAAABYAiaBAAAAAJaASSAAAACAJWASCAAAAGAJmAQCAAAAWAImgQAAAACWgEkgAAAAgCVgEggAAABgCZgEAgAAAFgC1Vqb38Wqdie5PckRSe6b24X3brvUkahlT7ZLHYlaek9qrR25wOtvml60KrU82napI1HLaJ/vRwAA8zTXSaDvXLRqV2tt59wvvE3rSNSynetI1LK/2i5/ltuljkQt27mORC0AAGyOx8EAAAAAloBJIAAAAIAlsKhJoIsWdN3RdqkjUcuebJc6ErXsr7bLn+V2qSNRy55slzoStQAAsAkLWRMIAAAAgPnyOBgAAADAEpjrJFBVnVFVf1FVt1TVhXO+9juq6t6qur47dlhVXVFVN09+HjqHOo6rqk9U1Y1VdUNVnb/AWh5TVX9eVV+Y1PLbk+NPrqqrJp/Tf66qg2ddy+S6B1TV56vqvy24jtuq6rqquraqdk2Ozf3zmVz3kKq6rKq+WFU3VdUpi6plf6IX6UVT1LTwfqQXAQCw1eY2CVRVByT5vSQvSHJCkhdX1Qnzun6SS5KcMRy7MMmVrbXjk1w5Gc/aQ0le2Vo7IcnJSc6b/DksopZvJnlOa+1pSU5MckZVnZzkjUl+p7X2A0nuT3LuHGpJkvOT3NSNF1VHkjy7tXZit/3xIj6fJHlLkg+31p6a5GlZ+fNZVC37Bb3oO/Si1W2XfqQXAQCwZeZ5J9AzktzSWru1tfZgkvckOWteF2+tfSrJXw2Hz0py6SS+NMkL51DHXa21z03iB7LyH9LHLKiW1lr72mR40OR/Lclzklw2z1qq6tgk/zjJ2yfjWkQdq5j751NVT0zyrCQXJ0lr7cHW2lcXUct+Ri+KXrSabd6P9CIAADZsnpNAxyT5cje+Y3JskY5qrd01ie9OctQ8L15VO5KclOSqRdUyeeTh2iT3Jrkiyf9O8tXW2kOTl8zrc3pzklcl+fZkfPiC6khWfvn8aFVdU1UvmxxbxOfz5CS7k7xz8ljK26vq8QuqZX+iFw30okfZLv1ILwIAYEtZGHqirWyTNret0qrqCUnel+SC1tpfL6qW1tq3WmsnJjk2K3dIPHUe1+1V1ZlJ7m2tXTPva+/FM1trT8/K40LnVdWz+uQcP58Dkzw9ydtaaycl+XqGxy3m/b1l9vSixfWiZNv1I70IAIAtNc9JoDuTHNeNj50cW6R7quroJJn8vHceF62qg7LyS9e7WmvvX2QtD5vc2v+JJKckOaSqDpyk5vE5nZrkp6rqtqw8mvOcrKw/Me86kiSttTsnP+9N8oGs/EK6iM/njiR3tNaumowvy8ovYgv9ruwH9KIJvWiPtk0/0osAANhq85wEujrJ8ZMdVg5OcnaSy+d4/T25PMk5k/icJB+c9QUna0tcnOSm1tqbFlzLkVV1yCR+bJLnZWVdkE8k+WfzqqW19urW2rGttR1Z+V58vLX2knnXkSRV9fiq+u6H4yTPT3J9FvD5tNbuTvLlqnrK5NBzk9y4iFr2M3pR9KK92S79SC8CAGAWauUO7jldrOofZWWthQOSvKO19ro5XvvdSU5LckSSe5L8VpL/kuS9Sb43ye1JXtRaGxds3eo6npnk00muy/9fb+I1WVmLY961/HBWFvM8ICsTgu9trb22qr4vK/8P+GFJPp/kZ1pr35xlLV1NpyX5ldbamYuoY3LND0yGByb549ba66rq8Mz585nUc2JWFqc9OMmtSf5FJp/VvGvZn+hFetGUdZ2WBfUjvQgAgFmY6yQQAAAAAIthYWgAAACAJWASCAAAAGAJmAQCAAAAWAImgQAAAACWgEkgAAAAgCVgEggAAABgCZgEAgAAAFgCJoEAAAAAlsD/A9GTVNEOcVNNAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import os\n", "import glob\n", "import matplotlib.pyplot as plt\n", "from PIL import Image, ImageFont, ImageDraw\n", "# fonts = glob.glob('latin2/*')\n", "# fonts = glob.glob('fonts/english/*')\n", "# fonts = glob.glob('latin/*')\n", "# fonts = glob.glob('fonts/*.TTF')\n", "# fonts = ['/usr/share/fonts/truetype/arphic/uming.ttc', '/usr/share/fonts/truetype/arphic/ukai.ttc', '/usr/share/fonts/opentype/malayalam/Manjari-Regular.otf', '/usr/share/fonts/opentype/malayalam/Manjari-Thin.otf', '/usr/share/fonts/opentype/noto/NotoSerifCJK-Regular.ttc', '/usr/share/fonts/opentype/noto/NotoSerifCJK-Bold.ttc', '/usr/share/fonts/opentype/noto/NotoSansCJK-Regular.ttc', '/usr/share/fonts/opentype/noto/NotoSansCJK-Bold.ttc']\n", "# fonts2 = ['latin/segoeuil.ttf', 'latin/verdana.ttf', 'latin/calibri.ttf', 'latin/SIMLI.TTF', 'latin/verdanai.ttf', 'latin/framd.ttf', 'latin/arialbi.ttf', 'latin/ariali.ttf', 'latin/LSANS.TTF']\n", "# fonts = fonts+fonts2\n", "# fonts = sorted(fonts)\n", "fonts = [ '/usr/share/fonts/opentype/malayalam/Manjari-Regular.otf', '/usr/share/fonts/opentype/malayalam/Manjari-Thin.otf', '/usr/share/fonts/opentype/noto/NotoSerifCJK-Regular.ttc', '/usr/share/fonts/opentype/noto/NotoSansCJK-Regular.ttc', '/usr/share/fonts/opentype/noto/NotoSansCJK-Bold.ttc']\n", "fonts2 = ['latin/segoeuil.ttf', 'latin/verdana.ttf', 'latin/calibri.ttf', 'latin/SIMLI.TTF', 'latin/verdanai.ttf', 'latin/framd.ttf', 'latin/ariali.ttf', 'latin/LSANS.TTF']\n", "fonts = fonts+fonts2\n", "fonts = sorted(fonts)\n", "# text = '3fxw'\n", "text = '14+2*?=32'\n", "# text='56-33=?'\n", "# img2 = Image.open('/data/captcha/arithmetic/100_26/19c3254f-f699-11ea-bae3-c81f66ef0810.jpg')\n", "img2 = Image.open('/data/captcha/arithmetic/70_25/0.jpg')\n", "imgs = [img2]\n", "names = ['lizi']\n", "for font_path in fonts:\n", " if os.path.isdir(font_path):\n", " continue\n", " img = Image.new(mode='RGB', size=(70, 25), color=(255,255,255)) #\n", " draw = ImageDraw.Draw(im=img, mode='RGB') # im, mode=None\n", " name = font_path.split('/')[-1] \n", " font = ImageFont.truetype(font_path, size=15) # font=None, size=10, index=0, encoding=\"\"\n", " draw.text((3, 2), text, font=font, fill=(0,255,255))\n", " imgs.append(img)\n", " names.append(name)\n", "plt.figure(figsize=(20,30))\n", "for i in range(len(imgs)): \n", " plt.subplot(len(imgs)//4+1,4,i+1)\n", " plt.imshow(imgs[i])\n", " plt.title(names[i])\n", "plt.show()\n", " \n", " " ] }, { "cell_type": "code", "execution_count": 116, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACP8AAAM/CAYAAACky+WmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XncrOd8P/DPJUEWSexiTygRO1FL1BIpYvez11Z77WLf+quli6VFYmm1lLRKaSlKCUXsVTtFLEFiDSWIJQlJ7t8fM+eXp3e/55z7PM/M3DPP836/XvOac33mmvu+rlm/M8917mld1wUAAAAAAAAAAFg95xp7AAAAAAAAAAAAwPpY/AMAAAAAAAAAACvK4h8AAAAAAAAAAFhRFv8AAAAAAAAAAMCKsvgHAAAAAAAAAABWlMU/AAAAAAAAAACwoiz+AQAAAAAAAACAFWXxDwAAAAAAAAAArCiLfwAAAAAAAAAAYEVZ/AMAAAAAAAAAACvK4h8AAAAAAAAAAFhRFv8AAAAAAAAAAMCKsvgHAAAAAAAAAABWlMU/AAAAAAAAAACwoiz+AZZOa23/1trRrbWvt9ZOb639oLX2ttba4WOPDQBgEVpr+7TWbt9a++PW2jtbaz9qrXXT05XGHh8AwKK01i7TWjty+t3Qt1prZ7TWft5a+1xr7bmttYuPPUYAgEVprV1n+n3Rsa21E1prP5vWR99trb21tXbHsccIjKN1XTf2GAD+v9ba1ZO8L8mFptGpSc6XyWLFLsnTuq577kjDAwBYiOkXNW/ezsUHd1335UWOBwBgDK21Syc5KUlbE5+aZO8ku03bP0ly567rjlvw8AAAFq619vIkf7Am+kWS3ZPssSZ7U5Lf67ruN4scGzAuR/4BlkZrbc8k/5rJwp/PJLlq13X7JblAkhdk8kXPn7XWbjHeKAEAFuaHSd6R5FlJHjLyWAAAxrBtgc+/JblrkgtOvyvaK8mtk3wzk++N3tJa23+cIQIALNR/JHlskkOS7NN13T5d1+2Z5DJJ/nza585JnjLS+ICROPIPsDRaa0cmeVEmq5Sv1HXdd3uXvznJHZN8uuu6Q0YYIgDAQrTWduu67qw17QMy+eNW4sg/AMAW0VrbL8kBXdd9bjuXXymT/0C2R5Jndl33rEWODwBg2bTWXpPk3km+0XXd5cceD7A4jvwDLJN7Tc9f11/4M7VtxfK1W2sHLWhMAAALt3bhDwDAVtV13c+2t/BnevmXk3xs2vQfxQAAkk9Mzy8x6iiAhbP4B1gKrbV9cs6XNO/aTrePJfnZ9N+Hz31QAAAAACy7H0/Pd9thLwCAreHQ6fk3d9gL2HQs/gGWxcFJ2vTfX6w6dF13dpKvTJtXXsSgAAAAAFhOrbXdk9xw2vzCmGMBABhLa+18rbWrt9ZeluTu0/ilY44JWLzdxx4AwNTF1/z7ezvot+2yi++gDwAAAACb3yOS7J/k7CR/N/JYAAAWprV2qSTfLi46Pcmfdl33lwseEjAyi3+AZbH3mn+ftoN+v5qen2+OYwEAAABgibXWrp7kOdPmS7uu+9KY4wEAWLCzkvxg+u8LJDlPkjMzqY9eNtaggPH42S8AAAAAAFZGa+3iSd6SZM8kn0ry5HFHBACwWF3Xfb/ruv27rts/k5rooCR/n+RZST7bWrvKqAMEFs7iH2BZ/HLNv/fcQb+9pue/mONYAAAAAFhCrbULJnl3kgOTfC3JbbquO33cUQEAjKfrurO7rvtq13UPTPLCJJdJ8prWmrUAsIV4wgPL4ntr/n2JHfTbdtn35zgWAAAAAJZMa22/JO9KctUk30ryu13X/WDH1wIA2FJeMj2/1vQEbBEW/wDL4stJuum/y0MRTlcoHzRt+h13AAAAgC2itbZ3knckuU6SkzNZ+POtcUcFALB0vrvm35cfbRTAwln8AyyFrut+nuST0+bNt9Ptekn2m/77vXMfFAAAAACja63tmeRtSQ5N8uNMFv58bdxRAQAspQPX/PsXo40CWDiLf4Bl8rrp+b1aaxcvLn/C9PxTXdd9ZUFjAgAAAGAkrbXzJPmXJIcl+WmSW3Rd98VxRwUAsHittd1aa20n3Z44PT8zyX/MeUjAErH4B1gmf53kpCT7JHl7a+3KSdJa26e19vwkd5r2e9pI4wMAWJjW2oW3nZJcYM1F51972fSnUQEANp3W2m6Z/GexI5L8PMmtuq779LijAgAYzaWTfLK19oDW2qW2ha21c7XWrtlae22SB03jl3Rd95NRRgmMonVdN/YYAP6/1to1MvlJrwtNo1OTnC+TxYpdkqd1XffckYYHALAwrbWhH9YO7LruxHmOBQBgDK21Gyf5wLR5epKf7aD7t7uu++35jwoAYByttQOSfHNNdHomP+21T5LzrsmPSfLgruvOXNTYgPHtPvYAANbquu5zrbWrJnlqktsmuWQmv+X+8SQv6rruvWOODwAAAICFWXuEwz2mp+05fc5jAQAY2/eS3D3J4Umum+Timfxn+tOTfD2Tn/l6ddd1HxlthMBoHPkHAAAAAAAAAABW1Ll23gUAAAAAAAAAAFhGFv8AAAAAAAAAAMCKsvgHAAAAAAAAAABWlMU/AAAAAAAAAACwoiz+AQAAAAAAAACAFWXxDwAAAAAAAAAArCiLfwAAAAAAAAAAYEWNuvintXap1tqrWmvfa62d0Vo7sbV2VGvtAmOOCwBg0dRFAAAT6iIAgAl1EQAwVOu6bpwdt3b5JB9NctEkb03y5STXTXJYkq8kuWHXdT8eZXAAAAukLgIAmFAXAQBMqIsAgF0x5pF//jKTguXRXdfdseu6p3Rdd7MkL0pyUJI/HXFsAACLpC4CAJhQFwEATKiLAIDBRjnyz3S18glJTkxy+a7rzl5z2T5Jvp+kJblo13W/XMf2v5lk3+n2AYDxHJDk1K7rDhx7IMtKXQQAW8oBURtt17zroul21EYAsBwOiLpou9RFALClHJAZ1EW7z2Ysu+yw6fm71xYsSdJ13c9bax9Jcosk10/y3nVsf98999zzggcffPAFNzhOAGADjj/++Oyxxx7ej3dMXQQAW8Txxx+f0047bexhLLN510WJ2ggAloLvjHZKXQQAW8Ss6qKxFv8cND3/6nYu/1omRcsVs4OipbX2qe1ctMfBBx+cT31qexcDAItwyCGHjD2EVaAuAoAt4pBDDsmnP/3pE8cexxKbSV2UqI0AYNn5zmin1EUAsEXMqi4610y2suv2m57/bDuXb8vPv4CxAACMSV0EADChLgIAmFAXAQC7ZKwj/8xE13XlEqjpKuZrL3g4AACjURcBAJxDbQQAMKEuAoCtYawj/2xbkbzfdi7flv90AWMBABiTuggAYEJdBAAwoS4CAHbJWIt/vjI9v+J2Lr/C9Hx7v2UKALBZqIsAACbURQAAE+oiAGCXjLX457jp+S1aa/9jDK21fZLcMMmvknxs0QMDAFgwdREAwIS6CABgQl0EAOySURb/dF339STvTnJAkkf0Ln5Wkr2TvKbrul8ueGgAAAulLgIAmFAXAQBMqIsAgF21+4j7fniSjyZ5cWvt8CTHJ7leksMyOUzh00ccGwDAIqmLAAAm1EUAABPqIgBgsLF+9mvbquXrJDkmk2Ll8Ukun+ToJNfvuu7HY40NAGCR1EUAABPqIgCACXURALArxjzyT7qu+3aS+485BgCAZaAuAgCYUBfNz28X2f3mvM+9Bu6zzXCfLyuyNxbZnYrsQkX2ySL7UpEdU2T7F9lW8cIie3+vfbuiz0+L7G1F9qdFdqOdjGkehswzGTbXZZ7nZvWrIrtekT21177nHMayHj8osgcWWTWnaxXZV4uselz+Sa99w6IPs6EuAgCGGu3IPwAAAAAAAAAAwMZY/AMAAAAAAAAAACvK4h8AAAAAAAAAAFhRFv8AAAAAAAAAAMCK2n3sAbAxpxfZ64rs53Mex/mK7B5FtvcM9/mLIvv7Int/kf2syA4qsgcU2TV3MKat6EtF9olee7+izw2K7GIbH87cDJlnMmyuyzzPreSfiuxCvfbhixjIOn20yF5RZCcU2W8V2R2L7A67NCIY302L7ENFdp45j+MPiuyoDWyver7fvdf+TtHn3EX2myJrRfaYInvhwOuuuuOL7DZF9s11bv+IInt9kVU1xUb05zXLOSXjzWuruleRVZ8DP11k15rxWIZ4cpH9RZFVryn97Myiz12KrPpsuGeRwWZW1QdXL7JHzHsgC/CqXvvDRZ9/L7KhX4zes8g+WGT3Gbjfzeh9RXZckf1rrz20nnxYkVX1zFuK7AID9zHEeueZDJvrssxzs/p8kd23yK4074HM0AOLrPr8WX0XNNSDiqz/PVL1PduFN7BPAAB2nSP/AAAAAAAAAADAirL4BwAAAAAAAAAAVpTFPwAAAAAAAAAAsKKG/rQ1S6r/m+bJ8vxWe7Wy7P4b2N6Xeu3bFn2+uYHtv7vIXlZkzy+yx29gv8vqN0VW/Yb0a9a5/b2K7LlF9qh1bn+oec8z+d9zHWOeW92xRXaPIuv/FvkP5zCW9fiLIntSkXUDt/fhIjumyPrPhVcO3D6MpV8rJMmRRfaCeQ9kA75RZLcqsv177X8v+vxOkVWva9XtcVSRXaLInlhkq6SqA25XZKcX2VuK7PpF1n8PeljRp3qcvrrIhhoyr1nOKVnMvLaCk4vsPkX2noHbO3sDY1mvvy+y6jNUVcv8UZHt1mtXj6Gqln5WkVV1OGxmVW10lYWPYvZ+XWSv67XfVfTpv55s1I2L7E0z3scquViRVd+ltHVu/3xFdvciO67I7rTOfVa2yjy3kn8rsup74vXep7PW/8x4+6LPb814n/sW2VN77eo7o6fMeBwAAOyYI/8AAAAAAAAAAMCKsvgHAAAAAAAAAABWlMU/AAAAAAAAAACwoiz+AQAAAAAAAACAFbX72ANgYz4xsN/diuyKMxzHPkV2pw1s7/Qiu3WvfVLR59Aie3iRXbLIji2yPy+yJxTZdXrtmxR9vl5k1Txn6QpFdp6B131ykb2myPYrstv32r8u+ryxyB5dZJcvsv5jYSNmOc9k2FzHmOdW8vwie3aRdUU27+fkUJ/ttZ9U9GlFVs398CKr3juq58Lf9to3L/rcvchgEX5cZP9dZAfPeyAz9mdFtleRHddrX2Lg9i9TZEcX2eWKbO+B+1gl3yqyk4vsPUV2/YH7+P1eu6oJq9fvvymycw/c55B5zXJOyfrnNXROW8UJRfbdIvu9IvvHGY9lvV5ZZDcqsuetc/sPK7IvFNlLi6x6jfU/otjMvlhkV174KGaver27a6+92yIGUth3pP0ug6uMsM/q+8hT5rzPrTLPzerqA/tV3xkti/5ntYeMMor//T38q0cZBQAAa/meCwAAAAAAAAAAVpTFPwAAAAAAAAAAsKIs/gEAAAAAAAAAgBVl8Q8AAAAAAAAAAKyo3cceABvzXwP7/VGRXWWWA5mxvy2yk3rtw4o+xxbZeQbu86ZFdvUie0aR7TVg+3cpspOLbI8B29qe7/TaXyj6HDRwW68tsvMV2YeK7GoDtv/qIntAkf11kd16wPaHmvc8k/891zHmuVmdUmRPKbJu3gOZsdf32tX4H15kTxi4/WsVWfW4v1ev/Zqiz90H7hNm7UsD+x1cZNVrxy+L7NLDh7MuPyiy6nn21CK7xIzH0veYOW9/WVy+yE4tsln+j4lqn2cU2U+K7KIb2Ed/XrP+XyDrndfQOW0Vv1Nk1evde4vsH2c8lvV6epFdZs77vFmR/WWRnVhkl5vtUGCpVK8fVy6y6jPqN4qs+sxwnV77iUWfvYtsIz5SZM8ccL2q9np/kf2syK5dZP25b8THi2zPIhv6PcQQ3y6y6nvGZfluovpc/Loiq17/V8lWmecqamMPYMn0XysvNMooAABYy5F/AAAAAAAAAABgRVn8AwAAAAAAAAAAK8riHwAAAAAAAAAAWFEW/wAAAAAAAAAAwIrafewBMNzZRfalIjt3kV2gyN5dZBcusqv02uct+szaiwb0eX6RnafIziiy04rs/EV2z4HZer2xyG64ge1dYQPX7XtzkVWPrautc/uHD+x3wjq3P9S855kMm+u857lZXbDIji2y/Yrs+jMeyyz9Xq/986LPn814n787oM8XZrxP2IiqBqo8tMiGPpar15gH9NrPLvrsOXD7nyuyXxfZXYrs8732XxZ9vlxkBxZZ9T51ryJrRVY5rtf+aNHn6QO3NdQniuxfeu3nDNzWrP93RNdr/3PR57eK7KIzHscs59WfUzLevFg+txxhn0Nr6b3mOgpYPl8ssqqGekmRXbPIziyyd/baty76VN99XKTIhvpukV28135p0eetRXanIqu+G3ttkf1xkf11ke1fZH2HFNmjiuzIIrvigO0nycm9dlWPvWzgtmbp1CL7zyJ7eZHdv8iqendZDJnrZpjnZlDVu0M/D20Vb+m1bzzKKAAAWMuRfwAAAAAAAAAAYEVZ/AMAAAAAAAAAACvK4h8AAAAAAAAAAFhRFv8AAAAAAAAAAMCK2n3sATDcCUV22sDrXnID+92r1/7jos9jimy3gdv/eZF9vcgu1mt3RZ+bFNl/FtkZRXZAkf1BkT2hyDbjE+nQOW//mIH9rj3PQWT+80yGzXXe89xKblFkZw28bpvlQDbgGr32yxawzy8O6HP+uY8Chjt+YL+qVnpWkR1QZB8qshf12h8u+lRZVRdV9U7lc0X2wF5736LPdYvss0V2TJG9qsjeXmT9OjFJLt9r36/oc2qRPa/IKp8uslsWWVWzztJ3iuwlRfaeXvszRZ+3bnw4M7HeOSXzn1f1XnjyDLe/EdcssjsvfBRbx2+K7J+L7KpFtv+MxwLL7r4Ds+r9vHKeIrtDr33Bos8zi2wjn3Gqz21v7LWrmuddRTb0f0Xetciq975+jZb87xqqGn9VKx5VZA8vsj8ssqo2fHKv/eKizz5FNm9Vzf3yIvtqkd1pxmOZtyFzHWue/9Br/2wB+6wc1Gv/7iijqL933sq+UmTH9trL8pkGAGArc+QfAAAAAAAAAABYURb/AAAAAAAAAADAirL4BwAAAAAAAAAAVpTFPwAAAAAAAAAAsKJ2H3sADPeFDVx3nyL7nSL7UZF9std+fNHn20X2op0NaurrA/ud1mvfsOjzmyI7f5Fdssi+UWRPLbL3Ftm7e+1W9Nmsziqy+/XaHyz6fKvI9iqyp+3qgOZkyDyTYXOd9Tx/WmT3LbKfbGAfs3SFXvtVo4xiazu7yIa8Zt961gOBDaiK2FsW2euLrKoNKtVr6R177dsWfV5cZI8tsl8WWVVD3G/AOI4p+uxdZJW3Ftldi6x6rzqqyC7Ta7+v6HOTIjvPwHHcosj+qMgeUWSz9PEiq15L+/VpNc8qG8N655TMf15vLrLvznD7G1F9hrrzwkexefXrlocUfT5XZO+f/VBg5Tx0hH3eqMieOeN9nK/I+vXXsUWfWf8PyGsV2bWLrF8LHT5w+9X7aFVnPnzg9l7Yaw+tieftNgOz04useoxX86q2N4Yhcx1rnv3vSqvvkhfhIiPtd4it8n3vx4rsWUX2D732Vrl9AACW2Uw+97bW7tJae0lr7UOttVNba11rrV//9a9zaGvtHa21U1prp7XWPt9aO7K1ttssxgQAMAZ1EQDAhLoIAGBCXQQAzNusjvzzh0mukeQXSb6T5Eo76txau0OSN2XynxnekOSUJLfL5D+W3jD1f/IFAFgF6iIAgAl1EQDAhLoIAJirWR3x9rFJrphk3yQP21HH1tq+SV6Rya/o3LTrugd2XffEJNdM8h9J7tJau8eMxgUAsGjqIgCACXURAMCEuggAmKuZLP7puu64ruu+1nVdN6D7XTL5+d7Xd133yTXbOD2Tlc/JTgofAIBlpS4CAJhQFwEATKiLAIB5m9XPfu2Km03Pjy0u+2CSXyU5tLV23q7rzljcsJbfLwf2u3OR/V2R7T1wex/qtY8o+hxdZPcuskOK7DcDx3HqgD4vLLIji6wV2eeK7E5F9p4ie1mv/ciiz2b1vSJ7ba895NNMUr8g/XrXhjM3Q+aZDJvrrOf530X270V2+gb2MUtf7bWr14BzL2Igheq1YdVV9/tDi+xtRXZQr/3UjQ+H/01dtE5/MdJ+b9Nr36zo829F9tgiu2yRVe8j+xbZq3rtoXVd5Q5F9ugi69c7SX0/9N/nLl/0eV+R3aTIqtruj4usqvfmraoTq9fcE3rtxxd97lhk3y6yC+9sUBu03jkl65/X0DlVNTibz8lFds9eu//5NEn+qshuuPHhsHjqok3qokX2oyIb+p5wYJH9uNfeSG20ETctsk/02odvYPtVrbhbkZ1dZKv+eXePIntekT2iyPo1/DIba56HbeC6m1H1XFv151A1pxcU2ZeL7I1FNtbr7BaiLgIAdtkYi3+2/S2x//ffdF13Zmvtm0mukuRySY7f0YZaa5/azkU7/K1UAIAloS4CAJiYWV2UqI0AgJWmLgIAdtlMfvZrF+03Pf/Zdi7flp9/AWMBABiTuggAYEJdBAAwoS4CAHbZGEf+mZmu66pfkdq2ivnaCx4OAMBo1EUAAOdQGwEATKiLAGBrGOPIP9tWJO+3ncu35T9dwFgAAMakLgIAmFAXAQBMqIsAgF02xpF/vpLkOkmumOR//M5oa233JAcmOTPJNxY/tOV27yK7fpFdYcb7vVGv/diiz58W2XuKrFpefuAuj2jirkVWjW2oaxTZ3xTZ7xbZv/Taj9zAOFbNpYvs6732F4s+/1xkf19k9yiynf6I8RwMmWcybK6znmf1nP9+kf1y4PbmrX8s2nOPMorN6StFdrci+3yRVY/xN/fa++zyiBhAXbTiDi6yfx143csN7Ff9F7x5Px8PK7IXFFn1unOVAds/a2DWiuw3A7Y/lup/Vlyx1/7Los9liuz9RXaXXR3QDAyZU7L+eQ2d078X2bcGXnfeqteBQxc+itXz/iKrauKze+3qsXDTjQ6GZaEu2qROKbILbGB79yyy921ge7NU/TbL9v5quzOnF9ljiuxZRbZnkT2u135x0WffnQ1qyVQ18TLXiuu1iHk+oNf+9oy3P9Qte+0njDKKpBtpv7PyqyJ7YJH1b+8keeWMx8K6qYtm7H5F9neLHkSSo4qsen+ft/7nrCR5V5G9rsiqvzM8p8gO2qURsUxOKLJnF1n1N6yq9q9qzH7tkSQP77V3K/psxHrnNcs5JbOf11bxiyL7YK/93qJPtV7hwUU2xt/2P7Pm31X9th5jHPln2+fxI4rLbpxkryQf7brujMUNCQBgFOoiAIAJdREAwIS6CADYZWMs/nljkh8luUdr7TrbwtbaHkn+ZNr8qxHGBQCwaOoiAIAJdREAwIS6CADYZTP52a/W2h2T3HHa3H96foPW2jHTf/+o67onJEnXdae21h6cSfHy/tba6zM5YtbtMzkK3BuTvGEW4wIAWDR1EQDAhLoIAGBCXQQAzNtMFv8kuWaS3+9ll5uekuSkrPmJ3q7r3tJau0mSpye5c5I9MvmpvccleXHXdav+s7pz0YrsCgsfRXKVgf2+PrDfhYvsgkXW/03FGwzc/kYcOrDfF+Y6itVz4E7aSXLbIvtYkX25yL5fZBff2aDmoJrXkLnOep7V70A+o8hOLbIx9F+3njbKKFbf24vsHkVW/Qbz4UX2j0V2kV0aEWuoi+bgrF77VUWfexfZnnMYy1rV6/cVB1732kVW/R76t4cPZ2Z+MLBfVcf1fbXIblZkjyiyOw287nmL7MgdDWpEQ3/X+7S5jmL25j2v6jfST1zntmbtlkVWvU9vZR8oslsX2cFF9pZe+9IbHw6LpS5akPcW2VeKrHo9naWvFdleRTb0faNytSK7QK9d1WhX2sA+h/qnIvujAdf7dZE9usiqz8+XGrD9JHnOgO2/rMj2Hrj9MW7zdxbZvL8v3KzzrD5fbWXVm0313fwy+EmR3a/Inl5k153tUNg5ddGIflpkjyqyi815HIv4u1bfh4vsYUV2oyJ7YpFdfWPDWZf+94JJ/TemlxfZZWc8llk6qdeuavV/LbKN1NKVb/XaNyz6/F6RfWLg9j9UZHcssv7nl5cO3H6lP6dktvNa75ySjc1rq/hekVXfE+/fa5+v6PP5IqteU+btg0W29rc9T5/Rfmay+KfrumcmeeYuXucjqb/vAwBYWeoiAIAJdREAwIS6CACYt3ONPQAAAAAAAAAAAGB9LP4BAAAAAAAAAIAVZfEPAAAAAAAAAACsqN3HHgDDPbbIflJkryiyc89wHB8f2O+qG9jH/YvsBb32Jzaw/aG+OLDfgXMdxfydUWT/UWQ3KrLd1rnPrshOG3jd9T6ex5hn8r/nOut5fr3IXjzwumPYs9d+QtHnPIsYSKGNtN+d+fciu0uRVY/xJxfZnxbZRh7jsAgn99oPL/r8W5H9S5FtZPX7u3rt9xV9/nzgtqrXnMcUWTXXV/faVe001K+LrHofuUqRXazITuy1Dy/6PKDInlFklXcXWbWP8/baDyv6PKnITiiy1xTZ3kU2xFFFVj0mb7jO7SfD5jXLOSXzn9fX1nk9Fu+bRXa7Irt8kb23yM6/seHAlnFYkb20yPYrsnttYL8n9toPLPr81Qa2P9TRvXZVa/xNkVX1TeXsIntOkR1QZFcesP2PFNnjiuxyA7a1PRfvtZ9V9DmuyG5bZNXt8ewiu3GRPbTIhvhokVU16zvXuf3KVpknwyzLd0b9x2X1WPuTIrvaHMYCq+SnRdavH5LksvMeyAK8qtd+etHnb4vs1nMYy6xU311X36EdUWTHFtkY9/NJRXarXrt6TC7ie/uX9do/LPrcaQPbr/7m9sQie1qvXT12+zXt9vTnlMx2XuudU7KxeW0Vlyiyjw24XvX30tcWWf9740V4SpGt/e50VrWmI/8AAAAAAAAAAMCKsvgHAAAAAAAAAABWlMU/AAAAAAAAAACwoiz+AQAAAAAAAACAFbX72ANguA8X2SeL7PQi+7siO+/A/f5Lr/2yos95iuyWA7dfeXSRHd1r/2PR57eL7DFFVq16+16RPbzIKrcd2G9Z/X2RPaTIblRkryuyS/XaZxR9nlJk3y6yqxXZhYtsiHnPMxk211nPs7pXshLLAAAgAElEQVTu54vslIHbm7fL9NrV68dW1389unvRp3qsPafIqucarKJL9tp/XPR5apEdUWT3L7I9i+wDRdavg4bWHkM9qMiqmueBvXZVJ1Zz/2mRVbXdF4rs/UVW+VKv/bCiz9MGbqtyrSJ7V5H9w4Bt/W6RVbfHdYvsvkV28SJ7S6/95qJP9Vp9uSIbasi8ZjmnZDHz2gp+WWTV4/tzA7f33iL7UZGt97NbV2T916ck+XmRVZ+hXrvOcQxVvX4cOud9wqJU33O8ocj+pMhuXGT92iupP1P2P8/9TdHnSkU2awf12tX3YE8usv8usosUWTX36nPa04tsiMPWeb2NuOzArFI93qrX8GcX2VV67SsWfar3w0sXWf87yyTZq8jWa5bzTIbNdYx5biWvLLI3Fdm3iqz/eldt6/lFVn1vtxH91/bq7wN/NON9DrFbkb2qyPad90BgO6rvQ86/8FHM3rFF9ge99keKPtV3Aqum+t5raL/+5+z+3yw26qQiu1WR9f/uefMZj2Oo+/Ta1Xc31WeGjTikyPrfMfxX0af6nqrSn1My/3kNmVOysXkxG2MskOl/Zk2S31vz76qOXA9H/gEAAAAAAAAAgBVl8Q8AAAAAAAAAAKwoi38AAAAAAAAAAGBFWfwDAAAAAAAAAAAravexB8Bwryiyw4rsDUX2viK7WpF9q8hO2NGgpv6iyA4acL3tuUyRvaDXfkzR53FF9mdFdoki+0qRnVFk1yiyJxfZEGcW2Vnr3FaSdOu83v8pslcW2YeK7NJF9lu99g+KPj8vsvMU2d8W2XrNe57JsLnOe55J/fzejKrn6J2L7DsDt9e/r65V9KkeR380cPtDPbLX/knRpxVZ/3Vye9l6nbfI/rrIbjPDfcL2PKXIqvf36vl5z4H72KvIHtZrV3XGRgrscxfZsUXWn3/1PvKqIqteO65ZZB8psusVWeXWO2nPw28PzPpuUWRV3fzQIqseg5WL9tovLvo8YuC2hhoyr1nOKVnMvLaCDxbZ3Yps6GeG6nPKPkX27SLbb8D2f1Fknx5wvSR57sB+s1TVKG9f+ChgcarPns8eeN0fFdkFimy34cNZqOrz+puKrPpe5pdFNuQ1caur6sxnFFm/Pq8+71aPtWr7Y1jvPJNhc12WeW5WDxqYLbPf20kbqP2syKrPRsvstCK7f5E9tte+7hzGsqyOWGe/6ru36u+UlervqtV3YUcX2c0H7mPerrqT9jycMqDPRTaw/WoO857XkDklG5sXszFGzf3qnVx+zIz248g/AAAAAAAAAACwoiz+AQAAAAAAAACAFWXxDwAAAAAAAAAArCiLfwAAAAAAAAAAYEXtPvYAGO6aRfYfRfbYIju2yN43cL+X7bVfWPS508BtbcSje+1LFn2eXmRfKbIfFdl+RfagIntekZ2nyIa46TqvN2sXLrLjiuwxRfaaIjuh196t6HOTIjuqyKrH/XrNe57JsLnOe55byelF9ski+8HA7Z3Va3+26HO5gdvaiL0G9OmKrHptm6WqaDhlzvuEXXHfIrt3kX27yKrXkysU2Rgr56vXhBf32s8v+lTz3L/I9tnlEW1u1yuyzxTZfxfZb4rsEhsbzsz057UZ5rQZ3arIzlz4KIarXj9+XGTLMof1fm6Draj6/LwZVZ9xqu+HmJ3Wa19wlFHMX3+eyeadK8AqqL5LHfodT/8746T+O8C8vbrITi6yxw3Y1q+LrLo9NsMfkY9YZ5/q76qV6nN89Tegmw/c3lbxhiK7Rq+9an83GzKnZPi83tZr323XhjO6KxfZpxY+iq3HkX8AAAAAAAAAAGBFWfwDAAAAAAAAAAAryuIfAAAAAAAAAABYURb/AAAAAAAAAADAitp97AGwMVcqsncW2Y+L7BtFduki23+XRrQ4dx6YnVxkpxXZAUXWdmVAO/GZGW5rEfYqslcU2UuL7Lu99iWKPnvs8ojmY5bzTJZ7rpvRfkVW3S+nz3Cfe89wW9vzD7323y5gn0NUK4bPvfBRwK6pHreXXfgo5q96r7nCwkextVxk7AHMwWacE4u328AMAABgHs4ush8W2fWL7MtFVv09qfrO5Z699uOLPuctsqHeXGQHF9nXe+27Fn0+UWTV38N+p8heVmRXLLJldsSAPrcauK2jiuzmuzCWVXZmkZ1QZC8osv8qsv7ft2f5N9pd0Z/XLOeUDJ/X7Xrt6rUI+hz5BwAAAAAAAAAAVpTFPwAAAAAAAAAAsKIs/gEAAAAAAAAAgBVl8Q8AAAAAAAAAAKyo3cceAItxoYHZZrT/2APY5M5bZJdb+Cjmb6vMczPYrcj2XvgoZqt6/AEAAAAAsHNvKrJLFtnli+yHRfZPRfbsXvtdRZ/jimzoURr+s8iq771f12u/tOhTzfOLRfbgIrtekX21yC5SZMvq4CL7dZFV99WVZjyWZVU9hx5WZD8qsqsO3N5v7dKIZmPIvFZtTmxtjvwDAAAAAAAAAAAryuIfAAAAAAAAAABYURb/AAAAAAAAAADAitp97AEAAAAAAAAAbFR11INbbWB7BxbZk4vsgr32Q4o+ry6yBxbZGUX28yK7T5G9rMiGuF6RvbbIrlFkzyuyv1jnOBbhpF77lkWflxZZV2RHFNmxRXbpnQ1qyd15YHZakb27yG5XZHfstY8q+rQi24gh85rlnJLFzIuta8NH/mmtXai19qDW2ptbaye01k5rrf2stfbh1toDW2vlPlprh7bW3tFaO2V6nc+31o5sre220TEBAIxBXQQAMKEuAgA4h9oIAJi3WRz5565J/irJ95Mcl+RbSS6W5E5JXpnkVq21u3Zd9/8XRLbW7pDkTUlOT/KGJKdksiDuRUluON0mAMCqURcBAEyoiwAAzqE2AgDmahaLf76a5PZJ/q3rurO3ha21pyX5eCZHx7pTJgVKWmv7JnlFkrOS3LTruk9O8/+b5H1J7tJau0fXda+fwdgAABZJXQQAMKEuAgA4h9oIAJirDf/sV9d17+u67m1ri5VpfnKSl0+bN11z0V2SXCTJ67cVK9P+pyf5w2nzYRsdFwDAoqmLAAAm1EUAAOdQGwEA8zaLI//syG+m52euyW42PT+26P/BJL9Kcmhr7bxd150xz8EBACyQuggAYEJdBABwDrXRJvCAXvuRRZ8PFNkDi+zcA7PTdjaoDbpakV26yD5ZZMvipCK7Za999IA+u+KIIqueyNVtuer2LLI7FNlFi+zQXvuaRZ/77/KINm6Wc0qGz+ttvfbdij7L7MpF9qmFj2Lrmdvin9ba7knuO22ufU07aHr+1f51uq47s7X2zSRXSXK5JMfvZB/be4xcaddGCwAwP+oiAICJRdRF0/2ojQCApec7IwBgVjb8s1878NwkV03yjq7r3rUm3296/rPtXG9bfv55DQwAYMHURQAAE+oiAIBzqI0AgJmYy5F/WmuPTvL4JF9Ocp957CNJuq47ZDv7/1SSa89rvwAAQ6mLAAAmFlUXJWojAGD5+c4IAJilmR/5p7X2yEx+HvFLSQ7ruu6UXpdtq5H3S21b/tNZjw0AYJHURQAAE+oiAIBzqI0AgFmb6ZF/WmtHJnlRki8kObzruh8W3b6S5DpJrpjkf/zO6PS3TQ9McmaSb8xybAAAi6QuAgCYUBcBAJxDbbQ57dZrX7bo852B26qO3HDpIvvvgdubpYsXWX/l2lhOKrJbFtnRA/oMdcQG+h3ba1f38WZ1gyK7cK/9lqLP/ecwllkZMqdk+Lxu12uftssj2nq6GfdbRTM78k9r7cmZFCufzWSVclWsJMn7pufV69yNk+yV5KNd150xq7EBACySuggAYEJdBABwDrURADAvM1n801r7v0mem8nq48O7rvvRDrq/McmPktyjtXadNdvYI8mfTJt/NYtxAQAsmroIAGBCXQQAcA61EQAwTxv+2a/W2u8neXaSs5J8KMmjW2v9bid2XXdMknRdd2pr7cGZFC7vb629PpMjwt0+yUHT/A0bHRcAwKKpiwAAJtRFAADnUBsBAPO24cU/mfyuaDL5Ocsjt9PnA0mO2dbouu4trbWbJHl6kjsn2SPJCUkel+TFXddt5p9aAwA2L3URAMCEuggA4BxqIwBgrja8+KfrumcmeeY6rveRJLfe6P4BAJaFuggAYEJdBABwDrXR4rylyK5bZJeY8X77K7G+V/S55Qa2f7Ui+3iRnd1rn2sD+6z8sMgOmfE+hjipyKrb9+iB/WbpiHX2O7boc+kNjmWIT/Ta1XPjkgsYR/+xetYGttWfUzLOvKrn30bmxY6dObDfstwHa19Ph459Z2b9mg8AAAAAAAAAACyIxT8AAAAAAAAAALCiLP4BAAAAAAAAAIAVZfEPAAAAAAAAAACsqN3HHgAAAAAAAADArvppr333os8RRfbWGY/j7b32r4o+d97A9h9TZDcrsuN67cM3sM9vFNlJRfb0DexjiLOK7A5FdnSR3XLGY1mv6jHYd8ci+3iR7bbBsfT9n177IkWfz8x4n58qsh/22odtYPv9OSXzn9eQOSUbmxc7Vr1WbKTfLJ1WZGvfE74+o/048g8AAAAAAAAAAKwoi38AAAAAAAAAAGBFWfwDAAAAAAAAAAAryuIfAAAAAAAAAABYUbuPPQAAAAAAAACAXXX+XvtRRZ+ji+yUIrvgwH2+t8ge2ms/qehz04HbrxxWZPcqsgf02scVfS5XZKcW2R8U2Q2K7P5FNku7FdkHimy/OY9j1o7otavbtpr7rD2t135E0eezRXbNgdv/RJFVj92b9NqPHrj9Sn9OyWzntd45JRubFzt21sB+Z851FLX7Ftnpa/7dzWg/jvwDAAAAAAAAAAAryuIfAAAAAAAAAABYURb/AAAAAAAAAADAirL4BwAAAAAAAAAAVtTuYw8AAAAAAAAAYKP+vMguU2S3KbIzi+zXRXaJIjum17550WfWXlNkL+i171X0Ob3Iqj8Y36rI/rDIxjjSxH4j7HPexprTw3vtCxV9HltkvyqyU4vs/EV2ZJE9pNfeyCKG/pyS9c9rlnNKLM4Y4mNF9owiO7HXPmng9h9XZC8ssgOK7EFFdu8B+zy2yH4x4Hq7ypF/AAAAAAAAAABgRVn8AwAAAAAAAAAAK8riHwAAAAAAAAAAWFEW/wAAAAAAAAAAwIrafewBAAAAAAAAAGxUK7JHD8xWTTXXJ+ykDTtz94HZqtms89qMrl9k71r4KGbr5zu5/JAZ7ceRfwAAAAAAAAAAYEVZ/AMAAAAAAAAAACvK4h8AAAAAAAAAAFhRFv8AAAAAAAAAAMCKsvgHAAAAAAAAAABWlMU/AAAAAAAAAACwoiz+AQAAAAAAAACAFWXxDwAAAAAAAAAArCiLfwAAAAAAAAAAYEVZ/AMAAAAAAAAAACvK4h8AAAAAAAAAAFhRFv8AAAAAAAAAAMCKsvgHAAAAAAAAAABWlMU/AAAAAAAAAACwoiz+AQAAAAAAAACAFWXxDwAAAAAAAAAArCiLfwAAAAAAAAAAYEW1ruvGHsPMtdZ+vOeee17w4IMPHnsoALClHX/88dljjz1yyimntLHHslWpiwBgeRx//PE57bTTTum67kJjj2WrUhsBwHLwndH41EUAsBxmVRdt1sU/30yyb5I9ptGXRxzOVnel6bn7YFzuh/G5D8bnPhjHAUlO7bruwLEHslWtqYtOjOfBMnAfjM99MD73wfjcB+M5IGqjUfnOaKl4LRqf+2B87oPxuQ/Gc0DURaNSFy0Vr0Xjcx+Mz30wPvfBeA7IDOqiTbn4Z5vW2qeSpOu6Q8Yey1blPlgO7ofxuQ/G5z4Az4Nl4D4Yn/tgfO6D8bkPwPNgGbgPxuc+GJ/7YHzuA/A8WAbug/G5D8bnPhif+2D1nWvsAQAAAAAAAAAAAOtj8Q8AAAAAAAAAAKwoi38AAAAAAAAAAGBFWfwDAAAAAAAAAAAryuIfAAAAAAAAAABYUa3rurHHAAAAAAAAAAAArIMj/wAAAAAAAAAAwIqy+AcAAAAAAAAAAFaUxT8AAAAAAAAAALCiLP4BAAAAAAAAAIAVZfEPAAAAAAAAAACsKIt/AAAAAAAAAABgRVn8AwAAAAAAAAAAK2pTLv5prV2qtfaq1tr3WmtntNZObK0d1Vq7wNhj2yxaaxdqrT2otfbm1toJrbXTWms/a619uLX2wNZa+dhqrR3aWntHa+2U6XU+31o7srW226LnsFm11u7dWuumpwdtp89tW2vvn95nv2it/Wdr7fcXPdbNpLV2+PT5cPL0ded7rbV3tdZuXfT1PJix1tptWmvvbq19Z3qbfqO19s+ttRtsp7/7gC1FbTRf6qLlpS4ah7poXOoi2DF10fypjZaTumg8aqNxqY1g+9RF86cuWl5qo3Goi8alLtr8Wtd1Y49hplprl0/y0SQXTfLWJF9Oct0khyX5SpIbdl334/FGuDm01h6a5K+SfD/JcUm+leRiSe6UZL8kb0py127NA6y1dodpfnqSNyQ5JcntkhyU5I1d1911kXPYjFprl07yX0l2S3K+JA/uuu6VvT6PTPKSJD/O5H74dZK7JLlUkhd0XfeEhQ56E2itPT/JE5N8J8k7k/woyUWSHJLkPV3XPWlNX8+DGWutPS/JkzJ5TL8lk9v/t5LcPsnuSe7bdd0/rOnvPmBLURvNn7poOamLxqEuGpe6CHZMXbQYaqPloy4aj9poXGoj2D510WKoi5aT2mgc6qJxqYu2iK7rNtUpybuSdEke1ctfOM1fPvYYN8Mpyc0yeYKfq5fvn0nx0iW585p83yQ/THJGkuusyffIpMDsktxj7Hmt8ilJS/KeJF9P8ufT2/RBvT4HZPIi/eMkB6zJL5DkhOl1bjD2XFbplOTB09vtmCTnKS4/95p/ex7M/vbfP8lZSU5OctHeZYdNb9NvuA+ctvJJbbSQ21hdtGQnddFot7u6aNzbX13k5LSTk7poYbez2miJTuqiUW97tdG4t7/ayMlpByd10cJuZ3XRkp3URqPd7uqicW9/ddEWOW2qn/2arlS+RZITk7ysd/EzkvwyyX1aa3sveGibTtd17+u67m1d153dy09O8vJp86ZrLrpLJqs3X9913SfX9D89yR9Omw+b34i3hEdnUkjeP5PHeuUBSc6b5KVd1524Ley67idJ/mzafOgcx7iptNbOm+RPMynSH9J13a/7fbqu+82apufB7F02k5+w/M+u63649oKu645L8vNMbvNt3AdsKWqjxVAXLSV10YKpi5aCugh2QF20OGqjpaMuGoHaaCmojWA71EWLoy5aSmqjBVMXLQV10RaxqRb/ZLIyLUneXbyR/jzJR5LsleT6ix7YFrPtBfrMNdnNpufHFv0/mORXSQ6dvgGwi1prByd5bpKju6774A667uh+eGevDzt380ze/P4lydnT38p8cmvtMdv5fUzPg9n7WiaH27xua+3Cay9ord04yT6ZrOLfxn3AVqM2Gp+6aMHURaNRF41PXQQ7pi5aDmqjBVIXjUptND61EWyfumg5qIsWTG00GnXR+NRFW8RmW/xz0PT8q9u5/GvT8ysuYCxbUmtt9yT3nTbXviBs977puu7MJN/M5PcELzfXAW5C09v8NZmsmH3aTrrv6H74fiarnC/VWttrpoPcvH57en56ks8keXsmheNRST7aWvtAa23tSlnPgxnruu6UJE/O5HeSv9Ra+5vW2nNaa/+U5N1J/j3JH6y5ivuArUZtNCJ10eKpi0alLhqZugh2Sl00MrXRYqmLRqc2GpnaCHZIXTQyddHiqY1GpS4ambpo69hsi3/2m57/bDuXb8vPv4CxbFXPTXLVJO/ouu5da3L3zfz8UZJrJblf13Wn7aTv0Pthv+1czv900en5EzP5fcsbZbI69uqZvFneOMk/r+nveTAHXdcdleROmRQaD07ylCR3TfLtJMf0DmHoPmCr8Zgfl7po8dRF41EXLQF1EeyQx/z41EaLpS4al9poCaiNYLs83senLlo8tdF41EVLQF20NWy2xT+MqLX26CSPT/LlJPcZeThbQmvtepmsUH5B13X/MfZ4tqBtr6FnJrl913Uf7rruF13X/VeS/5PkO0lusp3DFjIjrbUnJXljkmOSXD7J3kkOSfKNJK9trT1/vNEBW5W6aPHURaNTFy0BdRGwrNRGi6UuWgpqoyWgNgKWkbpo8dRGo1MXLQF10daw2Rb/7Gyl5bb8pwsYy5bSWntkkqOTfCnJYdPDh63lvpmx6SEK/z6TQ67934FXG3o/bG8lJ//TtsfrZ7quO3HtBV3X/SrJthX7152eex7MWGvtpkmel+Rfu657XNd13+i67ldd1306k6Lxu0ke31rbduhB9wFbjcf8CNRFi6cuWgrqopGpi2CnPOZHojZaLHXR0lAbjUxtBDvk8T4SddHiqY2WgrpoZOqirWOzLf75yvR8e79DeoXp+fZ+x5R1aK0dmeQlSb6QSbFyctFtu/fN9I33wExWfH5jXuPchM6Xye15cJLTW2vdtlOSZ0z7vGKaHTVt7+h+uHgmqzy/M32zZee23Z7be3P7yfR8z15/z4PZue30/Lj+BdPH8cczea+71jR2H7DVqI0WTF00GnXR+NRF41MXwY6pi0agNhqFumg5qI3GpzaC7VMXjUBdNBq10fjUReNTF20Rm23xz7YH7C1aa/9jbq21fZLcMMmvknxs0QPbrFprT07yoiSfzaRY+eF2ur5ven5EcdmNk+yV5KNd150x+1FuWmck+dvtnD4z7fPhaXvbYQx3dD/cqteHnXtvJr9PeuX+a87UVafn35yeex7M3nmn5xfZzuXb8l9Pz90HbDVqowVSF41KXTQ+ddH41EWwY+qiBVMbjUZdtBzURuNTG8H2qYsWTF00KrXR+NRF41MXbRVd122qUyaHBuuSPKqXv3Cav3zsMW6WUyaHx+uSfDLJBXfSd98k/53Jm+x11uR7JPnodDv3GHtOm+WU5JnT2/RBvfzAJKcn+XGSA9bkF0hywvQ6Nxh7/Kt0SvLW6e322F5+iyRnZ7Jieb9p5nkw+9v/btPb7eQkl+xddqvpfXBakgu5D5y26klttLDbWV20pCd10UJva3XRuLe/usjJaScnddFCb2u10RKe1EULv73VRuPe/mojJ6cdnNRFC72t1UVLelIbLfS2VheNe/uri7bIqU3vqE2jtXb5TB50F83kheT4JNdLclgmhyg8tOu6H483ws2htfb7SY5JclYmhymsftfyxK7rjllznTsmeWMmb5ivT3JKktsnOWia363bbA/IkbTWnpnJ4Qof3HXdK3uXPSrJizMpWt6QySrOuyS5VJIXdF33hMWOdrW11i6VyWvOpTNZvfyZTArDO+acN783renveTBD01Xi70ryu0l+nuTNmRQvB2dyGMOW5Miu645ecx33AVuK2mj+1EXLTV20OOqicamLYOfURYuhNlpe6qLFUhuNS20EO6YuWgx10XJTGy2Oumhc6qItZOzVR/M4ZfLC8eok38/kxfikJEclucDYY9ssp5yzGnZHp/cX17thkndksoLztCT/leSxSXYbe06b6ZTtrFZec/ntknwgkxf4Xyb5RJLfH3vcq3rK5HB4L5m+1vw6yY8yeeO87nb6ex7M9vY/d5IjMzkM7amZ/M7oD5O8Pckt3AdOTmqjBdy+6qIlPqmLFn57q4vGvf3VRU5OOzmpixZyG6uNlvSkLhrlNlcbjXv7q42cnHZwUhct5DZWFy3xSW208NtbXTTu7a8u2gKnTXfkHwAAAAAAAAAA2CrONfYAAAAAAAAAAACA9bH4BwAAAAAAAAAAVpTFPwAAAAAAAAAAsKIs/gEAAAAAAAAAgBVl8Q8AAAAAAAAAAKwoi38AAAAAAAD+H3v3G3L/Xddx/PWem/0298fMRpHpbwz369eKwoUbGaVFIpnQolvesrqRYc1uGBgFkv2hEFqy0CIapEE3oiAii4FmkLYFm91o+zm1WgkrC6O1f5mxTzeuM7radi32c9f1Pa/t8YDD95zzOTvX+97enN/zOhcAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxD3PCjfEAACAASURBVAAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQCnxDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPsLdm5tKZ+ezMrN3tLVvPBABwEmbmLYd2oKNuD209JwDASZqZMzNzy8zcOzMPz8wDM3NuZm6dme/Yej4AAICtXLj1AABP4+eTvGzrIQAANvTFJP92xNnDJzkIAMCWZuamJO9J8sLdUw/t7n/d7vZYkj/fZjoAAIBtiX+AvTQzr0ryY0nuSHL9xuMAAGzl42ut1249BADAlmbmR5K8NweBzy8ned9a6x93Z1+V5LuTXLTdhAAAANsS/wB7Z2YuSPIbu4c/muSuDccBAAAAYCMzczrJr+wevnWt9ZuHz9da/5zkgyc8FgAAwF65YOsBAJ7Cjyf5liTvX2t9YuthAAAAANjM25NckuSOJ4Y/AAAAHBD/AHtlZr4myc8l+VySn9l4HAAAAAC29ebd9Xc3nQIAAGCPiX+AfXNLksuSvGOt9cDWwwAAbOzambl7Zh6dmQdn5m9m5uaZuWrrwQAAjtvMXJ3kyt3DT8zMDTPzRzPz+d1+9MmZec/MXPl07wMAAPBcJ/4B9sbMvCnJjUk+utb6na3nAQDYAy9NcjbJI0lOJbk2yU8kuXtm3vx0/yEAwHPAKw/df22Sv0jyvUkuSrKSnEnyjiR/PTPXnvh0AAAAe0L8A+yFmXlRkl9L8sUkb9t4HACArd2f5F1JviHJqbXWVyS5NMkbk9yT5OIkvz0z377diAAAx+7Fh+6/K8mnktyw1ro8B7vR9yT5lyRfneT3Z+bCkx8RAABge+IfYF+8O8nLk9y81rpn62EAALa01rptrfXutdbda63/2j33hbXWh5J8a5LPJLkwyS9tOScAwDE7/Pn1SnLjWuuOJFlrPbbW+pMkP7Q7P5Pk+094PgAAgL0g/gE2NzPfnOTtST6bgwgIAIAjrLUeSPKLu4c3zMxLt5wHAOAYPXTo/p+ute594gvWWn+cg28ESpLvOpGpAAAA9oz4B9gH703ygiQ/nWRm5tLDt0Ov+7Ldc5dsMyYAwN64Y3edJFdtOQgAwDG6/9D9J4U/T3H2tcc4CwAAwN4S/wD74BW76weSPPgUt8f9+u6xPwsGAAAA8Nx3T5LHnsHr13ENAgAAsM/EPwAAAH2uP3T/vq2GAAA4TmutR5L85e7hmad56eNn9x3rQAAAAHtK/ANsbq11eq01R90OvfQHd8+d3mpWAIDjNjPz/5xfnuSdu4d/tdb61+OfCgBgMx/YXd8wM08KgGbmjUmu2T380IlNBQAAsEfEPwAAAPvlFTNz+8z88My8/PEnZ+aFM/OGJB/LwT9wPZbkp7YaEgDghNyagz//9YIkfzAzr06Smblgtxv91u51t0f8AwAAPE9duPUAAAAAPMn1u1tm5j+TPJzk8iQX7c4fSfLWtdZHthkPAOBkrLX+e2belOSjSb4+yR0z82AOYqBLdi+7J8kPrLXWNlMCAABsS/wDAACwXz6X5KYk35bkm5J8ZZIrchAAfTrJh5O8f631D5tNCABwgtZafzcz35jkJ5PcmOSqHHwL4l1Jfi/JLWuthzccEQAAYFPjlyEAAAAAAAAAAKDTBVsPAAAAAAAAAAAAnB/xDwAAAAAAAAAAlBL/AAAAAAAAAABAKfEPAAAAAAAAAACUEv8AAAAAAAAAAEAp8Q8AAAAAAAAAAJQS/wAAAAAAAAAAQKlN45+ZednM3Doz98/MF2bmvpn51Zn58i3nAgA4afYiAIAD9iIAAACAZ2bWWtv84Jmrk3w8yZVJ/jDJJ5O8Osnrktyb5DVrrc9vMhwAwAmyFwEAHLAXAQAAADxzW37zz/ty8EHOTWut71trvXOt9Z1Jbk5yJskvbDgbAMBJshcBABywFwEAAAA8Q5t888/ut7g+k+S+JFevtR47dHZZkn9KMkmuXGs9fB7v//dJLt+9PwCwndNJ/mOtddXWg+wrexEAPK+cjt3oSMe9F+3ex24EAPvhdOxFAADPmgs3+rmv211vO/xBTpKstR6cmY8leX2SG5J8+Dze//KLL774JWfPnn3JlzgnAPAlOHfuXE6dOuX/x0/PXgQAzxPnzp3Lo48+uvUY++y496LEbgQAe8FnRgAAz66t4p8zu+unjjj/dA4+zLkmT/NhzszcecTRqbNnz+bOO486BgBOwnXXXbf1CA3sRQDwPHHdddflrrvuum/rOfbYs7IXJXYjANh3PjMCAHh2XbDRz71id33giPPHn3/xCcwCALAlexEAwAF7EQAAAMB52Oqbf54Va62nTMN3v931qhMeBwBgM/YiAID/ZTcCAAAAnk+2+uafx39T64ojzh9//t9PYBYAgC3ZiwAADtiLAAAAAM7DVvHPvbvrNUecv3J3PepvvAMAPFfYiwAADtiLAAAAAM7DVvHPn+2ur5+Z/zPDzFyW5DVJHkly+0kPBgBwwuxFAAAH7EUAAAAA52GT+Get9bdJbktyOsnbnnD8s0lelOSDa62HT3g0AIATZS8CgP9p787jbb3ne4F/fk0QEYmhEWqKBKF1DYlSSZEBRSumqJhCamhVq2b3opV0SNCa61KkN4Z7RW8obSlKEgQtEi5tgkSkBDFlMGQgyXP/WOvU8fiec56z17z3+/167dc+v8/+Pev5/faz1l7f9ZzfehaMqIsAAAAA1mbHBe7795N8PMmrWmuHJDkzyV2THJTR5Zufv8CxAQDMk7oIAGBEXQQAAACwnRb1sV+b3s115yTHZ3QS55lJ9k7yyiS/1nXd9xY1NgCAeVIXAQCMqIsAAAAAtt8ir/yTruu+luTIRY4BAGAZqIsAAEbURQAAAADbZ2FX/gEAAAAAAAAAACZj8Q8AAAAAAAAAAKwoi38AAAAAAAAAAGBFWfwDAAAAAAAAAAAryuIfAAAAAAAAAABYURb/AAAAAAAAAADAirL4BwAAAAAAAAAAVpTFPwAAAAAAAAAAsKIs/gEAAAAAAAAAgBVl8Q8AAAAAAAAAAKwoi38AAAAAAAAAAGBFWfwDAAAAAAAAAAAryuIfAAAAAAAAAABYURb/AAAAAAAAAADAirL4BwAAAAAAAAAAVpTFPwAAAAAAAAAAsKIs/gEAAAAAAAAAgBVl8Q8AAAAAAAAAAKwoi38AAAAAAAAAAGBFWfwDAAAAAAAAAAAryuIfAAAAAAAAAABYURb/AAAAAAAAAADAirL4BwAAAAAAAAAAVpTFPwAAAAAAAAAAsKIs/gEAAAAAAAAAgBVl8Q8AAAAAAAAAAKwoi38AAAAAAAAAAGBFWfwDAAAAAAAAAAAryuIfAAAAAAAAAABYURb/AAAAAAAAAADAirL4BwAAAAAAAAAAVpTFPwAAAAAAAAAAsKIs/gEAAAAAAAAAgBVl8Q8AAAAAAAAAAKyoqSz+aa0d1lp7dWvto62177fWutbaW7exzf6ttfe21i5orV3aWvtca+1prbUdpjEmAIBFUBcBAIyoiwAAAADmY8cp3c4LktwhyQ+TnJfkNlvr3Fp7YJJ3JLksyduTXJDkAUlenuSAJA+b0rgAAOZNXQQAMKIuAgAAAJiDaX3s19OT3DrJrkmevLWOrbVdk7whyZVJDuy67vFd1z07yR2TfCLJYa21w6c0LgCAeVMXAQCMqIsAAAAA5mAqi3+6rju567qzuq7rBnQ/LMnuSU7ouu7Tm93GZRm9IyzZxgkhAIBlpS4CABhRFwEAAADMx7Su/LM9Dh5/f1/xs48kuSTJ/q21a8xvSAAAC6EuAgAYURcBAAAArNGOC9jnPuPvX+r/oOu6K1prX0nyK0n2SnLm1m6otXbaFn601c+QBwBYEuoiAICRqdVFidoIAAAA2FgWceWf3cbfL97Czzfl15nDWAAAFkldBAAwoi4CAAAAWKNFXPlnarqu26/Kx+/u2nfOwwEAWBh1EQDAT6mNAAAAgI1kEVf+2fROrd228PNN+UVzGAsAwCKpiwAARtRFAAAAAGu0iCv/fDHJnZPcOsnPfP56a23HJLdIckWSc+Y/tNXzuiJ78txHUTu+yB4770FswVeL7G1F9uEiu2GRvbbXvsZ2j4hl8sMie2WRfbrIvltk5/baNy/6/F6RPbLIprlic9bzTIbNddbz3Oi+UmQfXWP27KLP47d7RPSoi6Zo7yJbxC/uXUX2wCnvo/+/ni8p+pxcZGcU2W2K7L5F9vwiu3qRsRo+VWTHFNnHiuzSIrtVkR1ZZL/ba0/7PrTWeU1zTonHxhBXFtlpRfb2Xvv1RZ/qNdpZ2z2iyVWPl/797+x5DGR1qYum7LpFtiwrp64osh2mePuXFdmriuwDRVa9Bq7+rh9QZM8rsl8tsln7cZGt+nPTsszp9CJ7cZFVr7EvLLKb9dp3Kfo8t8huV2TTNOt5JsPmOut5bnTfLLK3FNlfFdl3eu0Diz7Va1IAAGZnEf+/etL4e/V/CvdIsnOSj3ddd/n8hgQAsBDqIgCAEXURAAAAwBotYvHPiRldNOLw1tqdN4WttZ2S/Pm42b+QCgDAeqQuAgAYURcBAAAArNFUPvartfagJA8aNzddcfturbXjx//+btd1z0qSruu+31p7YkYndU5prZ2Q5IIkhybZZ5z3r+wNALAS1EUAACPqIgAAAID5mMrinyR3TPLYXrbX+CtJ/jPJszb9oOu6d7XW7pnk+UkemmSnJGcneUaSV3Vd101pXOte9RnKG1n1OcUvKLK3Dez3piLbfbtGNB0/KbLfLLL+WyD3nsFYpuVLRfaUIntvkV1tiuOoPjP+fkV2apGdVWS3LLL+XO9Z9HlMkZ1WZC8vsqH6c531PJNhc532PDey3yiy7xZZ9ST7mQG3P83H3jqnLlqQqi76pSI7dMbj2HPKt1fVN/2/r9Xf6v2L7FFFVm3750V2ZpH9XZGt1deL7NFF9sYiW+aa58u99hOKPm8tshtPeRx/2Ws/r+hz3SKrnsv3KLL3FdlTi+xjvfYJRZ+h+nNK1j6vac4pmWxeG8UfFtkqXdLldUVW3T+u02tfMoOxLDl10ZxUv5jvz30Ui3NRr32fos+nprzPdxXZe4rs9b3246Y8jurvygOK7K699jFTHsc0HVVkJxVZdc5olymOozpX+OIiu2KCffTPpVTnVqrzmNXcq/v9UP25znqeW8r6c532PDeyQ4qselwBALC6prL4p+u6o1K/LtvaNh9Lcv9p7B8AYFmoiwAARtRFAAAAAPPxC4seAAAAAAAAAAAAsDYW/wAAAAAAAAAAwIqy+AcAAAAAAAAAAFbUjoseAJO5sMj+rMgePOuBFG4849v/eJE9pMh2KbJTi2zfyYYzU1crst8psnv12h8s+uw9+XC221lFdu8ie0mRVXOfpup3VN0/9iyyWw7cx6177acWfZ5XZK8osucU2Y0GjqM/11nPMxk212nPcyN7/8B+7y6yBw3Y7urbMRaYtauK7OIiO7DIXjvdoczck4rsy732G4s+j59gnx8qsltMcHtD7FBk5xfZgUV2SpEtoubpH5fk58d7naLPPP6+3r7XfkzR59VFdq2Bt395ke1fZG/vtZ9e9LnrwH3255RMd15rnVMy2bw2imcW2aMGbHfPaQ9koEt77TcUfX67yP5Xr33XJJ+ZyojgZ/2wyKp6qVKdD6nOr0zTtN+N+Pu99qcGblfNvXosV+ff3lpkVxTZgQPHslYfLbJTiuykAbd1zGRDWZOjiuzoImtFdnKRPWCi0fys6xVZdYzvUGQPLbKbFVn/9fnfF32uLLLqvOB5RTZUf66znmcybK7TnudGds6iBwAAwMy58g8AAAAAAAAAAKwoi38AAAAAAAAAAGBFWfwDAAAAAAAAAAAryuIfAAAAAAAAAABYUTsuegBM5sIi+7Ui+5VZD2QOPtNr37vo0xXZh4tsn8mHs3CHF1l//vcq+nywyPaefDg/46wB43hJkT18yuMY4jpFdkCRPWOK+5zk/ndGkd1o4Lb9uc56nsna5zrJPJkdRQPL5OIiu6rI9pj1QKbsc0X2T0V2WK/9+CmP45Ap394QNyyyk4vs4CI7qMhO6bX32t4BbcOXi+zAIus//55U9Nl94tFs229soz2paxTZI4rs9G20k+SuThOx0AAAIABJREFUA/dZzWGa81rrnLaUDZ3XRlG9BhnyuqRNeyADXbPX/kjRZ+ci6493UeNn/atqo6Gq5/3nT3B7s/b5InvbgO3uUWTvL7KdBo7jmUX2zSLbc+DtrVX13PfmIjui1z524O0fs33D2aajeu2jiz7V38rjiuwBE49m66pzJLcpsvsU2dDXz4/ptavnwnOL7OtF9rUiu+nAcfTnOut5JsPmOsk8ryiySf5WLovrr3G7TxXZlUX270VWndsFAGD5uPIPAAAAAAAAAACsKIt/AAAAAAAAAABgRVn8AwAAAAAAAAAAK8riHwAAAAAAAAAAWFE7LnoATObCIrvO3EcxfZcV2UN67UuKPi8rsn0mH87KeMSAPocU2YeKbO+B+zy7yO7da7+k6PPwgbc/a/sX2akz3ue3J9j2phNs25/rrOeZrH2uQ+d5ZZFVfz9WzU699g4LGcXPa4seAGymqoEqe8x0FNP3joH9/mimo1geNyyyk4rs4CI7sNc+peiz18BxnFNkBxXZbkXWH+/uA/e5HlwwoM/1Zz6K6Royp2T4vPq10r9sx1iWwd2L7GZzH8ViXGvRA4CeiyfY9kZTG8V8vHWN2x1dZP3XXtujek5fluf5Rw3oc0SRHTvw9o8Z2O+oIusfh+p15nFFduTAfc7a/Wd8+9V5jkr1jt5dpjiOWc8zGTbXSeb5sSI7cOC2y+yKXnvoOaNfHNjv/O0YCwAAy8WVfwAAAAAAAAAAYEVZ/AMAAAAAAAAAACvK4h8AAAAAAAAAAFhRFv8AAAAAAAAAAMCK2nHRA2AyFxbZbgO3vaTIdp5gLNP0P4vs3F776kWfJw68/R8W2TWLbIeBt7esHlFkXZEdUmQfGrjtvYrsxb32w4s+G9k7B/a7f5HdepoDmYMhc51knh8ssvsO3HaZvavXfuBCRgHL7YKB/U4tstsX2ZeL7KZFdu9e+0+LPtfd1qC24lMD+91xQJ/PF9lXi+y/FdnNBo5jEW5YZCcX2UG99oFFn1MG7rPadtciO6nIdh+4j1X3pSL7myLbo9eu6oBlsdY5JcPndWav/eiB2y2LE4tsmf9+wHr2/Qm2PaHIqr933yqy2/baf1j0qc5NTOLjA/pcp8gOHHj7Py6y6hzUqnnUgD5HFNmxA2+/+h0dXWSt1z6u6HPkwH0ui+p82UVFVtUWf9Vrf23gPqtzoJO8DhlimvNMhs11EfMEAIBV5co/AAAAAAAAAACwoiz+AQAAAAAAAACAFWXxDwAAAAAAAAAArCiLfwAAAAAAAAAAYEXtuOgBMJkLi+zxRXZ+kX2ryHYuslv12r83cJ9XK7Kh3jKgz/5F9uYie1mRnVNk1yiyA4rsfxbZrYtsWT2yyLoiO2Tg7b24yB4+fDgr7aoi+0qR/WWvfVLR59FF9trtHtFsrHWeybC5TjLP3yiy6v4MrD/VCvaq9vhOkT24yK5VZP9cZH/da/9j0efzRXbtIqt8vciuX2Rf7rUfOqDP9vidInt1kVW14yLsUWQn99oHF30OKrLqeWTXIque425QZKvks0X2D0V2RpG9s8huXmQn9tq7bGtQUzBkXtOcUzJ8XvfstdUxwFpdPMG2n5xg209so50knyqy6lzNUGcN6LNXkX2uyJ5WZB8rsp2K7O5F9ldFdpsiWwaPGtjviCI7duC2rciO67WPHHhby+z/FFl1nmeI6nXJc4rs+Wu8/UlMc57JsLlOMs9+nZWotQAAWN9c+QcAAAAAAAAAAFaUxT8AAAAAAAAAALCiLP4BAAAAAAAAAIAVZfEPAAAAAAAAAACsqB0XPQAmc1yR/aTI9imyHxTZ24vsBb32k4s+JxbZB4qsWm12cZF9tsj6vllkNyqyTxfZd4vs8UX2oSK7S5F9sdfeo+izzO5aZD8usur4/eqUx7KsvlVkBxfZeUX2o177j4o+TyqyXbY1qBmY5jyTYXNdxDyB1bdvkZ1VZDctsqGr359TZP066HVFnz8rspcM3GdVn1XPyffrtf9H0efBRVbViX9RZFWNeeMi+9MiWxb9euyNRZ/9B97WJ4rsBts3nJVQ1b4vHLht9cLyMUW25+DRTM9a57XMcwLou2eRPb3Iqtd81Xme6xXZPxVZ/5xRVWu8osgeWWR3LrLKRQP6fLvIquf96nVsparH3lNkHymyM3rtmwzc5yI8qsjeOTCr3L/Ijhw+nA3p8iI7s8i+U2Q3nPJYZm3IXNfDPAEAYF5c+QcAAAAAAAAAAFaUxT8AAAAAAAAAALCiLP4BAAAAAAAAAIAVteOiB8Bk7jTBtrsV2TOL7Kpe+zlFnw8V2WuL7ClF9o0iG+IxRfbggdtep8j+tshuVWQXF9lLeu2XDhzHIpxdZPcqspcVWVdkhxRZ//6w17YGtQL2KLL/GLjtyb32o4s+ryiyZxfZiwbuc62mOc9k2FwXMU9gfbr5HPbxF7323xR9Tprg9qsa5etF9i+99l0n2Ofri+xjRVY9Vx1dZG2CsUzTOb324UWf2w28rYcX2SlFdouBt7esnl5kjyqyrxXZ3xXZi4vsLb32h4s+v1Rkkxgyr2nOKZnPvAA2d80iq17XT+KXi+z8XvvlRZ/qXEJ1HunOA8dRzfXyXvu8os+hRdav7ZLkJkX26iL7kyL7QZG9sNc+ruizLI4qsncWWVXvVdl7iux5vfYx2xjTKnhQkX22yKq6/sRe+/iizwlF9q9F9vki26XI1mqa80yGzXUR8wQAgFU18ZV/WmvXb609obX29621s1trl7bWLm6tndpae3xrrdxHa23/1tp7W2sXjLf5XGvtaa21HSYdEwDAIqiLAABG1EUAAAAA8zONK/88LKOLvHwzows/fDWji0c8JMkbk9yvtfawruv+640+rbUHJnlHksuSvD3JBUkekNEbhA4Y3yYAwKpRFwEAjKiLAAAAAOZkGot/vpTRlXPf03Xdf31CVGvteUk+meShGZ3Yecc43zXJG5JcmeTArus+Pc7/OKNPSTistXZ413XVFU0BAJaZuggAYERdBAAAADAnE3/sV9d1J3Vd94+bn8gZ5+cned24eeBmPzosye5JTth0Imfc/7IkLxg3nzzpuAAA5k1dBAAwoi4CAAAAmJ9pXPlna34y/n7FZtnB4+/vK/p/JMklSfZvrV2j67rLZzk4hjmy137OwO0+VGRPKbKdt284/+WHa9xuS/YuspsX2blF9ukiWwZnFdm9iuzFRXb4BPs9pNf+YNGn+n2vVwf12q8s+lTXrq+Oy52K7OHbPaLZ6M8zGTbXSeb5/iK7b5Gtmnf12g9cyCiYAXXROnC9XvvGRZ8vTHD7Nyuy6vn8LhPso696N0D/uTxJXlNk3yiy6ncya+cUWf95adeiz0kDb//gIque904uslsM3McyqO4LNxyY/WqR3a3IHtpr//eiz5uLbBJD5jXNOSXD5/XtXvtfij7L7O5FVv0dg4K6aJ04sNd++cDtzphgn7cssv55mVsXfd5RZENPjP5xkb2pyL5cZKcN3Me8HVVkRxdZK7LjiuzqRXZEkR27lTFtcsyAPsvkWkV2h4HZ/Xvt3Yo+ryiyc4vsjUX2tCJbq2nOMxk213OLPkPn+eEiO7DIVs0VvfYOCxkFAADLaOIr/2xJa23H/PQ13uYnbvYZf/9Sf5uu665I8pWMXnvvNauxAQDMk7oIAGBEXQQAAAAwfbO88s+LktwuyXu7rtv84gybFvVfvIXtNuXX2dYOWmtbevPMbQaNEABgPtRFAAAjM6+LErURAAAAsLHM5Mo/rbWnJnlmRp968JhZ7AMAYBWoiwAARtRFAAAAALMx9Sv/tNb+IMkrM/r47kO6rrug12XTO7Wqj/XdPL9oW/vqum6/LYzhtCT7bnu0AACzoy4CABiZZ12UqI0AAACAjWWqi39aa09L8vIk/57RiZxvF92+mOTOSW6d5GcuwTz+3PdbJLkiyTnTHBtr94u99s5Fn0uK7D8H3v5Ni+waRXZ5r90/SzgLuxfZuUW2pWuSz9tZvfa9ij4vKrLDJ9jnI4rsql77kKLPB4vslhOMY5Xce4Jt/6HIHj7B7c3aWuc6dJ4HFdn5a9znMhn0OQYT6D9Gh+qmOor1T120MfyoyK47we3drMh+WGRfG7DdJK49sN/3i+zG0xxIoXowVM8Hu/baJxV9qlqvUm1b7bPKTum19xy4z/XgQUV2rV67+t0usyFzSobP68xe+9HbN5yFO7HIpv33iPVBXbR+VbXAEHtMsM/q3MGne+2vF33aBPus3KjIvlxk35nyftfqqF776KJP9Ts6rsiOnGAcR/Taxw7c7pgJ9rlKDiiyVwzc9nPTHMgcrHWuqzZPAACYl6l97Fdr7bkZncj5bJKDtnAiJ/npedD7Fj+7R0ZrSz7edV1/rQcAwEpQFwEAjKiLAAAAAGZvKot/Wmt/nNEFRU7L6B1c391K9xOTfDfJ4a21O292Gzsl+fNx87XTGBcAwLypiwAARtRFAAAAAPMx8cd+tdYem+RPk1yZ5KNJntraz10k9tyu645Pkq7rvt9ae2JGJ3VOaa2dkNEnOB2aZJ9x/vZJxwUAMG/qIgCAEXURAAAAwPxMvPgno89cT5IdkjxtC30+nOT4TY2u697VWrtnkucneWiSnZKcneQZSV7VdV03hXEBAMybuggAYERdBAAAADAnEy/+6bruqCRHrWG7jyW5/6T7X8/6H2L/60WfHxfZJ4ps5wnG8f1e+5KB291hYL/qs+fuWGT/1mufOfD2J3HBwH63m+koal8qsnv32i8q+jxiBmPpe1SvXZ2dPaTIPlhkt5p8OFsdR3+sSfKtInt3ke2yxnFcrch+7v2vqcd71cB9DJnrrOeZDJvrJPO8epHtMXDbjezKNW53xVRHsT6pi+anqkcmqXeG+nyvfWHRZ/8Jbv/QInt1kb2z197S/6iu1RlFVv1Nv+WU99t3TpEdVGTXLrKTeu3dJxhHtW3/9pPk4CI7sNc+peiz5/YNZ01+0mtXx3PaLhuQ7TrB7ffnlMx+XkPmlAyf1z17basaVlt1/J7ea583j4EsCXXRfFWfh1b9ferfJ7dHdR8/fo23VZ33Geo3i+yEXvtHRZ/qslGPHLjP6vb+Y+C2tx/Yb5qOKrKje+3qPMRxRXbkBOOozrn0HVFkxw68/WO2Yyxr8Zoiu6jI/keRVec7h/jQGrdLkr0n2LY/11nPM1n7XIfO825Fth6eh3dY9AAAAFhak9TnAAAAAAAAAADAAln8AwAAAAAAAAAAK8riHwAAAAAAAAAAWFEW/wAAAAAAAAAAwIracdEDYMuu3mufX/Q5r8jeXWSPmGAc/zSgTyuy355gn0cX2X177U8UfS4ssusO3OcFRfbVgds+bGC/tfpJkT2gyI7ttSc57tP06CK7qsh+q8j+vciutsZxVPfT/1dkZxTZCUX2hDWOo7rvdgO3PWRgvyFznfU8k7XPdeg8WZsr17jdFVMdBWyf/+y171b06T8PJsljJ9jnxUX2+wO2e+IE+7xXkd2hyF7aa1e1yI0H7vPzRfaeIqtqj7U+J1fOLbKDiuzaRXZSke0+0Wi27QYDx3Fwr13N6cNFdrPtHtFPfaPIfr3XfkHR53cm2Gf1/P7CIus/B1W/j8qQOSXTndda55QMnxerq3o986QiO27WA2HD+o9e+xlFn8uK7M1FVtUfexTZO4uses3Xt3eRHTpguy15ZJH9Za/9uaLPk4vsoiKrxvvKIqvOQVUePrDfWlXnAavzav3zBNXfpyMnH842PWpAnyOKrKr171hkaz0fWd1nnllklxfZ24rsPkV28yL7SK9dPc4qOxRZ/9zplgyZ66znmQyb6yTz7J9bT4a/Rlp1Xy6yUwduO/R8eF/1fxdv2sY231vjvgAAqLnyDwAAAAAAAAAArCiLfwAAAAAAAAAAYEVZ/AMAAAAAAAAAACvK4h8AAAAAAAAAAFhROy56AGxZ67WPLfo8psj+tcgeMXCfny6y5/Ta/XElyVFFdt+B+6z8RpE9pdd+TdHnj4rsTUVWzeHPiuwnRfa4IntgkU3T1Yrso0V2gxmPY5qOKLLqPlPNfZqq4/6wIju5yJ4wcB//0Wv378tb8tAie/zAbSv9uc56nsmwuU57nmzblWvc7oqpjgK2zzV67V8u+jyuyF5RZAcU2eVF9r4iO6/XfmLRZ9p1wauK7D699t2KPo8qsqoGel2RXafIXl5k07Rrkf36wHEsSw1UjeOkXvsZRZ9rT3kcOxXZr/Ta1XNt9Xi5e5HtUGSnFtlniuzWvfYxRZ/KkDkla5/XNOeUDJ/XRnFukR23xtuq6pjvFdkfD7y9XyqyJxdZvw56dNHn7UW2W6/9gyRXDRgXbMv1e+07FX0+UWSfHZitVVVDvKXIdplgH9U7Gf9Xr31o0efrRTb09flQhxXZ46a8j74HFFn1fNivgY+cwVjWoqpZK+8vsup8wlrdsMhuX2SfKrLqfEiVrVVVw7+syPYbeHtD5rqIeSY/P9dJ5rmRVXXs42a8zy8sYJ8AAPwsV/4BAAAAAAAAAIAVZfEPAAAAAAAAAACsKIt/AAAAAAAAAABgRVn8AwAAAAAAAAAAK6p1XbfoMUxda+20fffdd9/TTjtt0UOZuQ8W2WuK7Koi+1qRXVFkt+u1n130uVORzdqJRfa3RfatIrtmkV2tyJ5UZI/Y2qBYFz5SZK8tsuqv5xeK7Ee99t5Fn98tsgcVWSuytZr1PJNhc531PNerTxfZC4vsP4vs3CKrjl/fzkW2V5Htudm/P7rffkmSi047zWFdkPVaF1W1zRuK7C1FdmaRXVlkty+y3++1Dy/6zMPpvfZfFn0+VmRVrXfPIvurIrvxtgbFUus/n1d185uKrHq8XFpktyyy6jn+Wb32LkWfoaoaZa3zmuacksnmtR59uMgOnPcgtuDORfapIuvXVHuudYf77ZecfvrpXdftt9abYDIbqTb6P0X2v4vss0V2UZFVr+/u3msfXfS5QZHN2neK7AVFVtVLXy2y/rmxJDmyyJ5QZF4Ira7qNUJVV7ytyD5fZNXj6ma9dnWO9blFtm+RTaI/11nPMxk212nPc6Oojt/j5j2IIcbnjDrnjAAApsKVfwAAAAAAAAAAYEVZ/AMAAAAAAAAAACvK4h8AAAAAAAAAAFhRFv8AAAAAAAAAAMCKal3XLXoMU9daO23ffffd97TTTlv0UABgQ9tvv/2SJKeddlpb8FA2LHURACyP/fbbL6effvrpXdftt+ixbFRqIwBYDs4ZAQBMlyv/AAAAAAAAAADAirL4BwAAAAAAAAAAVpTFPwAAAAAAAAAAsKIs/gEAAAAAAAAAgBVl8Q8AAAAAAAAAAKwoi38AAAAAAAAAAGBFWfwDAAAAAAAAAAAryuIfAAAAAAAAAABYURb/AAAAAAAAAADAirL4BwAAAAAAAAAAVpTFPwAAAAAAAAAAsKIs/gEAAAAAAAAAgBVl8Q8AAAAAAAAAAKwoi38AAAAAAAAAAGBFWfwDAAAAAAAAAAAryuIfAAAAAAAAAABYURb/AAAAAAAAAADAimpd1y16DFPXWvveNa95zevd9ra3XfRQAGBDO/PMM7PTTjvlggsuaIsey0alLgKA5XHmmWfm0ksvvaDruusveiwbldoIAJaDc0YAANO1Xhf/fCXJrkl2GkdfWOBwNrrbjL87BovlOCyeY7B4jsFi7Jnk+13X3WLRA9moNquLzo3HwTJwDBbPMVg8x2DxHIPF2TNqo4Vyzmip+Fu0eI7B4jkGi+cYLM6eURcBAEzNulz8s0lr7bQk6bpuv0WPZaNyDJaD47B4jsHiOQbgcbAMHIPFcwwWzzFYPMcAPA6WgWOweI7B4jkGi+cYAACwXvzCogcAAAAAAAAAAACsjcU/AAAAAAAAAACwoiz+AQAAAAAAAACAFWXxDwAAAAAAAAAArCiLfwAAAAAAAAAAYEW1rusWPQYAAAAAAAAAAGANXPkHAAAAAAAAAABWlMU/AAAAAAAAAACwoiz+AQAAAAAAAACAFWXxDwAAAAAAAAAArCiLfwAAAAAAAAAAYEVZ/AMAAAAAAAAAACvK4h8AAAAAAAAAAFhR63LxT2vtJq21v22tfaO1dnlr7dzW2itaa9dd9NjWi9ba9VtrT2it/X1r7ezW2qWttYtba6e21h7fWivvW621/Vtr722tXTDe5nOttae11naY9xzWq9bao1tr3fjrCVvo81uttVPGx+yHrbV/a609dt5jXU9aa4eMHw/nj//ufKO19v7W2v2Lvh4HU9Za+83W2gdaa+eNf6fntNb+b2vtblvo7xiwoaiNZktdtLzURYuhLlosdRFsnbpo9tRGy0ldtDhqo8VSGwEAsFG0rusWPYapaq3tneTjSW6Q5N1JvpDkLkkOSvLFJAd0Xfe9xY1wfWit/V6S1yb5ZpKTk3w1yR5JHpJktyTvSPKwbrM7WGvtgeP8siRvT3JBkgck2SfJiV3XPWyec1iPWms3TfL5JDsk2SXJE7uue2Ovzx8keXWS72V0HH6c5LAkN0ny0q7rnjXXQa8DrbWXJHl2kvOS/HOS7ybZPcl+ST7Ydd1zNuvrcTBlrbUXJ3lORvfpd2X0+79lkkOT7JjkiK7r3rpZf8eADUVtNHvqouWkLloMddFiqYtg69RF86E2Wj7qosVRGy2W2ggAgI1kPS7+eX+S+yR5atd1r94sf1mSpyf5m67rfm9R41svWmsHJ7lWkvd0XXfVZvkNk3wyyU2THNZ13TvG+a5Jzs7oJM8BXdd9epzvlOSkJHdL8oiu606Y60TWkdZaS/IvSW6R5J1JnpXeyZzW2p4Zndz8UZL9uq47d5xfN8mnkuydZP+u6z4xz7GvstbaE5O8Psmbkjyp67of935+ta7rfjL+t8fBlI3/5nw9yXeS3L7rum9v9rODMvq9fqXrur3GmWPAhqM2mj110fJRFy2Gumix1EWwbeqi+VAbLRd10eKojRZLbQQAwEazrj72a/wOrvskOTfJa3o/fmFGL2Af01q71pyHtu50XXdS13X/uPlJnHF+fpLXjZsHbvajwzJ6V8sJm144jftfluQF4+aTZzfiDeGpSQ5OcmRG9/XK7yS5RpK/3nQiJ0m6rrswyTHjphOdA7XWrpHkLzJ6F+PPncRJkk0nccY8Dqbv5hk9l/3b5idxkqTrupOT/CCj3/kmjgEbitpoPtRFS0ldNGfqoqWgLoKtUBfNj9po6aiLFkBttBTURgAAbCjravFPRpdpTpIPFCcYfpDkY0l2TvJr8x7YBrPphesVm2UHj7+/r+j/kSSXJNl//MKY7dRau22SFyV5Zdd1H9lK160dh3/u9WHb7p3RSYF3Jrlq/Bniz22t/dEWPjfc42D6zsroUuR3aa394uY/aK3dI8m1k3xws9gxYKNRGy2eumjO1EULoy5aPHURbJ26aDmojeZIXbRQaqPFUxsBALChrLfFP/uMv39pCz8/a/z91nMYy4bUWtsxyRHj5uYvlLZ4bLquuyLJVzL6nOW9ZjrAdWj8O39LRu8ket42um/tOHwzo3eA3aS1tvNUB7l+/er4+2VJPpPknzI6qfaKJB9vrX24tbb5O4g8Dqas67oLkjw3yR5Jzmitvb61dmxr7e+SfCCjS5v/7mabOAZsNGqjBVIXzZ+6aKHURQumLoJtUhctmNpovtRFC6c2WjC1EQAAG816W/yz2/j7xVv4+ab8OnMYy0b1oiS3S/Leruvev1nu2MzOnyS5U5LHdV136Tb6Dj0Ou23h5/ysG4y/PztJl+TuGb1r6PYZnUS4R5L/u1l/j4MZ6LruFUkektEJmCcm+e9JHpbka0mO713a2TFgo3GfXyx10fypixZHXbQE1EWwVe7zi6c2mi910WKpjZaA2ggAgI1kvS3+YYFaa09N8swkX0jymAUPZ0Nord01o3dvvbTruk8sejwb0Ka/oVckObTrulO7rvth13WfT/LgJOcluecWLufMlLTWnpPkxCTHJ9k7ybWS7JfknCT/u7X2ksWNDtio1EXzpy5aOHXRElAXActKbTRf6qKloDZaAmojAAA2kvW2+Gdb70LZlF80h7FsKK21P0jyyiRnJDlofFnVzTk2Uza+fPObM7oU7R8P3GzocdjSO1z4WZvur5/puu7czX/Qdd0lSTa9k/Eu4+8eB1PWWjswyYuT/EPXdc/ouu6crusu6bru9IxOpn09yTNba5suyewYsNG4zy+Aumj+1EVLQV20YOoi2Cb3+QVRG82XumhpqI0WTG0EAMBGs94W/3xx/H1Ln89+q/H3LX2+O2vQWntaklcn+feMTuKcX3Tb4rEZn5S4RUbvhDlnVuNch3bJ6Pd52ySXtda6TV9JXjju84Zx9opxe2vH4UYZvfvlvPFJCLZt0+9zSy/6Lxx/v2avv8fB9PzW+PvJ/R+M78efzOi57k7j2DFgo1EbzZm6aGHURYunLlo8dRFsnbpoAdRGC6EuWg5qo8VTGwEAsKGst8U/mwr5+7TWfmZurbVrJzkgySVJ/nXeA1uvWmvPTfLyJJ/N6CTOt7fQ9aTx9/sWP7tHkp2TfLzrusunP8p16/Ikx23h6zPjPqeO25su8by143C/Xh+27UMZfW77L/f/5ozdbvz9K+PvHgfTd43x99238PNN+Y/H3x0DNhq10RypixZKXbR46qLFUxfB1qmL5kxttDDqouWgNlo8tREAABtL13Xr6iujS6Z2Sf6wl79snL9u0WNcL18ZXTq4S/LpJNfbRt9dk3wnoxMQd94s3ynJx8e3c/ii57RevpIcNf6dPqGX3yLJZUm+l2TPzfLrJjl7vM3dFj3+VfpK8u7x7+3pvfw+Sa7K6J1cu40zj4Pp//5/e/x7Oz/JjXs/u9/4GFya5PqOga+N+qU2mtvvWV20pF/qorn+rtVFi/39q4t8+drGl7porr9rtdESfqmL5v77Vhst9vevNvLly5cvX758+fLZMGjgAAAChklEQVS1ob5a13VZT1pre2dUjN8goxdYZya5a5KDMrp08/5d131vcSNcH1prj01yfJIrM7p8c/WZ3+d2XXf8Zts8KMmJGZ1MOCHJBUkOTbLPOP/tbr3dIRektXZURpdyfmLXdW/s/ewPk7wqoxM6b8/o3S2HJblJkpd2Xfes+Y52tbXWbpLR35ybZvSurs9kdNLsQfnpSYF3bNbf42CKxu+ee3+SeyX5QZK/z+ikzm0zurxzS/K0ruteudk2jgEbitpo9tRFy01dND/qosVSF8G2qYvmQ220vNRF86U2Wiy1EQAAG826W/yTJK21myb504wu0Xn9JN/MqLg/uuu6C7e2LcNsdrJgaz7cdd2Bve0OSPL8JHfL6F0TZyf52ySv6rruyumPdGPa2smc8c8fkORZSfbN6OP/zkjy113XvWme41wvWmu7J/mTjE4G3CjJ95N8NMmxXdd9sujvcTBFrbWrJXlKksOT/HJGl2G+IKPPbn9V13UfKLZxDNhQ1EazpS5abuqi+VIXLZa6CLZNXTR7aqPlpS6aP7XRYqmNAADYSNbl4h8AAAAAAAAAANgIfmHRAwAAAAAAAAAAANbG4h8AAAAAAAAAAFhRFv8AAAAAAAAAAMCKsvgHAAAAAAAAAABWlMU/AAAAAAAAAACwoiz+AQAAAAAAAACAFWXxDwAAAAAAAAAArCiLfwAAAAAAAAAAYEVZ/AMAAAAAAAAAACvK4h8AAAAAAAAAAFhRFv8AAAAAAAAAAMCKsvgHAAAAAAAAAABWlMU/AAAAAAAAAACwoiz+AQAAAAAAAACAFWXxDwAAAAAAAAAArCiLfwAAAAAAAAAAYEVZ/AMAAAAAAAAAACvq/wMxpVwx2nwJGgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 415, "width": 1151 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# font_paths = glob.glob('latin/*')\n", "\n", "# font_list = ['framd.ttf','segoeuil.ttf','verdana.ttf','verdanai.ttf','LSANS.TTF', 'arialbi.ttf','ariali.ttf','calibri.ttf', 'SIMLI.TTF']\n", "# # font_list = ['ANTQUAB.TTF', 'ARIALN.TTF', 'ARIALNB.TTF', 'ARIALNBI.TTF', 'BOOKOS.TTF','CALISTBI.TTF', 'Candara.ttf', 'Candarab.ttf','CENTURY.TTF','corbeli.ttf',\n", "# # 'consolai.ttf','LBRITEI.TTF','SCHLBKI.TTF','tahoma.ttf', 'verdana.ttf']\n", "# # # font_list = ['ARIALN.TTF', 'ARIALNI.TTF', 'BKANT.TTF', 'calibrii.ttf', 'calibrili.ttf','Calibrib.ttf', 'CALISTI.TTF','cambriai.ttf','LSANS.TTF','CENSCBK.TTF']\n", "\n", "# fonts = []\n", "# for font in font_paths:\n", "# if font.split('/')[-1] in font_list:\n", "# fonts.append(font)\n", "\n", "# fonts = sorted(fonts)\n", "# print(len(fonts), len(font_list), fonts)\n", "# text = '3fxw'\n", "text='56×33=12'\n", "# imgs = []\n", "# names = []\n", "# for font_path in fonts:\n", "# if os.path.isdir(font_path):\n", "# continue\n", "# img = Image.new(mode='RGB', size=(100, 30), color=(255,255,255)) #\n", "# draw = ImageDraw.Draw(im=img, mode='RGB') # im, mode=None\n", "# name = font_path.split('/')[-1] \n", "# font = ImageFont.truetype(font_path, size=20) # font=None, size=10, index=0, encoding=\"\"\n", "# draw.text((10, 2), text, font=font, fill=(0,255,255))\n", "# imgs.append(img)\n", "# names.append(name)\n", "# plt.figure(figsize=(20,20))\n", "# for i in range(len(imgs)): \n", "# plt.subplot(len(imgs)//4+1,4,i+1)\n", "# plt.imshow(imgs[i])\n", "# plt.title(names[i])\n", "# plt.show()\n", "\n", "imgs = []\n", "names = []\n", "paths = []\n", "for root,dirs, files in os.walk('/usr/share/fonts/opentype/', topdown=True):\n", "# print(root)\n", "# print(dirs)\n", "# print(files)\n", " for file in files:\n", " font_path = os.path.join(root, file)\n", " img = Image.new(mode='RGB', size=(100, 30), color=(255,255,255)) #\n", " draw = ImageDraw.Draw(im=img, mode='RGB') # im, mode=None \n", " try:\n", " font = ImageFont.truetype(font_path, size=20) # font=None, size=10, index=0, encoding=\"\"\n", " draw.text((10, 2), text, font=font, fill=(0,255,255))\n", " imgs.append(img)\n", " names.append(len(paths))\n", " except Exception as e:\n", " print(e)\n", " print('err',font_path)\n", " continue\n", " paths.append(font_path)\n", "plt.figure(figsize=(20,10))\n", "for i in range(len(imgs)): \n", " plt.subplot(len(imgs)//4+1,4,i+1)\n", " plt.imshow(imgs[i])\n", " plt.title(names[i])\n", "plt.show() \n", " " ] }, { "cell_type": "code", "execution_count": 120, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/usr/share/fonts/opentype/malayalam/Manjari-Regular.otf', '/usr/share/fonts/opentype/malayalam/Manjari-Thin.otf', '/usr/share/fonts/opentype/noto/NotoSerifCJK-Regular.ttc', '/usr/share/fonts/opentype/noto/NotoSerifCJK-Bold.ttc', '/usr/share/fonts/opentype/noto/NotoSansCJK-Regular.ttc', '/usr/share/fonts/opentype/noto/NotoSansCJK-Bold.ttc\n" ] } ], "source": [ "paths\n", "# font_paths = ['/usr/share/fonts/truetype/arphic/uming.ttc', '/usr/share/fonts/truetype/arphic/ukai.ttc']\n", "\n", "print(\"', '\".join(paths[1:]))" ] }, { "cell_type": "code", "execution_count": 229, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "7524 /data/captcha/label_english/70_26/07c5530f-ce96-11ea-b53b-c81f66ef0810_9jyr.jpg\n", "14110 /data/captcha/label_english/52_21/169d7266-0a84-11eb-9a54-c81f66ef0810_2f37.jpg\n", "32514 /data/captcha/label_english/100_25/b2b2f39e-db79-11eb-a41f-c81f66ef0810_p24m.jpg\n", "2716 /data/captcha/shensebeijingsandian/90f2c39e-c08a-11ea-adc0-ecf4bbc56acd_9ESN.jpg\n", "2502 /data/captcha/shensexiansandian/a711d2ab4416673804f0415cb6bab36d_YDJP.jpg\n", "111 /data/esa_sdk/gan/english/805bc78f-fbbd-11e9-9bc7-408d5cd36814_9tcl.jpg\n", "47579\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuUAAAFoCAYAAADw/IVlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XeYlOX5Pvzznr6zfWHpKKKABbsiogL2ggIKKnYsGLvGksRujDEmJrFGY0OwV+y9YyPGXlARxS5tF7bO7LTn/QP4vX7Ndd4JK+YRcn6OIwfxurhmnn3a3DvsnOuCIICIiIiIiIQnEvYGiIiIiIj8r9OiXEREREQkZFqUi4iIiIiETItyEREREZGQaVEuIiIiIhIyLcpFREREREKmRbmIiIiISMi0KBcRERERCZkW5SIiIiIiIdOiXEREREQkZFqUi4iIiIiETItyEREREZGQaVEuIiIiIhIyLcpFREREREIW6qLcOdfHOTfZOfetc67DOfe5c+5S51xtmNslIiIiIvLf5IIgCOeJnVsTwCsAugF4AMBHAIYA2BbAxwC2CoKgIZSNExERERH5L4qF+NxXYcmC/IQgCK5YVnTO/RXALwH8HsBRnXlg59wcAFUAPv/xmykiIiIiQvUD0BwEwRo/5kFCead86bvks7Fk0bxmEASl7/UqAXwHwAHoFgRBWycev6EslaobsOYAs58vFsx6LM6/R/HtJfZ4Cc/jFQr2DABEneNPVrS3JOo8P4nkOcasFfVse7YjR3uxRNysl3zbUKItuAjfF3w3+b5e/mSduxI820d7nuPr2Qr+eJ6H9Hy9vtOM7adiJOrZBO8DkhkPzwEJSkXPoP2o8Sjf9lLJc154N5LMdKLbmef599uxojee3H8850WxyI9VlByTUtF33vruCbxXItsRiXjunb7HI+dMxDNT9JxnCXKsCp7N8/V8r+1x8pOrMc/54nu8AnkNZMcXAIISf7wIue/nfNd9nD+XT6RgHxO2jwAgE/M8F91Pnn3r2Rcxsg+915Xnegw852CEv5DQmc7ctpznXFrRt8ESOncviZD9nsvZ6585c+agoyPbGARBl+Xbwv8rrHfKt13655PBD179gyBocc69DGAnAEMBPNOJx/98wJoD6p5+8EmzObdxgVnv0quePmBHhF8A8xbZj9enVw86s3DePNqrTaZoD80Zs1wdS9ORIM+3PU8W+dX13enMh3Pm0F7X1fqY9XbPQr6U4xdGIslvLlF7/Y9S0EFnCiXeK5KL13m/4eGXkHP2BkZKnhum52bFbs5Lena9mOff0ybi/OvK5dvNemuqhs7wGzoA8kIQ87zGRjwvwB0t/Oti+6m+hm97e7v99QJA4OxtL/m+d/acMiXyeP4Z3vOtoXNkMNqJb6AAoFSwj0l1RSWdaV7cQnu1VdVmvb2NH994lF9z8Ti5KQBobm416+k0v3f6FpXtGftenEwm6Uyb5+vqXbK3vTHNj9XCMn6s8vk87fWKlpn1miL/en1vJC1oXWTWq6vt4wsAxVZ7/wFAWYW9fV+1288DAK6n56NongVsqsG+9vs4fl68V19He4Wcvd+d5yLOZfmx6lpjf13NDU10pqacX4/FDH8NTJDFfMyzkI963viJkF7Uc4/xPZ7zvYNHtDl+niUSCdqrqLL34RdffmnWDzxgf3z00YefL9fGGcJalA9a+ucs0v8ESxblA+FZlDvn3iCttTu/aSIiIiIi/11hpa8s+/aZfau3rM7f2hIRERERWUWE+UHPHy0Igk2t+tJ30Df5L2+OiIiIiEinhPVO+bJ3wtkPnC2rL/4vbIuIiIiISKjCWpR/vPTPgaS/LDaF/cy5iIiIiMgqI6wfX3lu6Z87OeciRiTiVgDaAczo7BOUggCZrJ34sf7G69tDnm9ROjxhBZXk09HpFE9R6VbdjfYSnggfsA/AN2f5TFkFbd1/wxSzPnb//enMRkM3o71Mh/0p8l5pnooQ8cVHdOLbxpLzxeUtfySib/NKJb6BxaJ90qRifKa1hafUVFbwT4rns/aJEXH8U/3RuC98yn685hg/lyKefcvSPuKeFBBfwJnzHhTSJKkIAFCX6Ol7QLvsOzc7kZbii+7yndE+pU7c4n1nRTZnJxlUJOy0DADIVPP0g4pye66Q419xzBNHl23jz9W3j50M5bvAcyRtBvAnQ3UK2fRavmtR1YmUVACYNmWKWT9szD50JlbB00i6RfuRjm/nes7qmH3elkX461w2wu+PDVn+ewj71vQ26+Ul/vo9IMUv/mdnvGrWqyv5R+TKy/i+feMfr5j1BEn3AoCNdx1JexHwZBZ2t+jsvTjamZxhX8DK8ic2ouiNBfZEIsbsXuMiOwEoGl0x73GH8k55EASfAngSS8LWj/1B+7cAygHc3JmMchERERGRlU2YH/Q8BsArAC53zm0P4EMAW2BJhvksAGeGuG0iIiIiIv81Yf1M+bJ3yzcDMAVLFuOnAFgTwGUAhgZBwP+9SURERERkFRJqJGIQBF8BODTMbRARERERCVto75SLiIiIiMgSK/UvD/KJRKJIp+2kiIAEXEy943b6ePsfuh/tJeL2x+Mjns+/NzawX2YK9Khj8e3gnzImXysAoJknEow9bKJZv/+2O+jMqHF70l5ZddKsB74oAF/Po0BSNlzE86l+b2wHGfF87xqNLP8Xds21k+lEPMoTBLLt/Dj26NbFrI/bewydKWRaaS9WbicP8DwCINKJ7/F9n+ovFflxjEY8k+SYBJ7UG+c8H/lnh7iT5y3Ht6+z756ws71AY5z8961ykrLi3b7Ac82Rli9hxSdOUjt87r7jbtr78uuvaG/SpElmvaqOp1ssamymvdqyKrO+uLmdzqCap3Y0Ffj94pCJE816jJ8WPPkLQEuGpPJU8egYF/ccK3IKlpz9+gIABc95++mX39Fe3wGD7Uaen9W+++D2JJ0sCZ6W0tDE1wMb77ajWffdfh5/4jna23rYMNqrrbT3ry8QxfcSSALIvCKduNn5niYarFzvPa9cWysiIiIisgrSolxEREREJGRalIuIiIiIhEyLchERERGRkGlRLiIiIiISMi3KRURERERC5gJfXNVKyjn3xnrrDN7kvtseMvsD1utnD3pSuC67egrt9ezb16zvssv2dCbNk++8sVS3Xn8nmeGhRbl2Hql10HGH240s34iHn3yc9rbbdQezXlbpCZHyfGtY8mQxFWBnW0Yi/JyOeMKd2FTgCVxynpPGkQgs33fCV115Pe0de+QRfLBTCXL8GLc2zjfrFfU96EzRF2EYXf4NzJKYNQCIeHKzEkkem/bf0pm7qi92rLOK5GzL5/N0JhXn0W1sr7c083jNm6feRHtffDbHrLe2tNCZvr16057vvPj12WfajSI/Whec9zva6z9gLbM+YcIEOhNJeK7+rF1u9yQH3vHyM7QX88RD7rzJlma9e4q/MHVk+PUdq7Svb991EPWc8GxufsCHslG+bx998WnaO2gb+zWr0vM6XIjx62dRmx1vGIvx66o8Wc6fjFx1Le1tdKIyzWM5H3viKdrbdWc7fnFF898fV+ydMFni54V3+UvGZn74kVnfZ+9xmDlz5ptBEGy6HJv3nz6tiIiIiIj8t2hRLiIiIiISMi3KRURERERCpkW5iIiIiEjItCgXEREREQmZFuUiIiIiIiHzhC2t3IIgQKFAMo068a3IscdMpL0cSfC55JLJ/PGOPIz2Lrv4Sto79+zjyEbQEe/X+5fzLzbr/QetQWequtbQXiJhxz45zzbwoC0AER6PFCNRhYHnEX29XEB2YsDj/BKRMtpjOjr4Nhx7DI89vPqK62jv6OMm2Y2iL16K9yrq6u1Gjp9opQKPCYuymEJPhF2qjEcbBp6szGLJ3o5IhEeS+XQmoKsz73b8N98hCSL8nC7mPdGWcXuuqrKCzhw4YT/aq66rtRueqLJcC4+CS1R4ouUy9nnR2sbjHM86/xz+eCRK8ZabptKRBQsW0N4vTzrNrPsSPnffjsfu8kBR4MUnnjPrhXmL6MyEA/aivTbyUutJZexUHF3Cc7/gZwVQjPJrnyYf8iRcxFh+JYD6cjv+t+iJIW1rXkh7lVX2622XNI8Zzub43th9Z37OBORu57sH+g4j7/FH9N9vOxE261l8OM8xZsc/TiJjnffB/nN6p1xEREREJGRalIuIiIiIhEyLchERERGRkGlRLiIiIiISMi3KRURERERCpkW5iIiIiEjIVtlIxGgsitqudtxWppXE6sR4pE3Ck3xXIplKp53CYw8j3mQffliyJOkolfY9HnfK2XYMly95qKPA45Ym33itWT/ymF/QmTyLIgRQKvF4thhJdYt4Y5OWPyIw6omP8+2oTIe9n5Kucwfr6GNJ7CGA6668xqw/8fjDdGbPsbvT3gH7kxi7Mn4hxBOe/dTRYZYDT4qU80QiOk80WkfWDoOLeaLl4HzHePn5zrJIYG+760Ta17+ba8+0m/WKCn4O+nZFqWA/WSTCD2R1VTV/QLbtHTSozh976IlzRNKOMqtIklhGwHsfzDa3mPV9xu9NZxKVfNuvO/9Ss95Yzvftt1H7ugKAk08h93YAu++8rVlP8ofz7os4ecnKeQ5HhCcEIkbS/jobzRdJJGiPbWLWEzNczMyjvfK6OrP+/luv05kNhwzlT0a2cHEDj1Gs6UIibQEUivwgB9Hlvw92JhLR/wq9/DfCTt46OyVCX3sUiSgiIiIiskrQolxEREREJGRalIuIiIiIhEyLchERERGRkGlRLiIiIiISslU2faVUKqKlfbHZq+vexawnPOkMLXagAwAgTj7Y7UtYyXgeL1/gyQOpCtLwfMq9qYF/2rq6m/1FB56PzSereALHkUcfQTr8o/YxT9xDppSlvY6c3Ysk+Kegg4B/Xfm8vY2JKIkCAJBO2IkOAFCWtPdT1BM50rCgifa61PAUi2TSPo5JT+rAPuP2ob0bJ08264fsdwCdidTW0B7i9vYV21vpSCzluSA9H3RPsK/Zc56VOvH+hG/CebosqMT5PrzvixfwzFWWk5SVTsYVlPJ2/kUkzvdtkOf3Mxchx8pzD/R+wb6dSL7mbMMiOhJlsSIAUjVVdiPvie3wfF2TfnWSWb/hFvtaBID9DuepVhWefcHOzmeffJrObL/rDrSXy9jnRaLMcx2s4LcEGwP+Opfw3KeZJL/tw5XxxJ5iu514lCTpPwCQaeL3/SR5HanpYq9j/h1fWlOMnBn+tBR+INlcyZujw3XmtlXwJTJ5RMk9rUCu4SBYMRkweqdcRERERCRkWpSLiIiIiIRMi3IRERERkZBpUS4iIiIiEjItykVEREREQqZFuYiIiIhIyFbZSEQXcUim7S8vQaKOFi9uo49XXVNOeyzcJ2MnIwEA0jxVEOf+7jjaO+/8K8z6OWcfT2eqe/BouRJJ6Ip4oqzgeKxXKW9H3OVyPK4qVsHjpTo6eHbk4qYGs57P85lsnkcstpMoKxT5vkjE+XmxyfpDzPriJh4D2KUrjz3Mt/EYqYOPmGjWX3lxOp2ZO3cu7R169NFm/ZbL/kZnDjzkYNpDrf11xZznPPNER/pS8XI5O5IukeLHKuhE2FbgfU+DPx7ruM6lhPn3E9nEbIZHlEajPN4wniA9z+77+ONPaC+Xte8LWU9UZnsrv0/PmzeP9saPH2/WU134/cd3nhWam836c889R2d23G03/oDN9td8+BGH0ZEWzyt4Q1sj7dWW15n17XfisYevPPM87Q3beaRZ94XROU+zSE6zjoCft1/M+Zj2Mq18X+TJK7gL+PVd8L2epe3c4lZyrgPA9Fdepb1MhkT/Oh53m8nw50qRiEUAGLPnOLPui3jldwufzk11StyXNetBxlZU9CGjd8pFREREREKmRbmIiIiISMi0KBcRERERCZkW5SIiIiIiIdOiXEREREQkZFqUi4iIiIiEbJWNRCyVimjNLLabrrdZjsV51I0vVMeRsUTcN+RpedKC2gstZv3Tr3m8Xf81etDet3O/Nut9e3enM8Ucz3qMki86xaLU4I/N8unXux/p8MjG9z5+h/a22HBz0uGXSUeR59jli3Z8V01NFZ3x7Yx4cvm/h+7ekx/7W++4nfZ+c97ZZv3Ao+yoRAC495abaa+9w471Oui4Y+hMoZVHW8YqebwhizLzhXA57xVuP94/X/8nHynx82LokC3M+sUX/5nONDUuor0uXbrQXmvWjoesrubRmy1NdtQfAPz6tNPMeizOz821B69He+xtoXdnvEZHysvStFdfX097r79uP2Ymw8+zkbuPor1YlR19t83IbejMww/eR3u777qn3fBEvCZi/N7UtZxfI9lm+3wqS1XSmYqE5xop2udZNMq3r3HhfNqr69HNrFd6XhwbF9ivZQAwehiPomR7Kcjz+EWXtI89wKNSnSeSdcQOQ2kvFWcRhnxfZL2RiHw7aLRphyevNdGJ93b5S7T/Rt2JNMKiJ2s2Glv+bY9EyEwnkxf/5fFXzMOIiIiIiEhnaVEuIiIiIhIyLcpFREREREKmRbmIiIiISMi0KBcRERERCdkqm74SiUZQXml/Sj8gERfFkp0QAQBw/BP/EWd/bxNP8IfL5vjHiHMF/qnvSMr+JPFqnoSVJ6c/S3s7Dh9u1t+byVNK1llrDdqjH53Oeb6mBPt0OVBbUUd7mZydRJPyxN6sP2hD2mtsabS3oZInOiSj/CA7JM267wPk2Q7+sfSy5PJfrvXdu9LexhttwAfZJ8k9x2rU7mNpL9XdTlO4/rLL6UyuxKNounbjx6RA4pD2GDOGzvz92mto75RTTjHrQzdjaT1ANsvvJRmSjHDar06lMz75jJ18AQCRlH1+ZrP8eiwv88RGsZO3k2kK+VZ7P7V79t/QkfY9CwDumjKF9saQ4z9r1iw6A09yA5OqraG93ceMpr0Zk+30oqGTDqAzn8yeSXsD11qb9hIV5PVssX1PBYANhmxKe6++8JxZ32QIv0aef+ox2tvrwP3NetSTcLHd0GG09/SMB2hv3NDtzLrzJMfkwa+RO6bdYdaHDtmSzjSRlCQAcDE7LSXuSaJJeZJe/vEyT42qr7FfL9qbW+lMmWehs+a6g8z6nTfcRGf2Pegg2kOMnACee0y0jL/3vKiRJPQBKJGbXSqVMutsHbi89E65iIiIiEjItCgXEREREQmZFuUiIiIiIiFbIYty59x459wVzrkXnXPNzrnAOXfLv5kZ5px71DnX6JzLOOfedc6d5Jzv91mKiIiIiKx6VtQHPc8CsCGAVgBfA+CfMAHgnBsD4F4AWQB3AmgEsAeASwBsBWDvFbRdIiIiIiI/eyvqx1d+CWAggCoAR/v+onOuCsB1AIoARgZBcHgQBKcB2AjAqwDGO+cmrKDtEhERERH52Vsh75QHQfD/8pCc82QWLTEeQD2Am4IgeP17j5F1zp0F4BksWdjbuUL/+TYhV7RzugISdVNZyWOEQGIUAaBYsOOMojEeFZTwxCVGPc2zzvmNWc/CjlkDgBEk9hAA3ieRWplMO53J5nhMWEWc/fQRP9UKBZ6nFo/xuVTcjiby/fxTU6aJ9rpUsvhAfk6XPL3FTYvs56nuQmeSntjDPE+xQ4mcg+waAIDq2iraa2lsMOuV1Tx6k8UeAgDy9jV3xAkn0JFiGz+niwE/B9k96L777qczdRU8xu7Ga24w6/tO4O8dVFRX0h47Zdpa+TUX8bx9Upbmca0F8lz5Ig/m9EV20tu775XE84DxtH0NN7fzCDbPJYfFrTzSL1lXa9b7rNG3U8/VvtiOU0t7rit4ru/aanvuuXvvoTPF3vbXBABrrzWQbwc7JmV2jCsAIMJ3RpxERybT/PH22nMP2nv6YTvC8KNF39GZsQdPpL1kgm97GTvIjr/mZz0n/N57HWjWp894kc7068OPlSPvnbZ7Yk0LnpjUb7+ZS3sLv1lo1kftviud8b7gZuzyvocfTEeeu/tB2tt2NI8UZRoW2lHHANClK49cZqfFl199ZdYLntfa5RHGBz2XhYI+bvSmA2gHMMw557k7iIiIiIisOsL45UHL0uT/5Tc2BEFQcM7NAbAegP4APvQ9kHPuDdLy/ky7iIiIiMjPSRjvlFcv/ZP9HMGyOv/3ZBERERGRVUgY75SvMEEQmL/3d+k76Jv8lzdHRERERKRTwninfNk74dWkv6xuf4pGRERERGQVE8ai/OOlf/7Lx42dczEAawAoAPjsv7lRIiIiIiJhCePHV54FcACAXQDc/oPecABpANODIOB5aP+BYrGE5pY2sxeQDJ/ov01ztEVIvlSpyGOJIlGeI9SUa6a9ZMKObcx6dpdzPDKtW+/eZr1uLf5Z2W8//YI/F0kDK6/h0UPxqO97Qx59Fw3iZj1XIDlMAKrL2D/QAIdNOsysX3/dVDpT9ETL1ZLow8YmHvdWV1VBe1f9/e+0d+IJR5n1Xn3s4wsAl155Be2NGL6NWT9owpF0BvbhAACwtKi8J7orVcUDmDrza39334nHel144e9p77gT7djGO2++lc7Uda+nvRdfesmsX3TxRXQmkeL7onGxHb0JABU1dmTejTffRGeOOeoI2ouRS3XeXDtKDQB6dWdRo6CvQDvtvhsdefgBHpkWT/I42WLWvi/Ey+xYRgDeSMRUBZvzxE0WeczeoBHbm/W5M56lM3MX8n9QfuO9d2hvi4GD7YbjF3Hm269pb7PhI+0GiWoFAHj2e4pEM3ZL8OvqhTefo72F8+fT3rMvP23Wdxu6LZ2JgG97B+yowk033ZzOlDzvjxZK9jmTSvFjFUvy3qhRo2jvntvuMuuPP/gYndllLL+vPniHnWxdU8EjY7fdaUfae4bEg26/73g644s99MYl1ttzffr0MeuJuCfnejmE8U75PQAWApjgnNtsWdE5lwJwwdL/vDqE7RIRERERCcUKeafcOTcWwNil/7nst4ts6ZybsvT/LwyC4FQACIKg2Tk3CUsW58875+4A0AhgNJbEJd4D4M4VsV0iIiIiIiuDFfXjKxsBOOQHtf5L/wcAXwA4dVkjCIL7nXMjAJwJYByAFIDZAE4GcHkQBL5fKiciIiIiskpZIYvyIAjOA3Decs68DID/4KCIiIiIyP+IMH6mXEREREREvsetij8p4px7Y511193kjnvvNvvrrb2uWc9n2+ljpjyf6meftg886StBjH+s/55HebrA8J13MOtlUZ4q0g6ezFIBO+3D99UmfacMSdkoNJIGgFhX/g82QYGnFXTk7ePFUxGAGa/ZyRcAsMWQoWb9rHPOoTOnn8l7ZUn7E+YdHTxR5oknnqK9MbvvTHtX/c1OZimW+LFvbeGpHTvtbCdBvDz9EzpTLPBjHCHnzC9P8aS52OFJS3gCM/IL7fMi3oWnEL330j9p79npdvrFd/Pn0pnGVp6KcdFfLjbrteTT/gDQ1sEThcrSdiITAJIDAbRm+HV13TU85ae+i52kMvGgffk2ZPlzsXeFkgmer/PUU3ZaBgA0LuQpG2PHjjbri5rZL5cGevTsTnud47l5LrYTM/I5fi7dNv1R2ltnPft1DgDmfzTbrO+yhZ26BAAxT4oFYuyexu8JhVaeQvX+Rx+Y9ec/fJvOjDpkf9pLg1/7Tz7wwxC4JcZtPoLORHutRXutOfvrqkyQaDIAzhPzUyD31XSMJ6xE+EuML1CIhp3dfeNtfCTH7jLAvof98Keal3hgyi10pm/vXrSXIPFPn382h84MP5Ans1RV8xQYtqM+mW2nde85djQ++OCDN9kvtfxP6Z1yEREREZGQaVEuIiIiIhIyLcpFREREREKmRbmIiIiISMi0KBcRERERCZkW5SIiIiIiIVtRv9HzZycajaO6psdyzaRSPDYJgSdjCHbkVz7P4+jisSTtde3WhfYeecyOwNpz9/3oTNITBzW3yY7F61tdS2faeZIV0iRLMVbJT7VF3/JovtqefDvef82OzUKcR7Ctt95g2psx4x9m/eyzz6Uzl17+N9r7xZHHmvXKSjuGEgDa2ngOYJYnT+Ho448y67886Xg689XXn9NeWaWdObjPgafRmWuuupr2JowbZ9YLPOkPJP1qiRbeiteS852fFvjobXIuAfj4nffN+na77Ehnxk86mPZumTLFrB84aSKd8cUeBizHDEB70d6J6TIeOXjiSfZ5CwDz5zWa9S++5lGE3ev5/SyRtLfDl7q6w052LCwATJ06hfaS5fZ5EW3n11yuwC+6aNTe9ojjoXMdRf54qbx9j4zX1tCZ8eN5DOA1U2+kvf12sn9v30uvvEZnRo4eRXtg0cpRHq4bq+RfVxCx4/4OP+QXdOZvj9xMeweM4vtpnzH2a2e55yS85NqraK+mxv66YuR8AYBxY+z7IwCkY/a9ONPGb54V6TLaa1nUTHuV1XZs494H8/UF8jz6+dFpdix1Mcavgw23WJ/2SiQecvD2W9GZu+9/gPbGjh1Le/GkfT02NDSY9YInvnl56J1yEREREZGQaVEuIiIiIhIyLcpFREREREKmRbmIiIiISMi0KBcRERERCZkW5SIiIiIiIXMBizJaiTnn3hi8/oabPPT4dPsvlOzomn69efyeN6OraEcfFko8EjFKosAAgE8BMz5+x6y/+I836EwsyiMRjzrgcLPOAxsB54mjKyPJh7dd9Rid2f/4XfkDevZ7ocOOYopV8PjFf/7jFf5U5FvUzbcYSmfaO+yIJgBIJe0oq+ZWHiFVXs4jxGbM4Md4443sGKmZH75NZ669lkcYXnrZn836X694hM707dGL9j798EOzPqBvXzozcSKPq/JdJLNm2BGGd91+G53JZHnO59nnnmXWL/jThXTm1HNOp70HnnjYrO9zCI9ti5fxK7KjxOPF3pg5x6wPGjSIzlTEeaQf6/AJ4K037XsWAAzZZEOzPn++HTsGAN09kbGPPcrPz1G72feZtg4eiViW5NFy7ObU2VfUWLMdA1jitwS02LcYAEBrkW/JU7fZUXUHjBpNZzo8Eb8V3avNui+u03lihpta7OhNV1VJZxaA31evuoVHGJ57oB0bW5Xjj1dM8O244MILzHrGE3c7YK2BtBeBvVbo1bMnndl5ZzvyEgBKeX6/WNxoxxPX1XelM0G2nfZc0j55H77zXrTyAAAgAElEQVTrTjoTT/C10c577mk3PLGmTQV+Ab344ou0t+HGG5n1yio7NnLkiOF455233wyCYFP6oP8BvVMuIiIiIhIyLcpFREREREKmRbmIiIiISMi0KBcRERERCZkW5SIiIiIiIdOiXEREREQkZKtsJOLa666/ya132TF8n3xkR6btOWpn+pgJ37cvURLtFOHRQ43NPPIrXW3HSwHAa5+8Z9YHDLCjxQAgBh7rdctt95j1Q8aNpzN1nvyzyVc8YdZrPBFSTcVPaa+2zo4fAoCx+42xG85zTkd4hCH7FrXFE2WVLq+hPbYVJd/mefbt/Q/wWMmxY+y4ty+//pzO/OHC39Fej552BNakY/9IZyZfM5X2asrtWM4vP/yYzgzbaGPam/WefQ0DQHbRYrN+4rFH0Zkua69OezdffqVZX21APzqzKMNzQ8cetK9Zn/bI/XRmu112oL2ydAXttZGT+sMPP6Ez660zgPZYuJgvEvGWW2+nvc022cSsr78Oj2wsFnmUXizKb9TZnB3dlkrwyDTfq2MJdrRuLs+j9BJxnmGYaLEjEfM84RUtnsTGBW08wnD6vQ+Z9Un78fu+7yCXSIpdmycur7KM74ts3p7riNv7CAAWgr/eRj0bX0NiG2s8Mx05fg4mE3Z86eFHTKIzN1x/A+2VyPleKvFtiJIYRQBwMc8JRfZFrp0fx0SZ5yQMyOut74bhidFsX2xHZaZreZx1qVhOe5GoZ0NI64OZH5n1ffYeh5kzZyoSUURERERkZadFuYiIiIhIyLQoFxEREREJmRblIiIiIiIh06JcRERERCRkvo/hrtSiCFBNPh1fRj7NPPmK6+njHXXiEfzJSuR7m8D+FDYARB3/xL8j2w0AGw9Yw6w/8/59dGbY4C1ob/he3cz61Y+dSWe++3Iu7S1qajLrvz//93SmJ3hyTAd4WsrUh24165kOPnPw+INor9iRMeuVnnQLtPFPpcORpIBGex8BAGrt1BMAGL+znbACAPdOm27WWyt4es2H4IkjT35gb+NX2/DjWNeNP9eiqH3ObDxsfb4ND9pJPgCw0+gRtDf+sHGk48nS8NwJv4zZ6TsH7Lc7nbn0r1fT3nsffWbW99htLzoT57cLeG4XiAVZs77lIPs+AgCvzZhBe1sMHWrWb7mdJ8eMH7sf7T39jH3etrXy94s22ICnwwSeMIVkwk4A8nEBT4JIkJSnRNxzMpHjAQAFZ99L4mU8PaLc875aQ5HfZ8YcbKesfOo5mVKeRA+Wv5Eq4/v88ceeo71ddtjWfrwmnrBSzSJgAKCCvxYHJJUHaZ4O812CH+P5WTsh5LfX30Rn9j3rNNq74oKLzXohylN+KmhOEuA8KTVJEjlS8MTPRYqe1Bty/bi451gV+H06nSLnU4lf+C7Ge53JHoyx9BrnjZT5j+mdchERERGRkGlRLiIiIiISMi3KRURERERCpkW5iIiIiEjItCgXEREREQmZFuUiIiIiIiFbZSMRXSSCOIk0Gr2XHS13120P0Me76YbbaW/ChH3MeqKKx/5UV9XQXjtaaS9P4ozeef1tOnPvtDtpb978+Wa9vIzHAPaq7017jd82mPWTj/klnQF49NTFf/wz7e29hx0hly/ySMRShx1vBwCVCRI9VuKxaEGBx0G5NIlE7MGPfSljxzICQL7EY646SJzj/XfxqLrvPvqc9gYNXNusp6or6UxDy2LaS1XZ3/83NC+iMwMH29sAALX1PDqyvdXeFzfeciOdmXTUL2jvN2f92qyf/7s/0Zl99+UxgFdf+TezftllF9GZlhYef1ZZyc+LqGO3eP5+TC7PY/GKJEOMxoQBKOeJfhg9erhZv/seHofZvUc97fXoxq8ttitK7IsCkPJEwRWK9jEpFvixSib5sYql7Q3MtPPY1Q5PtFy3KjvuFgDYFr7wwjN0ZvcRO9FePiDxw45v3y4727GHAPDaC6+a9SGbbkpnUM6CGYGm+fNor5qcT8UcP44RnrCI/qk6s37Z1VfSmZGb8djie++9y6ynPedSR4a/zh209wTam/bQNLO+64782CdTnp0B+7XTF0XIkoQBIIjbx7gj10FnklHPDehnSO+Ui4iIiIiETItyEREREZGQaVEuIiIiIhIyLcpFREREREKmRbmIiIiISMi0KBcRERERCZkLAl84zcrJOffGoEHrbDJlih0lNHTIYLNOUp0AAJOvuZX2+q+5ulnfavhQOtNR4pFFyUoeL3bt7VeZ9RlvvUJnmjPNtDdwrf5mfejmw+hMz669aO/TmZ+Z9WeeepbO5LvySMQcibcDgPpkF7N+1YWX0hlX8uQtZex4w0WLeWxfbe8etNdBTqiC45vg4MuD4q0ISU07+/jz6UxmHo9aO3jfg8363659nM4UwWOp6rrZx/jya3hU5qzP59Les6/y7Vh9rT5mfafddqAzl13J48qOO+44s/7XS+xoQwA4+ZfH0t49dz1k1vN5Hq+53wQ7/hMAfLfwmLMfMxrl59nCBn6+z1toR54OGrQWnZk8lUeyrtZvDbM+YsQQOtPSwiNPZ330Ie1162pH1a25Bo949b1rxaIPo94hHq/qWKyk536xKMvvj2/Nmkl7jW3268+cL7+gM0fseyjtBSX7PKuK8PMs18RfA9NpO8buvVdfozPrb7oR7cETHwie2kj57uGdcehhk2jvxsnXmfUzzjqDzpxzzjm0l0jwfVEI7GvrhRefpzMLGhbQ3vg97bjobIm/9mQ98YbVqWqzXiLRiwBQAR6V2RmzZs0263vtNRYzP/jgzSAIPLmd/57eKRcRERERCZkW5SIiIiIiIdOiXEREREQkZFqUi4iIiIiETItyEREREZGQrbLpK4PX33CTh554wezX19mf4E17gi8KPBgBf7n4crM+aG07WQAAxo7fg/be/+RN2rvwL7+zGwmeSLD9TtvT3rYjRpj13pV2ggUARDwfV0/A/mR3WzP/pP1eZ+1He7Ei/75xcD87ReesE86kM0E7P9+rqrvaDce3Ief5FD47ZfiRAppbeFJOz4oq2os0krrn2+5LJv6W9qqiabP+wLdZOlNZxVN0WjrsT+g/+MSf+AwPlsDL/+RpQ6+/+w+zvu329rkOAL37rkZ7N06eYtZjMZ5icNrJJ9BeO9mFf7jw93Rmn33sFAMA2GDwANoLSJKBc/zEjcX51zVvvn0cP//iKzoz8+OPaO+gA/c3648+8RSdyeXs1BMA2HOPUbTHLoVMhj9e1BN5lC5LmvXAl7DiuSALHfYJH/UkhxQ9x7GpwC+ggrOToaa/9CJ/rizfTz3r7HvnlhvxIIpEhN8vaJhGge/bd958g/Y23Hxz/lxx+5gUPUujaI432xfZ6UVpkv4DwJuwUyQJO9Fynipywe8voL1fn/Ub2mvJ2Kko6TL79QAA7njgbtorOPt41XYjr7UARgwdSXvsKm4NWunE6q7W83jLT+krIiIiIiKrOC3KRURERERCpkW5iIiIiEjIfvSi3DnXxTl3hHPuPufcbOdcxjnX5Jx7yTl3uHP2D+Q654Y55x51zjUunXnXOXeSc64Tv19LRERERGTlxX+f+39ubwBXA/gOwHMAvgTQHcBeAK4HsKtzbu/ge58odc6NAXAvgCyAOwE0AtgDwCUAtlr6mCIiIiIi/xNWxKJ8FoDRAB4JguD/fdTWOXcGgNcAjMOSBfq9S+tVAK4DUAQwMgiC15fWzwbwLIDxzrkJQRDcsQK2TURERETkZ+9HL8qDIHiW1Oc65/4O4PcARmLpohzAeAD1AG5atiBf+vezzrmzADwD4GgAP2pRXigW0NDUYPYqq+1ouWTSExPGU6nwmzNI/Jkn5uj6KTfS3sxP36a9RMKOkYql+JMN33Ib2mPRhzHwfMh8hyfUL2qfUuXlXejI6ScdQ3uXXXol7X09d45Zf++LmXRmo4FDaS9LfprLcxjR5okJq0qRk6aVz/Qt47GH4GmENH/x3YefpyNfffkJ7e23175mfdrid+lMe5R/XfGacrNe8NyBcp4fZNt2p2G0V1ZnXyM333EbnTn7nPNob8PNNjHrO263HZ05/4+X0t6Jx9v3i4lHHE5n/v73v9PeGb/5Fe3VkpzXWIxf30WaRwd062ZfxzX1dswsALz/Eb+fsYDQbbfj12k6zqPg5i74lvbqqmvsx/PEvXXm5zt9sYeZdn6NlKXJ1+WLyyvxx0vH+MUVIdG1o0fswJ+MhrwCSRaT64mHRKaF95LkmMT4TWHDjTemvRdf4hGqW2+3tVkv+CIRPQclXWdHH5YWN9GZSIrHQ0ZJ9GZHE3+8s848g/aKRTsOEwBefells775MH497jVmT9pzZIl5z2PT6MzDTz5MezvstKNZr3KVdGZl81N/0HPZVfz9O++yV7LHjb8/HUA7gGHOOftMFBERERFZxayIH18xOediAA5e+p/fX4APWvrnrB/OBEFQcM7NAbAegP4APvw3z8F+W8Day7e1IiIiIiLh+SnfKb8IwGAAjwZB8MT36sv+nZP928uyuv1vjSIiIiIiq5if5J1y59wJAE4B8BGAg36K5wAA9utMl76Dbv8gqIiIiIjIz8wKf6fcOXccgMsAzASwbRAEjT/4K8veCWefDFpWX7yit01ERERE5OdohS7KnXMnAbgCwPtYsiCfa/y1j5f+OdCYjwFYA0s+GPrZitw2EREREZGfqxX24yvOuV9jyc+Rvw1gxyAIFpK/+iyAAwDsAuD2H/SGA0gDmB4EQceP2Z5INIqK6gqzV56244x8SX8d7TwOqrrKjhfL5Xkc1P4H2ZFzAHDoL3gkUDxtR0JFAh4V1bvLarTHvy/j36+VJXn8UMdiO7fPFfnO3bz/OrRXVcGj25raWs36XU88SGfqVh/AnytpR1lVg8dV1XiyMrNfNJv18lpP7OEP/13pexb88y3au/aa6836oMGD6cyw0SNpr3ztbmY99xLPCcsUeGZje4sdT3rqGVfRmQv/xKMy2z3X6hoD1zLrW209nM5cdRXfjiMO/4VZb2njcXRn/vok2pt8051mfZ/x4+jMFkM3p72HH3uU9g7ddy+zPm+h9X7JEt26dqW9BU3zzXp1Nb8n7H+gLzLNPmficX6As0X+j6i9PNGMLFuwudU+NwGgPGW/hgBAImYHhOVy/L5flub3i7bWdnsbKj2RjZ7YvoTnHt5ErsfyNL/XxUncLQBcetEFZv2k006nM0h5lh8Bie1znnxIT2ubbe3YQwB47qXXzPqwrYfwB8zbxwoAPps926w7z7avMXg9/lxkLFnFr7lijt+boknPOdhkv2Z1KefXVTbvWapF7eO47678nhBl8ZoA2nP2fi8hw7chsXLFJa6Qd8qX/uKfiwC8AWB7z4IcAO4BsBDABOfcZt97jBSAZVf21Stiu0REREREVgY/+p1y59whAM7Hkt/Q+SKAE4zvCD8PgmAKAARB0Oycm4Qli/PnnXN3YMn7g6OxJC7xHgD2W0kiIiIiIqugFfHjK2ss/TMKgP2b7QsApiz7jyAI7nfOjQBwJoBxAFIAZgM4GcDlQRB4/lFORERERGTV8qMX5UEQnAfgvE7MvQxgtx/7/CIiIiIiK7uf8pcHiYiIiIjIf+An+eVBPweFQg5z531l9vr2tJMl4p69kSefIl46aVd5cAiKnk8Y1/eqp735TfPMeqajjc7MzdqJCQCQiNiftk95EkdqE3bqAAAkq8mntHkgARbTX+4KLM7wpIVCpMysNyxeQGe6JGtpL0m+5rTnh6kc/5A70lUkZcXzQfFn/sJTQGZ+9AHtnXLyCWY9tebqdOaGmyfTXkud/f161JvOwE94l7avn9+czRNWzjznEto75bRjaa8L2e9j9hhNZxbM4+fM0089ZdYP2Hc8nfnqW/5Z97oa+xqpTPMb0BZb8PSVqVOn0t6Xc78w63169KIzJfCkqVqSsnL/o/fQmT134/v9q/mzzHrfbr3pTDzK30uat8j+egEgEbPP3bpK+/UA+HfvWtkJMYkkP465HE+VYSkrvp/mLBX461LgiSOpqbSPY6aJxz/FPWkfCUdu8CXPDdLx/ZRfZG9HtsRfNyu78XM68CSzbLCR/XsGO/hlgKQnFaz/xuvyQeLT2fZ1AACxhP1cq63GU9V8CSvNTfz11pXsc63Yzl+0ysvs12EAQGBfQflmvl6Jl5fTXjLC05DoJiz3RLj0TrmIiIiISMi0KBcRERERCZkW5SIiIiIiIdOiXEREREQkZFqUi4iIiIiETItyEREREZGQrbKRiPFYFD3ra8xejERZNTUvoo9XW8Wj9DqKdrxPrpSlMwlPXmJDK49Ti6btbKfmVh5ZNLeZRyJ269LTrKeiPP6qFR20l3bk6/LEmH3YxGPMgrQnAitmxyO1zOX7L17g+6nKkWgn/uUC/BBj9iMvmfUH7ryLzgwZuintHX/pn2nvoXtuNet7bD6IzlR0I/GVAL6Y+7lZr6rh58Unsz+iPRexd1Q5fzicffYvaS/liRulZ5onG+vYIw6nvWuvnWLWb7+FxwAedCCPS+w3ehezPuVm+xgCwMEHHUB7ySjPe7t+yrVm/ZhjjqIz1153Ne2VivbF0NrG753PT3+E9upq7fhK5/jXtPWWw2hv002G8OeiUWv8Is4VeS8ZZY/HT7RojGfDFor2vS7mOb7JJL8Qrr/6b7S348htzHqvbnV0Bjkeb1jBYnI9UYTI8n371jvvmPUh2+3MH8/zXJkMj6KsrrCXQR2eFOSc57k6yDlTFuVRwlXduvAeiXj9ZM5ndKaY43mO6wzyRDYW7fOzdRGPUawjkdAA0NHcataTtZ7zzBNFmZ9nr2Xi3Xis6cq2ytU75SIiIiIiIdOiXEREREQkZFqUi4iIiIiETItyEREREZGQaVEuIiIiIhIyLcpFRERERELmgsCTE7aScs69se5662xy94O3m/1B/Qea9daMHd8DABVldvweAASwY4TaSnZUIgDEIjzq76ZHbqK9p156yqy3l3huH0k5AgBMuZg9F88RKgPfFxESj/TddzyW8fir96C92jIeRRltsHOp3DxPRNwF19NeeW0/u/FZA5254yb7HAOA5ox9/CceeSidSazuiXZK8RbydlzZlMnX0ZGBA+3rAAA+/fRTs/7g23zfzp/3Le2lUvZJeNmlv6MzvXvQFhKeSER2ZeU6+IVQluTvT3SQ5LbLLruMzvRbsz/tjR9vn+++O/G119vRhgBwxBFH0N4p5x5r1nM5Twygp9e9mx0z++WXPJ6tX79etFcq2Pln8xfMozP1dTw+rnHhYtqrrLDvJTvvYEdUAsCIbXakvXg0bdbzOZ6ll0rYMwAQwI5kdeT1BQDyWf4as/02W9FeMdtu1msqWMwj8Mj052hv8l/+YtYPO+U0OoOMJ082bccAvjL9FTrSmuH7ffgOnuOYsK/9HE9RxIOP3MEfj8Qdx2L8NbW5uYX2Ro0aZdar0jxP1vduayHP99MjDzxoP16R351Gj9uHPxk7dX03uw5PJiKLSo3yfRvwS65TZs2abdb32mssZn7wwZtBEPBc4/+A3ikXEREREQmZFuUiIiIiIiHTolxEREREJGRalIuIiIiIhEyLchERERGRkGlRLiIiIiISMp4js9IL4IosWseuV5fZkVQAkMnz6KmXZ7xs1rfZZhv+eOBxUHuPGkd7//hwhllva8zQmeo6O8YMAA44+UCzXlvBo/l61a5Ge7lmOwOpdZEnHjLO85FW696d9j59f5ZZH9J7MzpTnrCjtgDgxSl2zNXLL/2TzmzjidraajSJWqujI/4rkqcRAqmEWT7oEPv4AsDvzjyH9nrWdTXr1VWD6Mx3335Fe7kOEsPlieuM89RQRD2RWgGJMkvH+XsQgZ0oCQBIke349Wkn0pnTTj2d9lbvY5/Tm2+xCZ0ZP24M7f3u/LNpb8HihWa9mOMRqn379qG9zz6fY9bXGTSAb8OCb2gvSs7p7l3r6czChfbXBAAbbLAB7c360I4yu+UWHkE7/YWXaG+TjYeY9Z133o3OlDwXeKlkn5+xCD9vFzfyuNbqSn6vy5TsC69ndx5ficCz7UV7G5+4+z46s/O+nig9Z190a6zJz7Oeq61OewVPvGFHm30zSaf5DXff0eP5A5KxBd99R0c+/Ogj2vvo7ffM+rdz+eN9MsuOtAWATIavFQYMsPdvTXU1nbnuuqto7/CDDzPrznP/dmlP9i+ba7MjPgEA6RWcifgT0zvlIiIiIiIh06JcRERERCRkWpSLiIiIiIRMi3IRERERkZBpUS4iIiIiErJVNn0lFouhvoudIBEhH48ulPhHtBOxOO2VpZNm/cbbJtOZHv170N5mQ3l6yB9OvdCs//a639GZdz+YSXsD+69j1rOLSVoGgFkffUx7Xcrs1IS6ap6mcPtvb6W935x+Bu2tVmYnxGRbeZTGr0/5Je11retr1k++6Ld0JtGrgvZAUjs8QQBY0MCTJXrU2+czAEy7y06OGb7Z5nRm4qEH096Vf77MrLdU8mSOtlb+CfguXcrN+qKFTXSmf1/+iX9f+kqe7WBPeo3rxNsThQy/Rs45i6ev/OkvfzLr5VX8HvPsC0/T3tff2YkoANB3rX5mvalpEZ35bv582ltrgH2/GD12NJ1JJ3mMTjJuf83Vlfb5AgB33XEn7X38Mb83pcvsazWZ4NdwRwdPqXn8iUfN+uuvv05nzjnnXNqLR+19kcvxtIy/XWFfpwCQaeOJV2VJO+EiGnguhIAfx1SFnfD1zfxG/niwE6MAAM6+WB967HE6cuQvfkF7MU+SUyxlP9fkv0+lM2XZFtorr6y0Z8p5CshnX31Be+kaO0XnoElH0Jlp991Le4WAR14l03YC3QzPOX3eOefRHnsmX5BYc+ti2qupsPdFUGOvwf7dc/0c6Z1yEREREZGQaVEuIiIiIhIyLcpFREREREKmRbmIiIiISMi0KBcRERERCZkW5SIiIiIiIVtlIxE7sh345JPPzF7XLbqb9UKBh9WlEjyubOimW5v1IM7DeDbeYCPay4HHcGVJb89RY+jMryb9mva+mPe1WS8r8ZiwYgv/Xq5rhR1T+MoLr9EZfMcjv2qaeJZVPmefvrO++5LO/Ors39PexlsMNetFT6ZSQxM/Z8qT9valeHoTepIYzyUbwp8ryGTN+lfffENn+vdfi/bakvYXvenmQ+jMvHnf8cdrtaPRHnrwYTqz5moH0F59F9pCgiWt8cvKfycs2PmLsRQ/N8vjdrQYABw0cX+zfv3Ua+lMw+J5tBcv49vx9TdzzXo6zePZ1ui/Nu+t3s+sr91vYzoTBc+vdLBjJUvI05kjD+GxpiXwONTGRfY5eMstt9CZ2bNn0163ejvWtkcPHnebiPGLP1+w74OpBJ9Zd11+rJ5/ksdofjtvgVnfc/Q+dAaeCNADjzrRrE9//nk609bK7/vpKjv6zhd7OPkGT4Sh4xf4fgfb95mJ++xLZyIpO1ISANBMYl5reMQrsjxOFpXkuTyxsNtvvz3tVdTY8ZUAkCWBvWW19vEAgKtvvo721ujf36zPmcNjXA878DDa+7rFPm+7VPIXBH4n/nnSO+UiIiIiIiHTolxEREREJGRalIuIiIiIhEyLchERERGRkGlRLiIiIiISMi3KRURERERCtspGIsbiCXTvvrrZC2BHTCU9sYeBJ39oQaMdVzZkg63ozKvvv0R76wweQHsFEhW2aS8eSXbVzVfR3kkHnWLWE54goWRP3nN5ex8OGrcGnXn68vNob/6Xi2ivJWI/16bbjKQz3dYeSHvNnuhDpqyaX0LJkl1vmWvHOgFAZa0nNqu1lbb6r7aaWX/1n/+gM33X43Fq80p2fuAGtTyyMVvgkWmRuH2svvjmWzpTzlO4vHFgFItKBICc5wET9omRy/KMRed5rjUHrGnWS1FywgAIEnz7klX8yeJxO6I0l+PRgb8+4TzaO+Pc35j1kcMW05k+9b1oj70rxO/EQAeJDgSAshiPeoxF7Li3k48/k858Pfdz2rv99lvN+trrrUdnfAKS2Znt4MfqpptvpL3KynLa61JhR8h9/oUdkQsADz34OO3tsZ8dpbjFNjyaL5bmN9zWrH0tnPEbHu87dpfdaG/7rYfT3p3X3GDW9z38cDoDfqnS6MOnpk2jI6lyft4u7rDv+9vtuhOdqaqpo71Wz/UTi9n3krkLeSTrYQfx/dScbzHrn835lM74bu41lez1sTMvCD9PeqdcRERERCRkWpSLiIiIiIRMi3IRERERkZBpUS4iIiIiEjItykVEREREQrbKpq9EIjGUkU+YfzPPTvTo2d3++4D/u5f6OjtdICBJKQBQaOcf306BfxK7nPSefvVJOlMfr/E8nn0KtM5vpDOpNE9TYJ9Kv/lPV9OR5958lvbqe/elvVjefrJDjjiSzvg+lb6oLWvWK5IpOuM8iSMOdrpAZZdaOoPAlwISpa1NRmxj1t/9gn/Kfeacz2hvUXu7Wd9y6+505t77+Hm2cK6dzhGQBB0AiHoSTEqe3bRwrp0u0L0bTw1C0hO9Q1qlKN+IaJw/3ifffGLWv23gSTR1Pfi+zeTaaC/osLfjj+f/lc6c94ff014kYkfi3HM3v/8cf/Qk2ouS3ZS1L0UAQCHLr7myGn6tplP1bCvoTJ8edlIOABx/HEmuivMTN08SVgCgLEauhRh/9VlttT6098yj/L7av4+dQnXqaafTmRtvvZP3Jt9u1g8+cj86Y2fhLJFI2V/zJZdeTGcO3/9Q2isr8tdblrLy1M0305kdJx5Ee+x+sfXuu9KRsmp+b7pn2n1m/R/vvU1nvvzuG9rbZ+99aW9hc4NZH7/HODqTyfFUsOqE/XX1qeNrrbbFPJ2svsae6/BsAxKe19ufIb1TLiIiIiISMi3KRURERERCpkW5iIiIiEjIVsii3Dn3R+fcM865r5xzGedco3PuLefcuc4584eAnHPDnHOPLv27Gefcu6niDLoAACAASURBVM65k5xz/Af8RERERERWQSvqnfJfAigH8BSAywDciiWf4zgPwLvOuf/zaT3n3BgA0wEMB3AfgCux5JdgXwLgjhW0TSIiIiIiK4UVlb5SFQTBv3xe3jn3ewBnADgdwDFLa1UArgNQBDAyCILXl9bPBvAsgPHOuQlBEGhxLiIiIiL/E1bIotxakC91F5Ysygd8rzYeQD2Am5YtyJc9hnPuLADPADgaP/Id81y+gK++W2j2Nlp/LbPuSVlDU0uO9ior7Qis9gyfGbrpMNr7YCaPOtpo3fXMeoXjkUpbbbAF7d11461mPfudHSsHALtuNYr2zj3lXLO++46j6cz8njyyyNXweMiBqw8y61278Ni+iCeHq2ecxKnxXYEZz71Ae+0ZOwawsYXHTY4/cAJ/skoe99aRt6PW9j+Ux4TdPe0B2kuQW8MDj8ymM0GU305q6+04ujlffkFnxu9zKu21Nc2lvX69upr1GydfSmdyHTwyLZ60/0ExmeLRdznwa//Gm6ea9Vg5j4eMkIg4AFjYYMeYAUDvbhub9Ztuv4fOnHP6mXw7SP2Yo35DZ84/9zLau+C3J5r1Mk8cZoRdpwDaPclo5Wl7btFiPhRP8PjF8nS5/Xht/PqePXsW7TUt+sqs9+/LYxnffOMN2uvend8H05V2tGVVn5505sRTTqK9DLl8Jk99iM4cMHEP2suz3c5ThjH1lhtp79TDjqa9lx591Kz/6sIL6cy1d91Gey5iXyUH7M/v7V82N9HezuP2NOvzmuz1DQAszNuRtgBw/W18Px2+/yFm3fczxekYv1jLSD7kos95ZGO37Sv5kxXsEy2V5/fHwHMv+Tn6qT/oueyqe/d7te2W/vm48fenA2gHMMw5l/wpN0xERERE5Odihf7yIOfcqQAqAFQD2AzA1liyIL/oe39t2dub//KWQRAEBefcHADrAegP4MN/83zsbYK1l2/LRURERETCs6J/o+epAL7/b2aPA5gYBMH3f0VT9dI/2b/XLKvzX2EnIiIiIrIKWaGL8iAIegCAc647gGFY8g75W8653YMgeHNFPtfS59vUqi99B32TFf18IiIiIiI/hZ/kZ8qDIJgXBMF9AHYC0AXATd9rL3snvPpfBv9v3f6UnIiIiIjIKuYn/aBnEARfAJgJYD3n3LJIhI+X/jnwh3/fORcDsAaWZJx/9lNum4iIiIjIz8WK/plyS6+lfy4LOXoWwAEAdgFw+w/+7nAAaQDTgyCwM97+Q9FoFJVVdtQeCz979dUP6ONttaUdRegTj/GYwkSUBzAOHrQ+7T3w0H1m/dknn6QzXdJ2/BUAlBbbGYHZ+SzlEnjr0ddpb+i65k8U4dO3+Gd2i8N70F6p3I63A4CjjjvZnsnxfRtp8QRfOvI9qp3qBAAYOnw73oyR/K4yHr9357QfXhL/v53G7E57ZQn7H54WLubxbI8+9DDtJcj3648/xc+z5sU8oisZsSMCq0isHAA0LOKxh91q2T+0AYtIvFiRp9sh4YkcfO+DmWZ90OB/eV/he/hJEzgS65XmgVOt7S20V92ljvbSZXa8WJ/e/ejM9VOn0d4Rh+xl1v988UVmHQBOP/V3tJcnyZE5niiJcn5bRcRzrbLM25rqCjqS6eB5qPnAfrLqcn48Bg/egPbSUft8am7mx76igkfGlsf5NTJ//ny7wbINASDNrxF2+RxwMI89vP7G+2nv8EPHmvW4L5vPE5f452uu5s2C/Rr4h6OPoSOTbrqW9theum7aXXRm/732oT22EKqp5q+N22w7kvYenHYv7ZVg3yR9cdExzynD9KrmMcjwxBYjTw6yJ453ZfOj3yl3zg10zv3L1e+ciyz95UHdALwSBMGipa17ACwEMME5t9n3/n4KwAVL/9NzBYmIiIiIrFpWxLcXuwH4g3PuJQBzADRgSQLLCCyJNZwLYNKyvxwEQbNzbhKWLM6fd87dAaARwGgsiUu8B8CdK2C7RERERERWCitiUf40gLWwJJN8YyyJMmzDkhzymwFcHgTB//k39CAI7nfOjQBwJoBxAFIAZgM4eenf9/1riYiIiIjIKuVHL8qDIHgfwHGdmHsZS95lFxERERH5n/aTpq+IiIiIiMi/p0W5iIiIiEjIVp0cmR+IlEooz7SbvVSmi1kfsTGPPXznBR4DuOGWm5n1Mt/u9UR+pTt45tfeuxxi1l959DU6M7fB3g8AMJ/E2NX2tvcRALR355lFC9N2fFyqL/+artzgINpbc9fhtDeP7ESXSNCZskqemRYn36J2eA5jM28hgbhZr/ZEd+277QG09+i9D9DekP3s6LGmGh6zl+3Jv7AIicbaoc8isw4AkybxCLFc1g72SiX59tXX1NBestxzUEj04eKFPGIxk2+lvfUH9zLr78x6gc70HcBjPjPF2XYj2kZncgV+DZeXp2jvpD2ONus33slj0Xbee0famzLtIbOe7smPY9ft7VhGADjhxjPM+maDeSxsTZTHaPat6kl7A3sPMOsP32t/TQBw2KH83sQSNsmpDgCIJPl9MJexf19eMsYjGxfxtESglr/nVtnTvr8Xknzjo+B5hC5i33PTnk+HnXCgHXsIgOYWZ1o9O7ecn4O+WFvE7HvJ6dfz2MMH7p1Ke2PG7W/Wjx3FYw9vueFB2jto4mizXvR8Tef/fjLtnX02v09Pe+A2s77HHiPpTCTmyzC0j8nCLI/PzXXwF8gEixvtRCzjz5XeKRcRERERCZkW5SIiIiIiIdOiXEREREQkZFqUi4iIiIiETItyEREREZGQrbLpK9FoFDVV1aRpl++YfDN9vAmeT+FPf/gJsz581M50BnlPBEeSpymwjxn/6Q8X8QnPUX725efN+uwvP6MzC5vtlAAA2HGXncz6WusMojM9FvN0BgQ8pqaMfE/Z2NJAZ/pV8lSZbKOdcOHq0nzG87HvCPue15cEUGYntgDAbqP3or3L7r7FrHddpx+d2WzTLWnv67feN+t77GGnvABAfT3ft2VJ8kV70hlKnqCFRfMaaa+2u/0J/RkzZtCZkTtsQ3uFop2z4fvFw88+/RztlQr2XNyTzFGR5MkXCxfyJIPefe36AfvZiQ4AcMYfzqS9s/5ytlmvruTXcCNJpwKAv176Z7O+BklKAYD2BTzzaM6nX9PeluttbtbLkvz69uFHhKdRxD0vubEyO6licQO/n5HgEABAQ8MC2ttsM/uYfPrZLDrT3MSjXjbaaBOz3uFJ0qioJq/PAL0vlFV4ElY895JCnt+nY0lyn+YHGGPGjKG9hx+wU7J232M8nRk/nl+P7Dbje0e1urKKP55nbp111jHrsQg/0eKeF7TJk68z64cdzn/f5MuPvUp7W43Y1awXmzyvw2Ur13vPK9fWioiIiIisgrQoFxEREREJmRblIiIiIiIh06JcRERERCRkWpSLiIiIiIRMi3IRERERkZCtspGI2UwGH773rtnbYtutzfqEw3js4S1XXkt7Qzbf1Kxfd5Ed9wUAk351Ku0hm+W9hP19VLysnM/E+Pde5TE7hq17dVc607Wunvb++fJrZn21Xn3oDOKemKsojxcLSBxht0pPhGGGx6mlyhJmffLtt9GZsfvtT3udurh8cYlxfhwn7n2wWT/kzJPpzI7bjKS91Va3o7FaWngsmm/TmYIn9jDmiSS7+eZbae+EU4836zvuyCNKo+X8aC1o+MqsbzhoYzrj7FMJAPDU9KfMemtrE53puwa/fvJ5O7IRAALSqq7iUaOX/PUc2vvjVZea9QOOnEhnutX0or21+61v1qfd/hidueDXdiwjAAStPBrtxWdfN+vpZAWd6Wjl+8kl7Z0bj/B7VtTzPlgA+/Hue2gananpymMFGxt5bGh1nR1h2bdfbzqTTvPXmEzGfs2qqOH71hcduWiRve21dfx1CQHft0Xw4xgp2TG0zvEbkPNkUY4aZcf2tbZm6Ex5JY9DXUxuC1GenosTTzyQ9v74J/saBoDTf3W0Wf/wk3/Smco0309rrtHfbhT4sX///fdob6vt7H0brfZdVysXvVMuIiIiIhIyLcpFREREREKmRbmIiIiISMi0KBcRERERCZkW5SIiIiIiIdOiXEREREQkZKtsJGJ5Oo3NNt3EbhZISE7Aw3Oqq3i008DN7EjEt1/nMUI3/eWvtHfwySfRHtpJrFI5jxXsmL+A9oaP2MGsT7vrDjqzzz770N5ll9lxSws/n0dnVuvJ46oeffwZ2tt+b74dTBB4MvhS9j6MeOK0Wjt4RGBl0o4dK/E0KER8uYJ53rqGRAR2reVxdO+//THtbbW+fe188/XXdCbqPBtPLq2/X3U1HTnuJDueCwBOONGOPQSAE448zqxffu2VdKaUaaW9+q49zXpblkfOlTzHasN17H371od2ZB8AfPEp3++pNL/277zzCrM+YeIhdObrhZ77xbANzfr9d/DY0P0POZL2Dh+7n1m/aNbf6cyDdz9PexP3Hkl7I7fZzKxfdfkUOhOP8PetIiQS0XehPvvC47S33YhdzPrLrzxHZxoav6O9uloeH3jEJPv4R2M8UjJf4JF+ZSROtlTiM773BCurUqTD78W+x0umfO8/suPIo0Z9WFxiMfBtO1dOlh4RT2SsT2U5j19kd/B1B6xNZ6Ke/dSxuM2sf/7JbDrzi5N+SXsPTrXXJaPHT6Az4AnJP0t6p1xEREREJGRalIuIiIiIhEyLchERERGRkGlRLiIiIiISMi3KRURERERCtsqmr+TyOXz79edmr+8669pDre308faYsC/tPXH77WY9n+VJH76Elbv+9jfa2+fYY+1Gnn8C+oo/24koANBztT5mvby6is4gx1M2jjz4CLN+3nnn0ZnG9bvRXm2/3rSXgL1/G9oa6Exdoob24OzUhGSCf8y9NllOe+w73ogdVLCE5wP67Z5Ej623HmnWv3nsETqz3rr8E/WPPfKEWd97uy3pTKnAN7BQipt1X8LKhef9gfbOOPd02rv8b3bKypV/uYTOHHfKCbTX3tJk1ssrq+nMBgNJ8hOA+QsXmvWPP5lFZ+KVLI0CqKyxU34A4J9vPGrWJ0zcg8706srTXHbdeiuzXsYiIgDcesNU2jv+mBPN+rBNR9CZu6feTXvbbz6S9tL2KYhjjp9IZ5Dn53TQYSf2uCS/iEdsvTHtPfOcfc19/PFMOpNO8ySNltbFtFcs2dsYifL0lXiUv4eXy9spG08++TSdGTJkKO11q+9OOvx1LpPlSVhlZb4IDvv1rFDgMVmxGN8XmYy9jqiurqUznuA3RDuRsjJvAV/LHH3UL2gv8v+1d+dhclVlHsd/by/pNR3IAgRCCLKHRQKMQFiGbXhAIoQALgOEURbFbXDY5nFkmTiKqOwuPLIjEUU2QUF2RQRBAsgSgYQkSIBAFkjSIb2f+ePeHnva856QTnXfTuX7eZ56KjnvPdW3q07dOnX73t9VPC3Hkvtv/ddkm+3jaU3q9LcxWu6v+6iRw+OF1lSyTeoDd/BhTzkAAABQMCblAAAAQMGYlAMAAAAFY1IOAAAAFIxJOQAAAFAwJuUAAABAwSyksnjWUmY2Y8fx2+9y/213ROsbjd442v7OG/Pdx6yp9mN13pof7zc8EZn22GOPubX1hvn9Dpo0KV5IvY7JeMN45NdPr7vG7bJ8RTz+SpK+eNaZ0fafXHG522fIihfc2jut/s+aPHVqtH30JmPdPk0No9zaojffjbbXjfQjG7tq/Oe2QvHYpxo/aUuVidjD2W/E10+SfnbfvdH2uQsXuH22HPcRt9axNB6N9bdnHnX7XHvd1W7NSR2TEs/FrTff6tamTJni1irq4vsaOlf6sVk//HE8RlGSTj71s9H2uiY/Zu2Z559ya7VD4+PipltudPuown9/vzzrZbe2tZMA2uYn32naBRe7tSHV8ffCzb++3+3z7HOvu7Xh642LtnescPILJa2feA/PesGPDzzlxOOi7ZXBj9Jra/ffP7vusVW8UOVHusmJnJOkla3xz5jJkyf7fVb6j7do0RK3NnZsfBs5b948t89o53NTkurr4pGY1dX+67jttk40saTDDjss2r733vu6fdKxfb7m5ni0ZWOjHzXa/IE/Zhrr49GHbYko4erE/KLDea86qy1JavKnEMlnqaNzWbS9OhGVKSdeU5Ku+fGV0fYTjz/Ff7xaPzpSzc561PrRoCGVhtkHr746O9o+ZcpkzXzppWdCCLuuyeOzpxwAAAAoGJNyAAAAoGBMygEAAICCMSkHAAAACsakHAAAACgYk3IAAACgYGUbibjD+PG73HPLLdH6pttsE++Yeiqa/Wg+NTREm59+4BG3yyMPPeTWzpz2Tbf26+k3R9snOfGAktS1eLFbqxgxwim4XdwYRUn65nnnRduHj3R+jqSPbOg/t7Pe8mMqF30Q73fIoU5spKQdx+/i1oaO3DDa3tqeiIOq9mOzWrrieX+NFX58kyV+1MJlfvTUty65JNr+8SOPdPuM33Zrt/bd//letL3tjVlunx133MmtTT02Hkc3bJST2Sepc0WnW6usr3Rrbsxild/FjWyUdO43vh5tn3bBNLdPa7sfi1c1JL7uS5oXuX2mXeBvExob/cyv2s7Xou3Lmv0ovWEj/Oi7LbabEG0/atKJbp8nnvMjG3/zmz9G2w/c138P77qzs/2WdNvP/G3uq3/9S7T9kotOc/ukPhKs0sukS3xWJCIRpfi2ZN78eW6PPz3xpFubPn26WxvmxO4uWODHri5cuNCtjRoV33YuTnz2pOISa2viY/r22293+4wc7kdlpqxYGX+9Gurin+ursmxF/DWurKh1+3iRkpLcQdieiM+tTGweKxLxqiHE1926/HFrVYmNZ3N8O/jbux9wu7z7lj9mpp5warxQ779WRCICAAAAWC1MygEAAICCMSkHAAAACsakHAAAACgYk3IAAACgYKk8grVaUFBrhRNl4Zx93LZsuft4Q4Y2rfY6jJ+wg1t7e+E7iZ7+2dGLly+NFxJfrypG+ckn8pJFKhMPWOOfNX/Ohd+OF1oTsSJVb7ulkY/+wa3tuGs8CeLC713s9nnp+XgahSRN3Gf/aPv2H93Z7dMq/xT4mor48+SFg0hKvo5/fvYJtzZu89HR9j139hNWZvzlJbd2yudPiLZfd8EFbp+ODv+5uPnmeGrQF77qnE0vqbI6ESGQ0N4SX4/qRn/cpkz7dnxMt6zwUzZqE4kobZ3xFJ3hjRu5fS751hVu7bSz/fSQZic1oSGxPVuw0E+BWdn5YrT9nnv99Kexm2/v1mrr4+k7D/7+brfP8A38xJ4DDtvLrb06L56+MnOu//tuveVIt9bWEt9O19X6SRAmfwx2OJv9jUdv5vb59DFbubWjpnzGrXmpa0Oqhrh92hLv76VL459Ld955p9tnk002dWu33nprtH3k8HjKiyS1JlLBaobUuLW62njqTXuHn/7U1tHq1oY2eIlc/mvf6f8oeQF5ifCaZJpUW2uLW6upiW9z2xOf31Xt/nzF6uPbmUMmfcLtoyHxZCBJuuXKq6Pt7W3+OvzrmV/0f9YgxJ5yAAAAoGBMygEAAICCMSkHAAAACtYvk3IzO87MQn47yVlmkpn9zsyWmlmzmT1pZvEDWQEAAIAyVvJJuZltKukHkrxrEMvMvizpbkk7SLpJ0lWSNpZ0vZl9v9TrBAAAAAxmJZ2Um5lJuk7SYklXOsuMk/R9SUsk7RZC+FII4WuSdpL0mqTTzWzPUq4XAAAAMJiZF43Upwcz+3dJl0jaT9IBks6TdHII4eoey0yTdI6kaSGE83r1/5ykayTdGELo86EsZjZj++3H7/Kru26L1jfbLB4xVVXZx4TI4OQPdSZyiboSEYFOlJ4khZXxiLMHH3jY7XPQQQe7NauP/6y2ZX5s0pCmWrfWviIe91bd4EdtSX603F3Tp7u1oUPj0VO77zXR7fO7xx93azNefD7avt/+B7p9Ju69j1vrdL7zdiTyqtrlj4trbrzOrU3YKR4POSER51ht/mvy2puvR9svPuO8aLskXX/T9W7NTfn0U8xSCWJ979cX3suVeHunasG819h/7RNbC4VEhOrNd1wabX9t7ly3z4IFC9xaRVU8Ms2q/ci5Fic6UJKCxbcldXXD3T6trX5UZmeHX+tyxszojfwoyhNPON6tjd0oHs3Y0hbfRktSwxB/cFYpkYs3YAbyNLPUG2gw8J+LkNwAef1SEa+lfd7Tz2xqa+KNwUSQb2ou4731Q+L3DYl5WJfzHCYe7+rp/ufmscce69Zqa+Ofjy+//Gq0/eijpmjmzJeeCSHs6j7oh1CykWBm20n6jqTLQgiPJhY9IL//baR2b69lAAAAgLJXkosHmVmVpJ9K+pukr69i8W3y+3/4uhFCeNvMVkgaY2b1IYQPVvFzZzilbVexDgAAAMCgUaorep4raYKkvUMI/t/uMt2Xa3IuTamlkhry5ZKTcgAAAKAcrPGk3Mx2V7Z3/KIQgn8d8H7gHbuT70HfZSDXBQAAAOirNTqmPD9s5UZlh6Kc8yG7de8hH+bUV7UnHQAAACgra3qiZ6OkrSVtJ6mlxwWDgrLkFUm6Km/rjgF4Jb/fuveDmdloZYeuzF/V8eQAAABAuVjTw1dalUUYxuyi7Djzx5RNxLsPbXlY0l6SDunR1u3QHsuskWBSh/OVo6UjHmdUl4pETERHmpM/ZJV+MJGXoihJFYmvStZQF23feqft/T6Nq58Rl0gW05DE+nVWxZ/DykTyZleL/2Qc/plT/I4tzukLdX4828cnH+PW1hs9Jtr+4EMPuH1mPPuMW/vU1OOi7Q3DRrh9lsuPopz9xiy3duynjoq211sijk6tbm3UyPpo+/Lly90+rSv8x6updV6TVEpYKtcr1c9J6Orq9J+LiurSxrMlg2ad+K7gbUhW9XgJxxx5arT9vQ8Wu33+/LQfG/rUn+O1RYv8GMX6Rj9CtTPEI9iWLH3D7VPb4MclOomskqQNR4+Nto/ZIt4uSc/99WW3VlUdjxvdYHh8Gy1JibeImoaUOiJwIOMNS21wxyUG68tzm3oXJ2qpyUIfHs+SP8sr9HFD7UUV9vGpkPt55nc64ogj3JoXe5hiie10KazRpDw/qfOkWM3Mzlc2Kb+hZ065sosLnSXpy2Z2XQhhXr78+vp7ckv0wkMAAABAOSpV+sqHFkKYa2ZnSrpc0tNm9gtJbZKOljRGBZwwCgAAABRpwCflkhRCuMLM5kk6Q9JUZX9nmynpGyGEG4pYJwAAAKAo/TYpDyGcL+n8RP1uSXf3188HAAAA1hZr85kgAAAAQFlgUg4AAAAUrJBjygdCZWWlGofFr09UXROPrOpMRPtUJOPK4t9tksk5lX5MYTL+zHnMsVuO69vjOSoSUUFeypEk1dQ7cW+JlahsjMfvSVLLYj/jrNaJh0z9wu+/50f67bbHPtH2j+2xh9vnrjtud2tX/uhH0fadD9zL7VO3gXdNLWnDsRu6tWE18di5znb/921udSIlJQ1rXD/a3tTU5PZJRkWlErX6og9brtR7uE+7JxIP17fQLL9XX5++9zvi25mm+k3dPgfvO9mtHbTvQdH2lk7/Wm9tnX7M5yuvzY62z3jhRbfPrHnvuLXapga3NmdePFL0tK+d6fY5/St+bbcJznYh8eLX+GmtKv2bBP0laPVjhvu8B7QPGxNLxhQmxlmF06/PEYar2b4q7s/yH3DECD9CNaW5OX6pnLq6+LyjIpVlvRrYUw4AAAAUjEk5AAAAUDAm5QAAAEDBmJQDAAAABWNSDgAAABSsbNNX2tra9eb8t6O1pe/HEylCIiKkvb3drdVUeWdi+995Uo9n5p8d3dnZGW1vbPBTMVpbW91aW0s83aSqyh8aQ4b4ySyVlfF1b2vzU1Q6KuPJIZJkS1a4teFV8SiDzooOt8/Crma3NrQlfpb2sDo/MmGrLbZ0a22VXdH2ex96wO3zvvykiokf3dWtvf7W69H2jer8cbFo0btu7b314meeL2v2n7/Zc+a4NW/MpN4HVX0YZ5LU0ek/pisZlbT6Qmkfrs/aG+JpPh1t/vsqdPqJPVUV8fFZWxPfLklSqPRfjxHD1ou277XnRLfPnns7qUuSrNof73968qVo+zU3XO/2OfxIP4nmqmuujbYfdtBhbp+aCn+7OrRmmVvDYOOP9z6x+GdFsktfYtVW+Zh92U/r96lw13H1f19Jsj70q3DSUqT03MhLU0nNf0qBPeUAAABAwZiUAwAAAAVjUg4AAAAUjEk5AAAAUDAm5QAAAEDBLJU4srYys8U1tTXDx22+ebTuJjcknovU82RucoMfwVDq572iwk+jCME/Y7mrK74e/u/Ut1ro8tchWOK7YYffr8r7WYnT0jsSz0VldTwZobLC/33bE6kyLW3xpIrlK+PJJpLUkTi7vLGu3q011TdG26udM8glqb3DT6mxyni/N19/y+2z8cYb+4/nvVbJ91ViXKTSTQbBNm2wpK8Eb7uQeB+kthde+kGFH7Mgya91OTVns5SvRGpc+NvBFStWRts72v0kjZohfjJU68p4ckNTUzzxRkrvBauo6FsiBYpQ/DamXzYxxf9aJWeJz++u1OeP1+5sf2bPnqWWlpYlIYQRq7N+//D4ZTopnyupSdI8SdvmzS8XtkIYjBgXiGFcIIZxgRjGBbqNk7QshBDfG/whleWkvCczmyFJIQQ/5BnrHMYFYhgXiGFcIIZxgVLjmHIAAACgYEzKAQAAgIIxKQcAAAAKxqQcAAAAKBiTcgAAAKBgZZ++AgAAAAx27CkHAAAACsakHAAAACgYk3IAAACgYEzKAQAAgIIxKQcAAAAKxqQcAAAAKBiTcgAAAKBgZTspN7MxZnatmb1lZq1mNs/MLjWz9YteN/QfMxthZieZ2R1mNtvMVprZUjN7zMxONLPomDeziWZ2j5ktyfs8b2anmVnlQP8OGBhmdpyZhfx2krPMJDP7cW7zVwAAB0pJREFUXT6Gms3sSTM7YaDXFf3PzA7MtxsL8s+Mt8zsPjP7eGRZthfrADM7zMzuN7P5+es8x8x+aWZ7OsszLrBGyvLiQWa2haTHJW0g6VeSXpb0MUn7S3pF0l4hhMXFrSH6i5l9QdKPJb0t6RFJf5O0oaQpkoZJuk3SMaHHwDezI/L2Fkm/kLRE0ickbSPp1hDCMQP5O6D/mdmmkl6QVCmpUdLJIYSrey3zZUlXSFqsbFy0STpa0hhJF4UQzhjQlUa/MbPvSjpT0nxJ90paJGmUpF0lPRhCOKvHsmwv1gFmdqGks5S9/+9UNia2lHS4pCpJU0MIN/VYnnGBNRdCKLubpPskBUlf6dV+cd5+ZdHryK3fXvsDlG0IK3q1b6Rsgh4kHdWjvUnSu5JaJe3Wo71W2Re7IOnTRf9e3Eo6RkzSg5Jek/S9/DU+qdcy45R9uC6WNK5H+/qSZud99iz6d+FWkvFwcv56Xi9pSKRe3ePfbC/WgVv+edEpaYGkDXrV9s9f5zmMC26lvpXd4Sv5XvKDJc2T9MNe5fMkrZB0vJk1DPCqYQCEEB4OIdwdQujq1b5A0pX5f/frUTpa2R6xn4cQnu6xfIukb+T/PbX/1hgF+KqyL2+fVbY9iPmcpBpJPwghzOtuDCG8J+nb+X+/0I/riAFgZjWSvqXsC/spIYS23suEENp7/JftxbphM2WH9z4ZQni3ZyGE8Iik5crGQTfGBUqi7Cblyr7FStL9kYnZckl/lFQvaY+BXjEUrvvDtaNH2wH5/W8jyz8q6QNJE/MPb6zlzGw7Sd+RdFkI4dHEoqlxcW+vZbD2+hdlk6nbJXXlxxCfbWb/7hw3zPZi3TBL2eFqHzOzkT0LZravpKHK/trWjXGBkijHSfk2+f2rTn1Wfr/1AKwLBgkzq5I0Nf9vzw2nO15CCB2S5io7fvAj/bqC6Hf5GPipsr2iX1/F4qlx8bayPexjzKy+pCuJgfZP+X2LpGcl/VrZl7ZLJT1uZr83s557RNlerANCCEskna3sfKSZZvYTM7vAzG6RdL+kByR9vkcXxgVKohwn5cPy+6VOvbt9vQFYFwwe35G0g6R7Qgj39WhnvKw7zpU0QdK/hRBWrmLZDzsuhjl1rB02yO/PVHbc7z7K9oLupGzyta+kX/ZYnu3FOiKEcKmygIAqZecd/KekYyS9Ien6Xoe1MC5QEuU4KQf+HzP7qqTTlaXwHF/w6qAAZra7sr3jF4UQnih6fTBodH8Gdkg6PITwWAihOYTwgqQjlaWx/LMXgYfyZWZnSbpV2QnAW0hqUJbGM0fS9DyxByipcpyUr2oPVnf7+wOwLihYHmt3maSZkvbP/yzZE+OlzOWHrdyo7E/L53zIbh92XHh7xrB26H5fP9vzhF5JCiF8oCzJS8oidSW2F+sEM9tP0oWS7goh/EcIYU4I4YMQwjPKvqy9Kel0M+s+HIVxgZIox0n5K/m9d8z4Vvm9d8w5yoSZnaYsZ/pFZRPyBZHF3PGST+Y2V7YXbU5/rSf6XaOy13c7SS09LhgUlCUySdJVedul+f9T42K0sr1m8/OJG9Ze3a+zN1l6L7+v67U824vyNim/f6R3IX/PP6Vs/jQhb2ZcoCTKcVLe/SY6uPfVG81sqKS9lJ0J/aeBXjEMHDM7W9Ilkp5TNiF/11n04fz+kEhtX2VJPY+HEFpLv5YYIK2SrnFuz+bLPJb/v/vQltS4OLTXMlh7PaTsWPLxztV+d8jv5+b3bC/WDd0pKaOcend7d4Qm4wKlUXRQen/cxMWD1umbskMUgqSnJQ1fxbJNkhaKiz6skzdJ5yt+8aDNxcWD1ombsqs+B0lf69V+sKQuZXvLh+VtbC/WgZukT+av5QJJm/SqHZqPi5WSRjAuuJXyZiH839XGy0Z+AaHHlZ1Z/ytJf5W0u7IM81clTQwhLC5uDdFfzOwEZSfmdCo7dCV2zO+8EML1PfpMVnZCT4uknyu7PPLhyi+PLOmToRzfKJCZna/sEJaTQwhX96p9RdLlyibmv1C2V+xoSWOUnTB6xsCuLfqDmY1R9nmxqbI9588q+1I2WX+fTN3WY3m2F2Uu/6vJfZIOUnahoDuUTdC3U3Zoi0k6LYRwWY8+jAussbKclEuSmW0qaZqyPyeNkPS2sjfWf4fsqnwoQz0mWSm/DyHs16vfXpL+S9KeyvZuzJZ0raTLQwidpV9TDAapSXle/4SkMyTtouxwv5nKrvJ5w0CuJ/pXnkV+rrJJ1GhJyyT9QdIFIYSnIsuzvShzZlYt6UuSPi1pvLJDUJYoO5788hDC/ZE+jAuskbKdlAMAAABri3I80RMAAABYqzApBwAAAArGpBwAAAAoGJNyAAAAoGBMygEAAICCMSkHAAAACsakHAAAACgYk3IAAACgYEzKAQAAgIIxKQcAAAAKxqQcAAAAKBiTcgAAAKBgTMoBAACAgjEpBwAAAArGpBwAAAAoGJNyAAAAoGBMygEAAICC/S/5g6rJ2QwMMQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 180, "width": 370 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# fonts.remove('latin2/ANTQUABI.TTF')\n", "# 'latin2/ANTQUABI.TTF' in fonts\n", "# fonts\n", "# filePath = '/data/captcha/label_english/100_30/*.jpg'\n", "filePath = 'FileInfo0508_2/*.jpg' # 波浪线验证码\n", "\n", "# filePath = '/data/captcha/label_english/70_26/*.jpg'\n", "# filePath = '/data/captcha/label_english/52_21/*.jpg'\n", "# filePath = '/data/captcha/label_english/100_25/*.jpg'\n", "# filePath = '/data/captcha/shensebeijingsandian/*.jpg'\n", "# filePath = '/data/captcha/shensexiansandian/*.jpg'\n", "# filePath = '/data/esa_sdk/gan/english/*.jpg'\n", "\n", "import re\n", "len4_imgs = []\n", "len5_imgs = []\n", "\n", "filePath = 'FileInfo0508_2/*.jpg' # 波浪线验证码\n", "files = glob.glob(filePath)\n", "sp = int(len(files)*0.8)\n", "for path in files[:sp]:\n", " label = path.split('_')[-1][:-4].lower().replace('1','l')\n", " if len(label) ==5 and re.search('[0-9]', label)==None:\n", " len5_imgs.append(path)\n", " else:\n", " print('label error', path)\n", "filePath = '/data/captcha/label_english/100_30/*.jpg'\n", "files = glob.glob(filePath)\n", "sp = int(len(files)*0.8)\n", "for path in files[:sp]:\n", " label = path.split('_')[-1][:-4]\n", " if len(label) ==5:\n", " len5_imgs.append(path)\n", " else:\n", " print('label error', path)\n", "\n", "path1 = '/data/captcha/label_english/70_26/*.jpg'\n", "path2 = '/data/captcha/label_english/52_21/*.jpg'\n", "path3 = '/data/captcha/label_english/100_25/*.jpg'\n", "path4 = '/data/captcha/shensebeijingsandian/*.jpg'\n", "path5 = '/data/captcha/shensexiansandian/*.jpg'\n", "path6 = '/data/esa_sdk/gan/english/*.jpg'\n", "for paths in [path1, path2, path3, path4, path5, path6]:\n", " files = glob.glob(paths)\n", " sp = int(len(files)*0.8)\n", " for path in files[:sp]:\n", " label = path.split('_')[-1][:-4]\n", " if len(label) ==4:\n", " len4_imgs.append(path)\n", " else:\n", " print('label error', path)\n", " print(len(files), files[0])\n", "img = Image.open(files[0])\n", "plt.imshow(img)\n", "print(len(len4_imgs))" ] }, { "cell_type": "code", "execution_count": 394, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABrkAAAE2CAYAAADVifmmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3WuMZGd+3/f/c86p+6XvM9Oc4Z1c7pKSvdleS/auY2klQFAEWBYikRAQOIbhmBvbgSJfAgVZGcsVvID1JrIkxPKuA0NIAkQaWomNRIIiw5IjWWvJ2dZltUsuKXI5JGc4nFtPX+t+6skLDvuc3zPTVdWcmumu5vcDEDz/fk6d63POdNepen7Oe28AAAAAAAAAAADALImOegMAAAAAAAAAAACAw+IhFwAAAAAAAAAAAGYOD7kAAAAAAAAAAAAwc3jIBQAAAAAAAAAAgJnDQy4AAAAAAAAAAADMHB5yAQAAAAAAAAAAYObwkAsAAAAAAAAAAAAzh4dcAAAAAAAAAAAAmDk85AIAAAAAAAAAAMDM4SEXAAAAAAAAAAAAZg4PuQAAAAAAAAAAADBzeMgFAAAAAAAAAACAmcNDLgAAAAAAAAAAAMwcHnIBAAAAAAAAAABg5vCQCwAA4Bhwzp1zzv0L59w7zrmuc+6Cc+6fOOcWjnrbAAAAAAAAjiPnvT/qbQAAAPhQc849bmZfMbNTZvavzeybZvYdZvYZM3vFzD7tvb9xdFsIAAAAAABw/PBNLgAAgKP3T+29B1w/5r3/Ie/9f++9/x4z+xkze8rMvnikWwcAAAAAAHAM8U0uAACAI3TrW1yvmdkFM3vcez/MtTXM7LKZOTM75b3fO5KNBAAAAAAAOIaSo94AAACAD7nP3Pr/b+QfcJmZee93nHO/a2bfZ2Z/3sz+7WEX7px7w8ya9t5DNAAAcLQeMbNt7/2jR70hAAAAJwEPuQAAAI7WU7f+/+oB7X9q7z3k+oh9gIdcZtYsFAuLq2dXFz/IxsUWS50Evz5GwejXfevvTw9sIG3FYN6S1zoO2tNcnTptC5cd1kOT54UjhfsU1qH8PqaWTrwes9HHMwraeoPg2KZa+yjb5yjuSVsU6XaN28f88QqP5d3sY8EKI+cddx6TUrZdSVHPadj3rFfUuqt1ftl301/M9PiF++jC4+X7Wt62zy6bdk7aojHnLTwGo/bR2+gRPJzpukftYzoM+kgaHE99Xm8+vvN0uJ471VGsL/CFXF0MronOcGTthkEd3XnaTK9zs8Mdz1HH8k51Oszm7wfdZxCMvOJi3Y4oqPP30cPcr81u38dRwmWN28d7df0d5n5tdrj72TDWZfuC3lOGUXB8B9l9OOp3pc3lzuPlS5et39PtAgAAwAfHQy4AAICjNXfr/1sHtL//8/lRC3HOrR/QVF49u2qf++nPfZBtswVbkHrZlqUuWUnqa3btjtNmZg+mOu8Tg5rUTatKvRVn9Xai816z6weu18ysZS07SPgG9IqtSB3uY/imaH5dG7Zx4HrupGnNA9dVT5ek7eJmdWSdlrNjUJ57S9pq9ZsHrsfs9n3esZ396evBsd22bTuMRcuep4brCR/yhesKz+PSI9l5XHm0LW21oL/4Nx7S+sK5A5cdrrdtuuxQ+IZ+fr/CfSwOdVRRn16Suu91H29E2XVxPdY30atOr79wXRWrSJ3fr/BYjnuAEV7Lo/Zxb0f719aWrmsv3ZW6N+dy07reZTe6b1aaeusbnm1k0w/Upa3/qq538Kqei6ilD4OL1ezBQ1I5+Dq/U901fYiRFz54GXeP2W5l5/2dbb0/bfSCbW7qdhQbWi/G2fE5zP36TvWoh09h3xt3j7lhNw5cz6j7tdnoe/Zh7tdmh7tnd+d02a1Tj2h7U+/ZtStv7k9Xr16QtrjX2Z/+4k980d564y2dAQAAAB9YNH4WAAAAAAAAAAAA4Hjhm1wAAABH6/1vas0d0P7+zzdHLcR7v3ann9/6htcnPtimAQAAAAAAHF98kwsAAOBovXLr/x85oP3JW/8/KLMLAAAAAADgQ4mHXAAAAEfrt279//ucc/K7mXOuYWafNrOWmf3e/d4wAAAAAACA44yHXAAAAEfIe/+6mf2GmT1iZn8naP6CmdXM7H/13u/d500DAAAAAAA41sjkAgAAOHp/28y+YmY/55z7XjN72cy+08w+Y+8NU/i5I9w2AAAAAACAY4mHXAAAAEfMe/+6c+6TZvZTZvb9ZvYDZnbZzH7WzL7gvb95d8t3Nuxnv/YlcSztzWY9m27UtC1qam1aF6wgdZL79bJmuqzloc5bS0tSl0zrepzVUaRtkek+lK0sdc96Nqk5m5O6YQ2phzaUumjF/emm1+ORtlJ9bSt4bb8idWU4vz8dO13W0qLuc3FJ93FQzLbbl1alrVDSfViMddkLie5zxbLtCo/lXn9X6t5mN6g7uux6tuyF+XlpK1SKUuePpdntfaaxkJ3HuaKuN+wvfmFF657uY//qhf3pwVWNuKslXpd96lGtlx6WOn8dhP3HBtrPu70dbU+1by4Us2VVirqskteBN+oDPQaJ12Pv4mzd1eSctA3N2ShJ8Kdhfr/C6z7d1n3cqmifcWnQJ+azdVcWdL1Np301PJ7FalXqYTPrq76o/Sdd1HnTh/Q+4boDqZNSdt7jol6rcXCPyV8jZmYD02XlRcGAKePuMZVuduwLbT1PS4NgmytJUOs+16NsO8PzloS3xU3tm8mmbrdrZMuO53WbyxVddrhP4T73hlnfbaV6T0l9L6h1n4dDrUtJdgyaia63F1wz1wd6PDvBvzujDAvar4s93Y7Cpv7TXGi39qejofYnAAAA3Ds85AIAADgGvPdvm9lfP+rtAAAAAAAAmBVkcgEAAAAAAAAAAGDm8E0uAACAk86bpb3ccFglHa5pvra0P31u9Yy01Qs6FFY4RFw4pFd+uLklW5K2ajj0mtdfRQvBr6bOZcsuOm2rmG7XvOmweKOGEguFw/PdNgye6VB2+WG5ukMdPq5/rS91b6DDcA1THebNhrnh+SIdqm9pUec9FdS9JDueba9t3ul2LZZ0qLWFku5z6rLtDocZa++1pN5rbUm929Z6bi43XOGSnpdyMJxcOMTZoi1KXaplwz+WSzoUZNj3bEGPn0/0PA42siHS0o1XdN7geDQeekLrc8Hwhbk+cttQmb3gc4TtbSmHfe0j1cqp/eli5bS0xakOJxd1L+uy0z0pa7lhK4fBEJbmgr4XCI9nfh/Da2JvMzjWJT3PLtXrbyF3Wlf1tmBlp8sOj2dcCPp2Nat9Ue8LflH3YVjQZbuBDiEX5YapdLFe59XgHrNgOs5iatofZbnBZ0nD4xfW/TSbv6ndw3rDcJv12EcFvWby98pwPW5X70dJ64bU5T09fkkzuz6Liw9IW2kpuFZt9HlsD7K+utvTe0Yv1XtMNxiesBf0p1I56wPNYGjWltf1Wkf7T7ur53WUQl/PcSkcrnBHrz/rtLNphisEAAC4b/gmFwAAAAAAAAAAAGYOD7kAAAAAAAAAAAAwc3jIBQAAAAAAAAAAgJlDJhcAAMAJ572zYS/LJYmCnJr5+vL+9MOrD0tbpazzhpw5XVeQXzX6taPr4m0/+WDrOaxwn0at2w90O9qDttbbWrc6uuw9nx3fflSUtqUl/Tza0uOal9ONs5ytjVZT24LtWqzoshZqWkfRwcezd7Mj9cblK1LfbOk+NaMsn2lxSXOMqmc1P2fseXS5zKTRp8WsGPTFpubpDL6Z5eekN16VtrimOWTLJf0zaTHI5JJNDPrLbkf3qbe7KXXa1dClhXqWw7VYf0TafP+i1N29C1IPBhtSl6rZ9VuuPShtUTR5FlEo3Mfr1eC8BXFfLoirWshuMfboirZFwXkdd/1Jc9gplvQa8hobNW7J+tr7eI/xBxa3lXJNvLesyQ03NOOt9I7mV9X29L5QjrLrtbKkmVzFc5ofF7rtuuhmOVxbHV1vq68dKE31vtkfBJlctVwmV03vKW6o90K3q+vqtHT+UaItzdMr7lyVunZTr7++ZffKvtdMLhK6AAAA7h2+yQUAAAAAAAAAAICZw0MuAAAAAAAAAAAAzBwecgEAAAAAAAAAAGDmkMkFAABwwjlnFhWyTJOooIE5UZxlvERRmNV0uM9Ejc3TOdSyDrbd7kq92WofMOd75qtZftVcpTxizvHy++hjzccp1DVbxi8HiTo1LaNBNv8g0sytypwegSTMnMqVtZK+tpjoekvBa6M4qEcEXiVBPlVlWXcifSzI3TpTz15b1ePhggCmcf1luJvtx3BndKqNawTLrmrfHaxkmULtj35C2qKC9oluXfex274p9W4vuuO0mVnqNT8oiupSN6p6PMulLEMoibXNe33tsHxWlz3Q7SwUsxCqOA6OvZve5xsbJT3WZzQGydppT3+QZHlMV3uac1RLNCOpGms+WiEanQsogn4cduthW/tQup2dq3RP74tJU89FPKfXmCtM73iOugpSr9u1M9wL6pbUZZflktUj7R+lkvaJ4opeu/7xc1pXs/a967q/naGe4/J80K/ntK4m2bYslTSYbeD02PZ62ifaA93n68PsunijF9xjg0C4WqLb8URw/9/ayfrj1rb2zXJP93Gpqq9dLJ/RZeXOxZbXf5MGuVQuV+BtGAAAgGnim1wAAAAAAAAAAACYOUf6kMs5d8459y+cc+8457rOuQvOuX/inFsY/2oAAAAAAACcNLxfBAAAJnVk35N3zj1uZl8xs1Nm9q/N7Jtm9h1m9t+a2fc75z7tvb/xAZf9hpk1zezCdLYWAAB8QI+Y2bb3/tGj3hAAAAAcf/fy/aJby+c9IwAAjodHbArvGR3lYND/1N77heXHvPc///4PnXP/o5n9XTP7opn91x9w2c1CsbC4enZ1cfys41WtOnaelrXGzsP6WB/rY32s7+jXN811sr7x67t86bIVCoWp/HuMu+C8RcVcJlcSZAbFuawQF+SbHFM3gwyuN65vjJz/0eWsG95tJldemDEV14JsrFNFqaO+vr44zOYfBplJpeboHK0kn8lV1POWep23GIdZWJOLirpP5VOa8xMlut2FRrbPceXu/tzwuRyu9J10xJxm8QNau5ruZe/0Q/vTu9/2KWmLvGY11euahVXevSb1ld1sv97d1X0sBfloZ+Z1WUt1zZwq5rKKXJBN5GJ9baGomUlxshzU+dutLmua6tqt7axGKNnuQDPz+nZ1f/py5y1pWy5pzliYwVWwQ2RyjTFsax/qXc62s39Ft7n0UEVqF9w3gsize2Zgus0bqeZGXepfkXohzgLS4kJw7Rb13/XklP7z7IJMuN3trN65ovcYf7Oj631Uj08pyOSqRNm6lxLN5OoPdbtuDHalbge/Z1zpZ/vY8bpdzeDft2as96flWPvTmzey/ehe12NZCXISl5f1elud02s5yuWldVLNEbN8tlrhPnWe2XYv3y8ym/J7Rsu2PH4m4IhM8rfhNP8m53oAPjyu2/W7Xsa03jM6kodctz6V83323qdm/qeg+fNm9ryZ/VXn3N/33ge/HU7kwurZ1cXP/fTn7m5Db1mztbHzrNv6VNbF+lgf62N9rO/erm+a62R949f3xZ/44lS2BQAAACfffXi/yGzK7xk9b89PZTnAvTDJ34bT/Juc6wH48PiyffmulzGt94yOKpPrM7f+/xve68cmvfc7Zva7ZlY1sz9/vzcMAAAAAAAAR4L3iwAAwKEc1UOup279/9UD2v/01v8/ch+2BQAAAAAAAEeP94sAAMChHFUm1/uDV28d0P7+z+dHLcQ5d9D3aT/6QTYKAADgJHLOW1zIZXIVNLPExcPwJcfe5m2ZXKPz5xequXydpYXpbUgQbpXU9dfruBpkdAUv9yPSsVzQFER2ySuTIBssTFYL1xIue5QozPVZ0fyc0nKQXZRbeLjNhzXcyfZkcGl0Jpdr6MqiVa37px7cn95bCHLZOjriVbOr66rsaCbX1Y3sTL62oRk/C3NNqVca2t8aFW13ubPjwgMWa9iVizQPLTzTLv8Zxrs9+CM0go5cCyKGttOe1G+1skyud1r6vnUS6TUzXzitC4s19+huhJlc/VwmV+d1zSOJK9rvC6vh1XvvMs/yBl7v1xsD/RP6zd47UvcKWfDfQnDsFova98JMrmRZ//zeeim7z27/qV4jg67eg8tBBtf8I1JaNc76biXSe0bX63qTnp6Llte6M8iumasD/ffrwZIerweKuq4ngvtZt5ftx7vXgkyuul5/yw8/KPXZc5on1xns7E9v5KbNzNJcJpcrHGU0+kyYyvtFZrxnBADAh8VRfZMLAAAAAAAAAAAA+MCO6iNE73/y5qCP5b3/881RC/Her93p57c+rfOJD7ZpAAAAAAAAOAJTeb/IjPeMAAD4sDiqh1yv3Pr/QWMoP3nr/weNwQwAAIAJJRbb6SgbMi0cKqrmsjoaMXzecVIv6xBxq/M6DNewpaMcxVezXyu3b/yxtBWXH5a6sKxDUsVlHbJqpHCIwVh/0Ot0pG7tZUNa9bpdaavW61JXarodvdzKdoIhu3peh7FrxDqAQyMJhvYbNX7hmH1y97DPuGq27Hh59PBw+XnvpJpk/XwlCoasdHpNNJwOt1e2vtQLg+zPqLNOx+pr1HRZ9bIOcxe5wwxzFxzrQ7323hkMtK92u9qve4NdqUs+Gx5yuXhO2upJMGSeC4cFnJ6opP0+WcrOXbGrQ1jG8/qnskuO5t4YB+e8GeuQlWeSZanzQxSWwmMZXOfhtWzBfcKl2TCdbvcVbWvrNWLdp7Q2rXfS7B61NdBhI28M9H5VDoawfKKiQ6S2cve7VhoMY6pd03a7uuzrXvc5GWb31XMrZ6StEuu/M25bj8/WG9rPW/H2/vQg0ucvqeWGURyMHnoVvF8EAAAO56iGK/ytW///PhcMPO+ca5jZp82sZWa/d783DAAAAAAAAEeC94sAAMChHMk3ubz3rzvnfsPMvs/M/o6Z/Xyu+QtmVjOzL3nv9+70+ml5/tnnp7asNbvjt+DvGdbH+g7luU9ONNva+TCm/oM56ceT9c32+o5inSd9fesvHpTpDQAAAEzuuLxfdCjPHvUGAAeb5G/Do/ibHMAJ8OJRb0DmqIYrNDP722b2FTP7Oefc95rZy2b2nWb2GXvva+efO8JtAwAAAAAAwP3H+0UAAGBiR/aQ69ancz5pZj9lZt9vZj9gZpfN7GfN7Ave+5tHtW0AAAAnSdEl9oBbztWaM1K3LO8kckc1mvXhLFQ19+ix5SWpe1e3pS69+dL+9M1LfyhtjWe+W+p6VbPuD5XJNUan05b6xrUr+9M7W5rhsnLmAamLJd3nvVxWz+WuZkbtBhldZ8uaG1WNw0yuUVt9dKJGbsPOjs6jknnt9qywRi6faDXSvDMraB5T1TQzp5xofbqQHb9yTberVNQcpEZFj/1JEGZw7exsSN0ZtKQuV7Jr6IGKxuzUC5qPVoj0XExTVNFzVVjN7oVRcB4Li3reXOFo7o2J6XblM7fMzFxR+3k1l7lYifRef1hR/9L+dLz3H7Sxpec46gXr8nqeb+ZyqC50NM+rNdT7VT24P32sqn3iWu5+dy3I4DLdLNvSfwrMBe2F8vz+9EOrj0hb1NXtGm7qsb52Ud+y2Klm10G3otfEIM622ff1fo3b8X4RAAA4jKP8Jpd57982s79+lNsAAAAAAACA44P3iwAAwKRm46O6AAAAAAAAAAAAQA4PuQAAAAAAAAAAADBzjnS4QgAAANx7BSvY2Whlv44i/RWw5rIMl2hGPgM1X9F8qkZZ82DaO29KffPdLJNr8/f/D2lLqvNSVx79T4K1nf2AW3m7blszuTZymVzXr7wjbaWy5tAsrpyWuuWyfJjLnYG03ehrHWZwnSlpHyjY8QzlihrZdrva6HnHxcnlM7lqLsjJcl7LZGSzlXLbshy0OafHMj6ugWd3odfTfry9rfE46UAzh5aKZ/anFytnpC1y8ch6msJMruJqrtOcLgYzBxlv8dGcxzg4HotBJtd8rJmB+Sy6u81YlEyu1u9p496Wztt7Mni15llt5jK53uh0R8xp9mdqen9/Orjfv5G75oZB/uBmkNG1dV0v0F2NyrLHHsuO50MP6LEdbOxJfeWC9vNrr2u9vXB9f7o3d13aBoUsh8wH92cAAADcndl4FwMAAAAAAAAAAADI4SEXAAAAAAAAAAAAZg4PuQAAAAAAAAAAADBzyOQCPgTWzvvxMwH4UFl/bny2CPeOk8Ob2SB3OqOehpa0L7++Pz1s/bG0FRdXpC4snZM6qS9NZyMPKcw5ik1za3ytKXXlzOP704Mnv1PaiqcekToqVqUeWE/qnu3l2jq6LKsFdbCsRLezVclyt7YbdWnrljQjyAdZT6lluS4915K2TrDN/dsyt4L8oSnye9nx8dvb2jjU/BzXaAa1HoN2LsenNSbHplrQP20qBT3Wgxtv70/3b1zUF8ea0VUM+nlhYVXq+/VJwYH5oNbjl3ptL+QymArBVg62rkgdHoNhkLOVPwaFpQd1w3p6rN2u5se5gbZHc1l74rTvhRlm91Rw4pzcR45ndpoLtisOM9/uYW/sNLL7+9bZp6Rtr7Wj81YXpd7u6j1oL8366lxwHywF9/P5eHR7/vWnisG1a5qT1d55V+r+u0H7qSxz8WqQvxhVdTvcsmY/Nlt6f+8mWb/ftlTa/CB3//L8fjUrnn/2+aPeBAAAjq1J/5388otfvsdbwje5AAAAAAAAAAAAMIN4yAUAAAAAAAAAAICZw0MuAAAAAAAAAAAAzBwyuQAAAE64oXlr+1weSHdP2rtvf2N/uv3a16Wt9vDTUtef/ktSH1Um1zhxbUHq2uNrWVulIW3lcx/T11Y0J2pgmmG2Z9f3p1u2IW0NO6PLCrKv0pLmx7Tns3XtxZq31G1ovpcPcmr8MNuuNNJzOog1X2nownwvzb6apnwOV/r229oY5GrFD2rWU5jJtdfN5r+6q/sUOlWvSF1O9PN83StZ9tzuS78tbVFJs3XqH9N+HmZy3S8Dr31iz/T4hZldVZ/1kSTIbgozuHZf/h1d1s51qfPXemE+yCTra3+Kd/W8ub5ud9TLZRn5IPvqeEZhwcza81lG1Y3HPyVt1zuaA3i9qXlWlbbeN6tx9tbDapCjNRfc2+aDzK6wi9Rz7ac1JssqTnMAt3b/UOrdK5o72drO9uuNvt5D6kHO2NI5bV+u6Ja1drJ/D6Kt4PPEGtEFAACAKeKbXAAAAAAAAAAAAJg5POQCAAAAAAAAAADAzGG4QgAAgBNu6L21hrmxkrq70u7e+pOsePv/ljbf06GfSmc/KnX5rA71d1zEdR2usPpYNlxh+cFvk7aoUJbaFXT8q47dlHo3N1zhlukQcLHpa2umwzmmJR3mrbMwly23or+ad+s6BNww0s+nDX0/W244XGGk5ziNdIhGC4a5m6ZhbrjC4VtvaWO3J2U4PGF0Toc82+1m+3h1W4dHC1ULevyWqsHxfDcbrnD7a/9G2uLqnNTFlYelrj35nSPXfa8MTIf9awVjnnW91nFuiEIdgNGst3FJ6t2XdcjG7nU9V4X5bOjN+lOfljYZftDM4j3tX66n/SvqBmPKYSbkhyu8/rgOn3qxq8MRhvfNKBiu8Jlqdv96oqLznino8IXxmCEsa7nhDSuRDm1YC4YrLOz+gb74yq9KeXk7G4Lw3f5T0rayMK91Wf+tWFnW/dh4M2uPWwxXCAAAcL/wTS4AAAAAAAAAAADMHL7JdYKtPzdZivPa+Xv3SV4AmFWT3ENn+f45y9sOAAAAAAAAmPFNLgAAAAAAAAAAAMwgvskFAABwwqWW2pZlOSVx3JH22sLi/nTVnpG20sojUseVMNtpevpBvtDusJ1Np8E2R5qNUo+1Lkb6a64rZXVUCtOKwqynG1L5lmYV+Y1v7k8PNl+Ttq7tSL1rm1L3vGa4FNMst2Yu+PhZxWlOTVTRfJhKbh9XEt2nJPgy6lysWWCRm+wb/+8ZBnU/qDVna9B5d3+6Exyf9OaW1HFVlxU7Pc+9Xm47dTUWlTUjKJrTfTRXkTJJsv0olwfS5lM95/13vyH1ztd/S5dt+XMTrDcOjlchOF56Ws0qZ+88bWat4JroDnaCui31bpodr2GqHWrQDrL45vSaKTnNR0vb2THZffkPdbuu6D4OLmkm3DDV9nYtO1dxSc+bS4Pj0w/qsPvJAQwOZnisk7CvBvq5czcMrs3FFV304impo+Ls5Yz1vX6LeydNg1oP9o1+dn9KU+1rFa/HthLpdVAJcrYWc5l59Vj7Zik6zP1Is+fC/K5yVftxY1Xz9QaPf7vUG6Usv3F4Va+RYZDv5Zr670pSDu6rhdx+HW6XAAAAcBf4JhcAAAAAAAAAAABmDg+5AAAAAAAAAAAAMHN4yAUAAAAAAAAAAICZQyYXAADACZdaajft5n5dKmoOS+3Bx/enm4+d0bbVR6VOmppLM029IOPlWj/LQ7nU18yk1cKC1AW3JHUxPsyvudtB/a5UbudVbX7tT7K2174uTd3gtdv2ptS9RDPNqqUst2alpm31WDOlogU9N/VcJtC5ouZ1LQ41o2s50Ryk+FCfdQtDkdpBrTlRg96l/enWzivS1r1yWWqXbkgd3XhH6l4tO6/F+qK0FZZXpU4GevxcEIpTqmfHq3mmqevZvCZ1/50/krpzQ/ufWf2AaTMrad6XVTWvyhpBWM/yf5qb1n3sa4SSdTvaV/vtm1Jvd7Lgsp2ObkcpyFSqPaL5X4WeZkwN9rJ1bf7Bb0tb76buU3dTs9a80z6zF2XHe9DVvmqd4Pi0tD+FWWxmufPstF9bdXd07YN+v5edOzfQ7Wp87ONSx0HW0yxmcvWCTK4rfe0jb3X0YG/vZv3Lbem1uTzU1y6V9J67XF2W+lQxu9eVo3v3WdukoeutPvEdUvuq/ttRT+f2p0sXNZ8x7up1Hz2s92RbCvL4AAAAcCT4JhcAAAAAAAAAAABmDg+5AAAAAAAAAAAAMHNO7HCFVavamq2NnGf9OTey/X1r5/34mY6hWd1uTN9J7+uTmuQ4nPRjgMnNcl+grwMAAAAHm+Q9IwAAMBtO7EMuAAAAvCfM5KoWNFeBt2OQAAAgAElEQVRk9Vwuk+vBh6StUtWco6gYZJJMUS/IeLk2yHJ+Xuto1lUUDEiwFOt2NuJR2xk+5A0zuS4GzZrJ5V77Wlb8/rq0dYMMrr6dlnpY0eyw6nyWD1NbeUDa6ouawRUN9PjUy1nuVrmov9YPg+ydxOnxit3dZHK1gnpTqn4+kys4dnvvvqYvvX5J6+R1KdMHn9yfLjz0hLRVa5qJVBis6LKC5/35TK7Cae0vrY6e843Lmsm1deU/6sJs6YBpM6sGIVLzQZ7XUqz1w7kcrljfcPVez6vf1eyrwc4VqbvbWb5Ve0fzqJbPdqVeeFwzuWqJ5pRtfOXt/emt9ZekLW1f1+0aaG1B7t+glx2j1pZmJtnWRlAHx6tjgdzxdpphZnPBdiwEy06DY38zW1bU0+svzOCqPvKUvrap2U6zoD/Ua/lKT3MQX27pwS7mMrnq23qtLgW5aw8v6nl9uFqWuuDi3PRkH8D7IJKmbkftiT+n2/HAx7T9G1k/L+amzcySdpAZGOyjLc0ZAAAAjh7DFQIAAAAAAAAAAGDm8JALAAAAAAAAAAAAM4eHXAAAAAAAAAAAAJg5ZHIBAACccN68DSzLc0qjIGOpnOVXJQ3NHIm95h7ZdvDaVLN3rJrLWqkGn6caE8MS5kRVo2zdC0lN2mqRblfigqydYRDkk8v3sn6QIbX7stY7Wre/pTlRg3eznBrb0dUkC5prVJjX3CNX0SwoK+Ta/J40DXZuSn31iuaSFTvZuSgWq9pW1DwcH/7WH9ajzk2quT3W0eNnbc3q8XtZxllqel6G1XmpC3XNHSs0HtZln84dv+VT0lSuFqUu9q7qa6/pyUk3ru1P97f0te2+ble7ou2tlbbU0VZ2TOJNzcVKIs1DK0R6cOMg166/l213/+3/T+ctaO5TMVhWOQ76WzU7sXFSkLZiXbdrWNTrrR9r1lo0n5270gN6Hn0vzCIKcskKwX2imZu/oce6NdS+22pp5xx0tP9FaZaVFXndx3JwHVTmNMcuHeo+73az+Tup3lOiVLej2NHX1oJbTCG3KUlwO7obaZCvt5MOg1rvwWGCXl47yORKg3jCxYLuc6Wc3Xebde2LS0E/ny+H92g9Xu4e5nDJemLtE3FF60KifWRuIbu2V5f1Hlxt6Lzlot4XLNynctaH/Lze63051ymm2UEAAADAN7kAAAAAAAAAAAAwe3jIBQAAAAAAAAAAgJnDcIUAAAA4kN8LBr96V4f/sm4w3tWZ7NdLVw6GcopHD1dVdPqr6UqSDXHmgvH0FhMdCqoU6ZBUluqwU9Z+a3/St16Tps5bOjzh3ttat97S4fh617NxylyswzuWVp+Suv7UX5A6CYaIs91s2Wl3W5o2Wjpc4c233pS6OJ8NUzY3typtjaYOV1jXUbduGy1r5Ehig2C4wq0Nra9f0HonN+xdsihN8YoOVVd98Nt0Ox/6dl3WXG4YvDkdLi0p6HYVe29J7S+9LXXnUjbc494lPQ/bAz1+u6e1L7Z1VEArvpadt6hzUdoKJT32tSUdsrJ8+rSuaysbSjN9/d/oshpPSF0/o8entKTDOw7i7Jj04560RSUd1m4QDHvX6uv88amsb89/UrfDhjp8o1lQxwcPiWolHa6xV39H6r1Ij2ertCt1sZedu8JAO25ltSt1/Undp47X+a+Vswvj6lUdgjEq6xCMhY7eY7yO7mi13DU2zdHo+sFwhVf7eg9+u6v72Avmzws3qxQMKfiRig7ZWI6yY1AuBcPJOl1PvabX5/0anvCwomCf55ez8/7Qkw9KW7Gk57w+p0MyWrAsX8/6tl/R4+H7uTaGKwQAAJgqvskFAAAAAAAAAACAmXNiv8nVspat2/rIeZ4/f/Cn3D5cvjx2jvXnPjvBctYmW90z4+db+/yXJlvWfTe6T5mZrT/3yQmWM+Gxevb58UuaaJ7J1rf+3CSfuJxgWc+MP05mZvbs+Gtw7enJFjWJtfPj+9Vk52/C/Zugr9s3JlnWpNfWBMv6xgTX3/mvTrY+HFtrE/z7Nklfpy8AAADgJJrkPaO1Sf8OAz4kJnnPaLK/RSdb39r5yeYDAL7JBQAAMCXOuSXn3H/lnPs/nXOvOefazrkt59y/d879DefcHX/3cs59yjn3a865jVuv+Zpz7sedc4xpBAAAAAAAcIAT+00uAACAI/Csmf2CmV02s98ys7fM7LSZ/edm9j+b2X/mnHvW+yw0xTn3V8zsV8ysY2a/bGYbZvaXzexnzOzTt5Z5dPaCT2MGmVx+V7N3XCX3HO/U4Z7RFYNcrZVCFoS0kGgWShI8/yuEaTNpEJjTyeVZbf2BNHXf1Ayu7T/Wuv2u5nsNu/X9aRdpJld59aNSz338L0pdjILsorezDKXOu5vSdCnI5HpzRzOnijvZr/Kne5on5CPNwgojYKoaGzX6k2+DIIctzOS6dEHrndw+FsJMLs05qnzkz0k9/2c/JbUrFLMi0f7hdt+QOrqo2Wl26Tel7F7M+tD2Rc2F2g4yzfZO6XZ3PqahZlEny0EqXHxd2gplnbe+eE7q2qnHpR5c+5P96da3/r20JStbUteWPiJ1s6nL9o3sehw29dpttTXDbGdL60FPz3PzdNYrmk9oD4lckLllYR3IZxcFOUbXE+3Xez3NntuKrktdbmf9q9zV62l5VT9hXn8y+MS513V3cveNq07zqAol7QOljv7pXAhuMcV89wyur7sRZnJdCzLyXml3pG4PD/4EfTPWG8HTwY3gIxWtS+Vsp1xD8/TCu3scXJ9mxzOTy0W6XfNL2b2z3tR/Z8JcsaSo+ziI9Fj7Wi53Kw4yuYa57LQCb8MAAABME79dAQAATM+rZvaDZvar3vv9d32dc/+Dmf1HM/the++B16/c+nnTzP65maVm9t3e+6/e+vk/NLPfNLMfcc79qPf+l+7rXgAAAAAAAMwAhisEAACYEu/9b3rv/6/8A65bP3/XzP7ZrfK7c00/YmYrZvZL7z/gujV/x8x+8lb5t+7dFgMAAAAAAMwuHnIBAADcH++PMZUfE+x7bv3/1+8w/2+bWcvMPuVcMI4WAAAAAAAAGK4QAADgXnPOJWb2X94q8w+0nrr1/1fD13jvB865N8zsGTN7zMxeDue5L8LfFivBZ6TC+JfCB89hiYIMl5Ir3HH6PUG2le1INey+I3X/2oX96d5FPdzbW5qFtZkUpe429RljcZBlrZSS09IWL52ROllckdpHmu/V2styf3Y7dWlLdzVrp7pzUZfVy7Kf9nqazXSjqxlJpYEe24XD5OV4zQCyfpDJ1bmg9SDXaVxTmlzplNRxXY9PYUFrF3VzVXDO+3p8fND3fKzZWGk1W/dgQbfDL2q2WmlZ83SSZV1W5Vx2HstP6PGpVHSfS6vPSF1c0PyvSjnrjzV/Q9c70Nr3NQiq39fznMTZsS9V9ZpJnWZudbtaR1Gq21nProPCfCGYd3p5S9UlXe/8Wb3HxCXNmyt1sn5Q6mmfiPU0Wqeo29kOcsfMZf2r7PRmVo70PlBKdLuS4N6YjxoLE8p20zSodY7UH5yj1QnaekHmVj3I2SpFk2dyNWPdp0ZQD9vZdrZ3g/ypYDvKda0TvZ0dG2HOViGXs1Uohv/OjJb64PpLskyzcrEhbUOf9b0oOlxeJQAAAEbjIRcAAMC994/N7NvM7Ne89/9P7ufvv3u7dcDr3v/5/LgVOOfWD2j66ERbCAAAAAAAMGMYrhAAAOAecs79mJn9fTP7ppn91SPeHAAAAAAAgBODb3KdZC99dqLZ1l/48gRzrY2f4/xXJ1qfvTh+u9afm2AIlBcOHoojb+3piWabzIsTHKtnnh87y9rnvzSFjbnlxU+OnWX9xfHnz2yyczjJuVl7drL9W39hSud54nM8wbk5P36e42t8/1x/boJ5XppsbVO9tiYwUd87P9l9AYe4Z+OuOOf+GzP7WTN7ycy+13sfjPO2/02tObuz93++eUD7Pu/9HW/2t77h9YnxWwsAAACoid6fuW386tutnb/7bTkZJnhPbIL34MzM1iZ4j8NenGBBk8xjZpOc58lMOOzxS9N8Pwjrz41//9AmuE7XjPcScPzwkAsAAOAecM79uJn9jJl93d57wHX1DrO9YmafNLOPmJkMN3grx+tRMxuY2bfu7dYezNWCL/6vBr8+9vSPTzefm3+KuT232wnqK1INOnrIWpezevflC9J2M8hOuXH2Uan9mZrUzXZlf7qS6kiSbi6og+Cedqz5Xleb2fPNG91FaYud5jE9NNAutJdkr930ejyuDTQDaG4YZO34cECHUecqyOSyG0F9IajzuVpLQVszqEs2Wn6/9Bz7RJ8Z+1qQgbPwbdpuD+Tm1ey0YlMzuBqLFW0vaT5T4Vwur8rOSlu5oK8tnNF2V9ZllRvZuuea2l8GBT323f6u1P0dHem01sz6auJ1WYWCnvNaQ9vTVNuL5awOc4ymqdnUvLNzZzWXrTOn118y6O1PxwM9PmlNM7c2unodtLb0Oins3NyfPt3SvLzlIKNrUTfTGkFdyMU5DYIcret93a63u7rdnWGY4pUJb6MFp+fpibJeQ6NOVTl47VJB+0AUvHhnM8ssu3ZxW9rSgW7z8jm9tss1zbe6l33oqLgwR9Kya7tmGkoW5ZLaIiOTCwAAYJoYrhAAAGDKnHM/Ye894PojM/vMAQ+4zMx+89b/v/8ObX/JzKpm9hXvffcO7QAAAAAAAB9qPOQCAACYIufcPzSzf2zvfTPre73310fM/i/N7LqZ/ahzbn/8COdc2cz+0a3yF+7VtgIAAAAAAMwyhisEAACYEufcXzOznzKz1Mx+x8x+7A5DNF3w3v+imZn3fts59zftvYdd/84590tmtmFmP2hmT936+S/fn60HAAAAAACYLTzkAgAAmJ73w5xiM/vxA+b5f83sF98vvPf/yjn3XWb2OTP7YTMrm9lrZvb3zOznvPfTSnj+YGrBQ7qi/vrows0r5Oa/pxEsYSbXJanS9htSt97J6pvf1LaNp/6M1o88InVc1oyg8naWp+Lamr/k5jTbycJMroLmMV1pZLla7w41k+uRgWZQPdjRfbyWZOu65jWraSPI5Fod6sk4XKcaBPVGUF8I6vw+FoK2u8nk0v23+KaUw6oue7gYZHJVz2XFiuZkFSv62vlFHfBirqS1O5e9Plr5uLRFQe5RVNR9jPrad8u5PLBikMm16zS76WZPz3NvVzO54m7WN6tDDY1KipoDVI3DQT20V0S5MKh7GafUCMKtykHG1DDVviz3nCDL6p3djtTXdrTubukXawu5+U+1w0wu3c4wk6sS1FHucHaD++K1IJPr1baOQLs71H3Mq0V6nj5aKUv9eEWPV3nEyQozt4pBHfaIva1sO69c0L7W7+o+lat6ra+c04y8e/vvwdEIM7mKuftZLcjdSnLXV0wmFwAAwFTxkAsAAGBKvPcvmNkLH+B1v2tmPzDt7QEAAAAAADjJyOQCAAAAAAAAAADAzOGbXAAAACeci5wl1ezXvrikvwL2c0NW7fZ1mC0fjKpUKOnwTEl0VGNQhcM96RBeLpnXuRsP7k8Xlp+Wtuqpj0ndPKN1UlmSut7I9rna1iG6CvM6r0u0PY71eJXK2RCF1fSMtNX2LkrdaOk+tzrt/eny9lVdT0df24rnpH63osenWDh4+Kx4T4eEK7S0j5TaWndzQ7GlbR1ez8c65FnY3m+1dH6fDeM2THWoRxvoEIOR0/HjXDAMXhJn85eCofriku5jpaD9qRLrkHA+v+hqONRceE3ounzQZwb10/vTvUXtm53+qtS9SPep39fhDNMRw95FwbUa3fZxx6O5lguFZGR9+3CZWb/3vi0thZvXpPZXdHjC6JoOSVgbZn232VyWtka1LnWppNdIGmm/384d+61U+1NnqPOWg3ORWj83rddAEgV9M9ZhTZuxDplaiaY3FJ4f5Laro8cu7eh5GfZ7U1vvvRSOANzZy/arvaf7GMd6LMu1mtSuFAyt2c2Gv0x3g+OV6xM+Dfs0AAAA7gYPuWbWl8fOsf7C+HnMzOyF8akMa0+PnWVyz35p/Ppsfew86y9OuH+ff36y+SYyyTrH798017f+4vhjZS98dQrb8p6189OLhll75rNj51n/xvj9W3t6bRqbM/smuSaeGX89TPV6n6Jp9j0AAAAAwHjH8u+wF8e/lzDJe09T94XxHxhZn+Q9o2m+j/XslOYxs2m987J2fsIZvzDB+12f5/2gSa2dn6RfTfM9VOD+YbhCAAAAAAAAAAAAzBwecgEAAAAAAAAAAGDmMFwhAADACediZ6W5LM8oDnKiOrlwnhtBvtLAaT2nESRHmMnVDOqzUsV1zVKpPpbLpCo8KW3FM/ra5soDUkdFzWGpV7N9rvWDzJY5zfWJYs2RCvNyThVzmVxDzVdarL0tddLQLJ5SO8sAmr+iGVzdnmZKte1RqV+vaI5PVAxObE5hL+gDmzrv/Lbme3W3s/nTICvMpW9JPdg6LXV3SzO7+r3sz5VeW+d1QSZStaHHulrTfl7sZllH1d470haZHo8kyEcz02V5u7E/PbRLul1BtpUzPT4+0mXt1bL+t7X0XdLW6TSk7sWngu3+MOgGdS5ny1+RlmTzFakrF/5U6uGuXhdzzY9m02ef0tfO6fUWx3retoL8s4vd7Pq92tfMpSS4TT5a1r7asyybru1vSFvkNKOrEeTnxU7z9m7PK/zg4ijbx0qs5yFJ9H5ViA/OgztOhkPNONu6kR3va2/rfbQU3CdXzum/FdUlzWDs727uT7euad9s97LMslnJLwMAAJgVH46/iwAAAAAAAAAAAHCi8JALAAAAAAAAAAAAM4eHXAAAAAAAAAAAAJg5ZHIBAACccLdlckWaBzMqk8vFWleCcJnKkf022QhqzYlKapqVUn3s8WzOBzrS1ixpTk9a1NoFOVrxMD+txyMu6LGNgvyzstMDdrqQbeeS0/UUa5q/lPSCTK4r7f3p+atBJtd1zXy5WdJsmYvzmi2Tlg/O8aloJJCd2dTjMwwyuWxnmGu7Jk1Jqtsx2HpI6u7mptTtvew8t3Y0Jysu6bEuVPTze5FGqVlx61v70753WdqcD/rPIHhxmKtlG/vTQ3tNlxV8jjAyzXjzTnPb8plc15a1Ld0N+ldX+48ezZMqzOTK9Sn/LWlJNtelrlz4faldqueiufjY/vT8A49IWzwXXst67PdSzd16O5e59HZH86qeqmr/CjO5vMuWteU3pK1vmtHVjDWDK3KaMTVNSZRtVyUJMrlSvccUIj0ex5UPMrm2c5lcl17Ta7na1OzH6pzWlQW9L/T28plcmqnY6mQ30mE/7NMAAAC4G3yTCwAAAAAAAAAAADOHh1wAAAAAAAAAAACYOQxXOLOeHzvH2vnx8xxbz6yNn+fF9fHzTOoLbvw8ZrZuE2zXN748fjnPfXai9dmzfuwsx/M8T3ZuJjqeMLPxfcrMbH2Ca2LthePYXwAAAAAAmNBLE8zzhQmX9fm72ZAPYpL3g0763+3j3+syM7PPT/F9P0zmuQnmOX/PtwI4NB5yAQAAfAj4NPtjchhkknQtzYqBZsnUgkyptBx+MGSyD4pMW6+jAxL0u+GvtVoXSlmOTal5cP7UvZbkj7WZ5SPOfDDGwiDIvOm0drW9lWVyJRozZtW+/qDtNS8njOBKk4PPY5xonlCntCr1jfLTUheL29l0mOMTaxaRiwtBrRvWG2btux3djthrNlhjqAcwiD+zJJe95iulYF7djjgZ10fy7bosG+p5c+mWNnf0XKR72THp7+rxsYHW5SDLqVLTVK5COdsP547m2jysQZBt1Q/uQYNBW+p0kM0/0ENtbY2zMtvUN9F8QftIK8mOp29ofzLtEmapXrs3g2t5mFtVJdJjXw/69XyQ75Xf5W5brxkf7H9U1eNj5eCNwimO1VKsZAehvlSVtkFP+2KpGh6w4yl8W7WdO42bfT1vaVD3wvizcGG93A/2tH9YK1ffuxg1AACADyWGKwQAAAAAAAAAAMDM4SEXAAAAAAAAAAAAZg4PuQAAAAAAAAAAADBzyOQCAAA44XzqrbuVhddELsgbKmb5Ta6gWU6Dov66OEzDnJ+j+cxUe1fDeLautQ+Y8z1zK1l2UbFcGTHnvTYI6r39KZ9qoFBn+7LOefmC1K3N7Nz0o6a0Jc05qZfnNU9ncUHPq68enEE1qNSl3u09IfX1vu5Tza7uT88PbkhbtVzT7Zw7LXV5fl63q5vl/LRizbiJTPtALwxRCkK5omp2TJKlh3TWSPtxVNZ9Dvu5s6X96dj0eNjgms4bBEW5rStSx+9m21n8lp6HpH5K6uYjut3NVT3P5VyulItnI5Or09N7zm5bs+darZbU7VyGWWdH+49tPKZ1X187KC5JvRll57kXB8F2QaSSBc1R8Jd0M5e7tVLQxlNBnQR5ad12VneuaB9otYKcutPaF/2p4DxP8ZZcamTXa/OsHuthkFFWnm9IfVwz4XywXYNKdu9szz8gbYWG3jfTotbO67KSNLv+ygO9NoeDLLvP+aPLhQQAADiJ+CYXAAAAAAAAAAAAZg4PuQAAAAAAAAAAADBzGK4QAADghBumQx2uMBiazYrdbLoUDFdYLUk9HARDwh2R1k5f6hvv7B0w53sK5ezX3rnloxyusB/UueEKh6OHK9y+fEHbtxb2p1P3uLQVguEKF4PhChuL+mdAXD34z4Kdjg7d9+rgSamvpytSp4O39qer3TelzQXdJ2nqEGilOd1uv5MNhdiKdXhCs6FUfQuHR9OV5YcrdIWgDwRDmLmkqO0jhit0pkMwhsPcufYl/cHWt6SML2frLnxL11N+0Evd/Fg4XKEOUxkXsmHQXHQ8h4sLdftdqbf3tqW+eVOHIt3ayO5JOxvafxobeh9o9vQYtOt6rq7E2RB715JgPELtXma6mXbGa/96opJt18Ml7T/l4FwUwiHzWvnhCrUPtDZ1aLt+SV/rdQTGqf6FX8oN1xcXg4vXa9+MS+FwodPbjqkKjn2/nBuucEGHKyxW9TwOwuEKg51MhtlwhaVwuMJ+ds+JPG/DAAAATBO/XeEIrI+f48Uvj1/MM1+awrbc8nk/fh4zW3tx/F9r6zZ+u9Y+//xE65tZL01w/szMvrE2dpa1z4+f58R7cfw1854Jromnx8+y/txk70qsnZ/sugEAAAAAYFrWn53gPYcXJnvPaLrvOPD+xSTWn5twxvMTvGd0d5tyQnx2stmem+CaOH93WwIcFYYrBAAAAAAAAAAAwMzhIRcAAAAAAAAAAABmDsMVAgAAnHRDs7SbBQW5WMNmCrnYkVpRhywtJ1rHx+QjUkGsym35Q+lgIHWntbs/vbmhuVilUlnqYllr7/R4dQZZdk9vqDlR5VhfW0q0tr6ue9DZyZa1eUPa2td3pO5c11Cgfi/3q3xlXtri+UWpE69ZRZUbr0hdHGbzx3UN+UmCfKG5ooZO1Yt6DOJqts/d+VPS1g6WlTYWpI5LmgFXqmbntdIIwq4CSXH0cLsuKd1x2szMgvNo6a7W7ZY2t7P+NWjrdvmdq/ra7Yv62ptvST3YzY53FAfnrazZYcVa0L9qwX6MkLa2gvVqf0u72r8GhSyvalBsSFsxzJwK6iTRHKlRXBBi5pyei9Tptbzns1yk60M9PoOKZnR5jYuzQUP//E2j7HjGe0EmV1n3wUX62mKq94VKK9vuWk/3KcyrcmU9XnE/q4s7mrNWuqnLStpBLpS/d+FX+Ryu2zK5jqtBcJ8I+rXrBPfsXK7WfJAJWC3pP3g+CGprtfU+0e1n6+6bXptplPUnf2wDywAAAGbTMXmbAgAAAAAAAAAAAJgcD7kAAAAAAAAAAAAwc3jIBQAAAAAAAAAAgJlDJhcAAMCHTBxrHkiznmWtrC5rxs3iXJC9U5w8a+deqjZ0u5YeqEnd3tMMqnYnyyPa+5bmqCye0tyoxRWt+7FmAl1tvbs/vdm5KW2nqpoJtBLU1tI8mL13N7PpdzQjqXVJ15verOuyKrntnH9QmoZLGkbU2bog9eYf/q7UtXNP7E9XH/+ktBUby1Kf6r+u29X6utS7cZYptDenx/JGTeu5qmY9+SBsrV7L+tvqaT3nofy8h3ZbBtcF3a7W21J3LmUZXa13tK8Ntt7UZXVelnLYvaLN7oGs7dGP6WsfekLrumYGHUZvQ7PBWq9/VesNzRLbaz6Ztc09KW0Ly5odtrKsmXD1ut5HRikFWWpzNa07Q/1c5lWfnedWHJzzol4j3YUgNyv4iOd8LmfrzDXN5IqWg+yruva/eqrZT4Wb2/vTO23N3quc0vNWXtG6lGbrWujqPaPa0Wuk3tdjHfnjcU8+NjqaweVv6D3a5c6TmdlSITv2T8zrObcgv9L19LU3OtpnNnNZbDsFL23dYXaehhGZXAAAANM0lW9yOed+xDn3886533HObTvnvHPufxvzmk85537NObfhnGs7577mnPtx5xy/pQMAAAAAAMw43i8CAAD32rS+yfWTZvZnzWzXzC6a2UdHzeyc+ytm9itm1jGzXzazDTP7y2b2M2b2aTN7dkrbhePopfXx83xjbfw8Lzw/0erWnxv/Sbm1837sPLfmnHC+GfXSZ8fOsv7CBOfPJpnHzF6Y9LhPx3T7wrSMP1brL355skW98NXx80zg/h8DAAAAACcU7xfhkCb4tuOLEyzmmbvekA9g/N/kJ/xdpYlMfAyem2Ce83exISfFJMfJjGOFE21amVx/18w+YmZNM/tbo2Z0zjXN7J+bWWpm3+29/xve+//OzD5uZv/BzH7EOfejU9ouAAAAAAAAHA3eLwIAAPfUVL7J5b3/rfennRv7iYsfMbMVM/tfvPf7H3Hw3neccz9pZv/W3vvF55emsW0AAABQcRRm4BycyVWvlqQuJNP6jNTdqTQKUidF3a6tDc1luXwxy7668o5mJrngeDTmNPOmU9RlXW1lmUqXdlzFFJ0AACAASURBVDSrKQ5GUpova3ZRmMm1cznLCtt67bq0Dd/RzJ/hTc3msXIu32runM4bZHK1X9cMrv7rv6rLan/n/mRh+SFpqtQ172wlyORqtH9H6jeib9+fvj6vy2o1V6VerQYZOHZwJlexMLrvFYt3kXMzLpNr84+k7r6R5fxsfWND2no335Xa0ktaF7QPDB7/i/vTw8eCTK6zD2vd0HNxGP0buh27L+t5u/nWa1qfybZrY1XvCwOv56LR0PN4qEyugp63JLgeW7Guy+XqVkGvt+68ZnJt9/X+daqlOXdnt7L64SCTKw72ISpoJlfab0vdu76zP71zXbObouC+WVrU7cxnci32NJMr7eh9oDgItotMLtXV68uuBZlclzV7bulslolXW9F7/57pvX9va0fqG9t67d/slventxM9Tz3LzlM6/j2TE4X3iwAAwL12FO9SfM+t///6Hdp+28xaZvYp51zpDu0AAAAAAAA4eXi/CAAAHNq0MrkO46lb/381bPDeD5xzb9h7I+c+ZmYvj1qQc+6gMJuRYzwDAAAAAADgWJna+0VmvGcEAMCHxVE85Jq79f+tA9rf//n8Ae0AAAC4C+FoQaViNoxSo6rDAJZLx3MorEIxHll3urofg2E2vb3d13mD4cCGQz/5hvih1ume1j0dGmu4e03q/rVs6MROOIzitg6zFaU61Fp+zX3ngzbdp3ig+xx3dBgut5cbem1b96Ff1+1IWhelrvZekbqcZMMoxoluR8frkG+7fR1Y4kZbj6f01Wj0sHbHZCRNsyj4EysKhhgs6jBmSZz11cSC8zTQIfTSlu5kVw+nxbnh++LgmuinwdBrHf1zbLut57k7yPUJf4hr4pAGTvepHRy/jtdj4rqt/enyXkva4poe62Re61pH92N+mO3j8kCHuUuHevzSTnDsO9r/BrnLMx1qvx9s61Ckncs6PGZhu7k/XUqa0uaC4VNdWdcbDrc6i8Jb7mCo94E0mCF/7SdRMJzlmHW5YI5KbqjbavDvX8EH53FP1+VNt2sQZ/N3E71fd1zW5l3w7wbyeL8IAAAc2lE85Joa7/3anX5+69M6n7jPmwMAAAAAAIBjgPeMAAD4cDiKzzu+/8mbuQPa3//55gHtAAAAAAAAOFl4vwgAABzaUTzken88k4+EDc65xMweNbOBmX3rfm4UAAAAAAAAjgzvFwEAgEM7iuEKf9PM/gsz+34z+9+Dtr9kZlUz+23vfTd8IQAAADARp9kqluQ+FF5aPbjNzMzpr8jlWLN5TlVP708XgzyhpUh/hS20X5W6u3VBV3XzT7LprW9q21Azkqy2ocuKr+xPb+9onlc3qUpdLS9o/dinpU7nHt6f3trR1RYvXZG6vqX5QnWv25m2sw/YN/c0ViVpaxbRTqyZSa8Uggy4EQE7jYI2nqnruShXD5FVFNe1rjyim+F1u0qPZllQcyXNMBu09TyZ6fGyoR4D6+a2+82vatvWuzrr3sNSD05rX64uVO84bWbWr2k/b60+qsuOtd/Xzz22P7187gFpW1rROJxyKQgHO4SbAz22l3slqTduau6Wv5Dl2q2+eUPaao/p8ak+qvXinB6TBcvuE66uGUq7Trdj84rmM9lQ+1ulkWVp1SuaueR3XpN652tal6Kz2TY3dAS10gOa0WUrQb8+nrGJhxJmbu319Vi3elrXcnlz9WKQzRf2xRW997lC8BbIQu66CNoKXvtAo6HLGgSfGb5uWV/13ba0pbl8L29kco3A+0UAAODQjuIh1780s582sx91zv289/6rZmbOubKZ/aNb8/zCEWwX7tZLn51otvUXvjx+pmfGz7L29ESrMzs/vaDsdVufYK47Dvs9G57+0thZ1s5PsqBJjpOZPffJ8Ut6doJtenayY742xb4wNS9NcD3Y8xMtau3p49f31p8b/wbjsTwvAAAAAO433i+CrT83wUwT/A15/P46xr6J3lcys0n6wok3wftr5yd7zwg4yabykMs590Nm9kO3yjO3/v8XnHO/eGv6uvf+H5iZee+3nXN/09775eXfOed+ycw2zOwHzeypWz//5WlsFwAAAAAAAI4G7xcBAIB7bVrf5Pq4mf214GeP3frPzOxNM/sH7zd47/+Vc+67zOxzZvbDZlY2s9fM7O+Z2c957/lYPwAAAAAAwGzj/SIAAHBPTeUhl/f+BTN74ZCv+V0z+4FprB8AAAAQQSaXS7IMIVf0QVuYyaWvrSSau3K6emZ/eqGoWU7l1jekLuz9qdS9LW13m1/fn442X9ftqPV03qrW+UyuzSCTa9d0nxYamqEUL2sm166r7E/vbetmuE3N5FoaasbUSpAdlnayHK7Gri4sSjSParuogUIXy0Gejjt42NvliraVg4yu0xq/NNq4TK7CKV1XMctvSs5oXpAfbJoKMrk6ejztjy5k069oJlfrmmZy7fS17/aHupMuzo5BpVmRtkE9zOR6ROpuXY/BSi6T6+wDmslVqWqW2t1kcm0GmVzf6mgO0s5NzS9auJAdvwe+rtfXQi3I3HrsIanrQSZXpZot2y3oenYva335sp7nckm3u7Kay+TSw2Pbf/i21Dtf+3Wp+ysf258uflyPdfmJj+jCwqy5E5DJNQgzuYIMrs12cC90WX+rJHoAkrL2H7esOVrWbGid77tJkMkVZG6FmVxWKEtZ6b6zP+13gvviMIuQ8i7IdzvheL8IAADca9H4WQAAAAAAAAAAAIDjhYdcAAAAAAAAAAAAmDk85AIAAAAAAAAAAMDMmUomFwAAAD6cwvz3NM2yRgYDzR2J4zio9fNWUTS9z1/FQbZKOZch1JjXTJtSRQN0omA7k2Af68NcVk9/IG3pluawDG5oVlb/+iWph3tZRpXTCCBLE81UGtY0MymtZNkyUSnIkinqsSzOr0hdOqUZU8NOtnK/2db17F3Vea0X1Dp/4lv709VhS9q870i9N9RjnwbZPP7gSC7rpdq429PXbnS0LudOaynR18ZRkCkVLWpd0Dp/am7/g2o3qE8FzZqPZt/KZ3Rdk6bennaKwbVlqTuFprbPZfvlh5rB5Qran+K6LquUaBZdbSFrX1wM1hPk1u35YDsHel2MstPak7q7uaEzbNyQsri1sz/d3NH+tNjX7ViOgtysMPMtF6mUVrS/2GbQz73WFt4n6tkxKc0H974gv8vSvpQ+zmrf1H0Yrmhf7dgwqHW7C5bNXzZ3YNtEurkcqY4eawvui66s+VQW1iMF131QB7cF+XcnnNeCjC5LgnC+IC9tlDj4THAc69WeBv2rWMjq2PR4RT67T7rgHAIAAODu8E0uAAAAAAAAAAAAzBy+yYXJvPjZsbOsv7g+2bKe+dLYWdY+//xky7rP1iaYZ90mOQ6TLGmWTbh/L0ww3wvj+549+9XJ1nffTdAXJrlunh1/zRxXa+f9+JkAAAAAALPrxfGzrL/4ycmWNcHfkCf9HRW8b4L3g54b/37J+vnJ1nYs+9VLExyDp4/re2LA/cM3uQAAAAAAAAAAADBz+CYXAAAAPrBhqtkirVYnN61ZTeVSSepqTTOCisXpff6qWNBlLcwXD5jTbGFe84UKhSC3pruj9eZb+5P+pmZudd55XerWZc1Y2ruqy+4PzmXLaj4obb2GHp9uVetk6ZH96TPLH5O2wtJjUtfmGlo3tO73s09NL9Y1e8jvaWZSY7sW1LpP3UrWJ1pFzR4qVTSr6fSKflp7cTH488QdnCEUNrUHuqxXNnRdZ2pZnzhd0/5RTQ6ZVTRSIaiDEKAkyORaydVPBm03NdvJum9pfTlY1QO5dQ8fkKaK131eTnU7uwO9RhrDLF8oPDpbqW7X5Z6e5+2gfZThjYtSr17+ptTxdc3okmv73KO6sPklrQvhuThY2J8aTc1bWj2nywrvV9VqVrtE73Xls3p9Nj/xA7qZ86vZ9MKqtPWDzKmrFhx7+//Zu/Mw2bK6zPfvL+bMyPmMNVAcQKgCRzg4gc34SOOEUx2aexulVSi1RUQBuRdFSx9R7MeBqVsGuwHB21AF7UA3Aq0FIqLSnMZ2KCiEqkNVnTpVZ8w5Y173j4jMvX/rZGZEVkZGZmR+P89znowVa8eOFWuvvU/E3hHr9X0/paTd10Qf99N1vQhzc8ntBx7wlfE2vsa326LyZvtyNuPrynnfbvOHPo0WkvrsJuvdaRblkuVaSZ8U6/44Wq8n+Wbx4wAAALA9/JILAAAAAAAAAAAAQ4eLXAAAAAAAAAAAABg6TFcIAACAh63Z8lNWraSmKLxyZc7VTYyPuXKhGE//1fvUYt3ko6nEZqaTdZfLfsquYtGX87noe2Ari7585czazXDf/3FVla/c58rzXznvV7Xip4Rr5JMpCsPEMVdXH/NT1y2VfXliJpkO7PgNfqrDmWuPunIumrYtLrdSs042Gn4KSi35158/66ffyy366cIWCsnja0U/ZWBxwpdnoukKyzPRdGqbTEU2V/OPvXfej8Wzi/51pNc0VfLr7e90hfFHrGi6wqzvAx2eTm4/btrX3X3Rl7/sp8fUrN/HtJCaIq7ln2e0FU1X2PDtbDT8mCg3U9PvBd8/cw3f12cqfmq2B+t+Cr3N3HD5rCufOPv3vh1zy668lLtp7fbKdV2mK8xtPE1pzKIp88YnfH/Fx6tMtHwxNaYs6583nq4wN3HEr6uQzMeXGz/s6ipXTVfot+td8n1/bWr8TUTfad3ydIWzs2u3W2fO+Mpq1RUz0XS0dvy4X36TfTkXT1dYiI7R0TE5n1o+nupwkK6arjA1hWOp4feBRmr6wgzTFQIAAPQVv+QCAAAAAAAAAADA0OEiFwAAAAAAAAAAAIYOF7kAAAAAAAAAAAAwdMjkgnR793nMT9/ew3pOva2npzt56paeltubTu52A/aZXvrz7V2XOH1nj093a/exfvK2Ps6Rf+fprouc/ufuy+jU8I67088fcJ8DGLxoF26lwp2aTZ/bU6lXXHmp4r9v1cr6DJNCLsl4KWR93ks32ejwU0plLhXlK60178sVn0EVlnwOUmvl3NrtRuWSq6su+fyg5QXfjrp8LllmMslQyk75fKEw6jO4GiWf15SdTHJ9Jg77PK+jR6Jsp+0oTPryrM8MCnmfvVPJjq/dzuSizJqCz/EZL/ncrCNlPyZskxyfjPnHnouyeaoN/9xL9aQ8X/V1Fg/kSNyKdGRQMRpsGYtzj6JyJsroGkv6S0f9NtcFP77UuOCKYfaKKzeXknKt5vc/W/HZTYVFP86zSz7fq76S5OvNNXwO1HzT99dyy2+L5bp/7notqa9Xfd01F/xrGn3oy648GS3fOHLj2u2Vo9e5Oo1H/Zfr/eNuPNRKI5mo3POqFFrRmMiXXDk7MuGfO5UdZlmf/RWPzEZ0TzUq11PlKF1vy0Il2e7Nyyu+Lsrkyi374/dWvk2biTo/3qeKW4sS2zXZkPR4run3mXyqHGd5AXteD+eDTl/1P+U6TvU29of306/Uy/mL3gzzebN+6uE84609rOb5PT7dbT0uN0i39nDOaC+2GxgwfskFAAAAAAAAAACAocNFLgAAAAAAAAAAAAwdLnIBAADsMDN7oZmFzr8Xb7DMd5vZJ8xszswWzezvzOxFg24rAAAAAADAsCCTCwAAYAeZ2SMkvUXSohQFMiXLvFTSmyVdkvReSTVJN0t6l5l9bQjhlQNq7pZlsv47UyOjSXDNdJQ7stLyAVUPLd3vytmaX9fhseOp2z5zyrpkP4S6T6NpzCV5RPV5nyWTD5935VzLhz22GpdduZrKmaoc83lU1RUf3BNq466czfosnvzRmbXbNj3q6pajLKecfMZLZiSV8ZLbbvrOJix6TYUTrtwa/RZfv5LaVrMFV6col00T/jVtxUjOj4HjUZ5XCP6jTi5V/cBilOe1tHn/xRlvx0aTbXN01FeWun7Cisduun+j/DPFWXR+7LbCkiuvVJPcpNmFKHfsks/vap37F1euLT7oygszSebb0tLj/LI5366jef+ix308ky4vJO26/JB/DXrIv4alKz4bLGN+u9ayqeeaiDK4RqLgrOzuhDmFhs8/WznrjzErZ/7elXOTR9duj574Bl937NGufDT6CH9jlMk1nTpulLf5ndZmKl+vVrje1YXgN7Jl/bbI9ZLPAwAAAPQBv+QCAADYIWZmkt6p9sWrt26wzAlJvyXpsqQnhxB+KoTws5K+TtKXJb3CzL51IA0GAAAAAAAYIlzkAgAA2Dkvk/QsST8iaWmDZX5U7Z9rvCWEcGb1zhDCFUm/3in+xA62EQAAAAAAYChxkQsAAGAHmNnjJb1e0htDCJ/cZNFndf5+ZJ26P4uWAQAAAAAAQAeZXAAAAH1mZjlJ75F0r6TXdFn8xs7fL8YVIYRzZrYk6XozGw0hLPe3pduXzfjMm9FUJlc+n3d1y/M+2+r8nM/kakaZU/lskud0qHzU1bVngtxYq+YzluqzSUZO9cFFv66Wz8vJtj7q21X02TOVySes3V48+lhXV636DK5Ww+fUZAs+M6hw/NDa7dyMz+Qqrvjvo2Urvh3Z0aRs2Z3L5AqZki/nT7jyVZlci8m2CbN+DGhlxZevicKbohw3bbKdS10yucYLvv7+hVbqdtPVLdaj543koq8GpjPhpktRJlfXLKK4Pt2/W8zkavmxvFJNMs8aUSaXLs26YnjAZ3KtLHzFlR+65sa12w8u+UPP8XH/MfKGos9ey1X9a7x3IXl87X7/GuzBKJPrss/k0qjvg/pmmVylaLxldiuTy7/GSpTJNfe5D7ty6XiSeZaf8vmDI8ce48pxJlecu1VMja/tZnK1MkmGYD3vM7lawR9zctl47JLJBQAAgMHgIhcAAED//ZKkJ0r6thDCSpdlV88Mzm1QPyep3Fluw4tcZnZ6g6qbujw/AAAAAADAUOIi1352+5N7Wuz07Se7L3TqbV0XOXmqh/UMvY3OH+6QO3+86yKnb+2lTb21++Rtm3+Luf/e3sMyt3Rd4uQTui7SNujX98/dt5++uod9q9fXtwcNfkwBu8/MvlntX2/9dgjhb3a7PQAAAMDVejxn1NNS3T/3nTzV04qAlO5j9PStn+2+mtv60JQd0f2c2Olbe9i3+tEUYMhxkQsAAKBPOtMU/oHaUw++tseHzUk6rPYvtS6tU9/tl16SpBDCup9vOr/welKPbQEAAAAAABgaXOQCAADonzFJq+EqlQ1yo95hZu+Q9MYQwssl3aX2Ra7HSXK//DKza9SeqvD+3crjajX9twdbDZ/DElq+PpdLMnAKZZ+Pk634fJha8Lk1tSjHptGK8pq2oukfG5aTPKLWlQf981S/5MqZ2j+5cn3Cv2Wuj5xIbk+P+eed8rla+cYhXy75fKHSsSTDKz/l87pGF3xflxd9OV9M+r7VjDKAlnxWUybK5onLltpumVycY+SXDZmRqDrKRVKSd5WpR/tAxpet2SW3p1Vd/7akbDQ2Rxp+vOWavnx2cX7t9uL5eVc32/DtyJT8di2Oll15IZXhNV/17chGLykf3ZGPsopaqXaGuu/bVsOPl9DyY7EV/LqWG0lbmlWfOxZqPvNOjShrLtrf5prJ8otNv65M9Bpmcr5dY1m/fKWW6vsoi6+47K/f12uuqEqU95UJyfjMR8fYeORuLRUqOta1fH+1Qnw8isZMJrUdo7yqVtXnjjXmL/jy+JHksfVonEfPOhHtj3G5mdpuzei4UI3alc1G+0y0HeupPL7lnD+WNeNjf8aPVX8k7K96I3mNjYYfa/FGz0evKZfdnZw2AAAA7BwucgEAAPRPVdJ/3qDuSWrndH1K7Qtbqxe07pD0VEnPVXSRS9J3pJYBAAAAAABAChe5AAAA+iSEsCLpxevVmdmtal/kencI4fdTVe+U9POSXmpm7wwhnOksP612tpckvXWn2gwAAAAAADCsuMgFAACwi0II95jZqyS9SdJnzez9kmqSbpZ0vaTfDiHEv/AamPqKn7JrZdZPf9WqR1PGTSVTi5Um/TRj48VJV75u8oQrx9MTTo7MrN22LU48ZvLT9eVaX167XWz66QgbCw+48sIV/xa5ueAn3gq5ZHqskax/nmDTviFHZlwxN+LXVZhIpqfLlfzUYVPR9GnZfBQ8XU/asTJ3xVWdv+zLRfmpxApxeSKZjq845afqy2Yqrmy1M66cWflbV85lj6/dzs88xtW1Rg/7dZfjSc2i7Vy/mNyunHVVtSU/Nq/M+3VfmfN9X7nw+bXbE+c/7+rKo74dIzd8rS9PPd6Vc6lm3rfop0tbqPvp446O+vJ0NFtaIzXdYW3eb+Pqkp++sNk47sua8M+dSbbdfM7vT60ZP92cHvONrpip+W01du2Na7dnxvyYuLbgx+pIxr/GfMbvFzPFu9ZuN8rR4WzFT92n2nWumM377VpaSZ5r5MH7fDsKfurM7FQ8lWZRGwnR/lZt+GkUKzUfmZjN+ONbqZCMt1wumpb0uptcefKJ3+nK+enkNeenrtmwjb2oVpKZbRcWLru6RjRF5fi4P16NT/h9ZiW1P142v42jGT5ViOr90X6rU0d60ZFPC4vJa7w876cezWb8DjY9Oe7KU+PRFLMAAAAYelzkAgAA2GUhhDeb2RlJr5T0w2qHIN0p6RdDCO/ezbYBAAAAAADsVVzkAgAAGIAQwq2Sbt2k/kOSPjSo9gAAAAAAAAy7TPdFAAAAAAAAAAAAgL2FX3INrbd3XeL07T2u6tQtXRc5eepkjyvb305rwP3whLd1XeTkqe4z3J++s/t6+qv7+JSk07f2sFAP47OfTj+/e3+evK23/jx9ew/j5dbBvj4A2Kr6ss89Wrro85kaFZ9HlMkmx9HihM/tGbsqk8tnp7RCy5VHC0l2itnWEl0yYcmV8+HupK7lM6SqCxddefEh/xa5VfS5SCOFpJ2lon+e7BGfp5M9fK0vl30fZPNJH1je90c255NoyiO+vHA5yQiau3jO1V25MuvKY1Z25bJ8Ls3osSSvKVfyWUO5kt/mqp9xRVuOM7mS///yMz6LqDWxeSbXVdu5nspBWvqCq6pe8vlwl8/5TKn7z/ntaBeTHK7xC3/u6kaP+Wyi6et9ftXolM/oeiCVw3X/gh+3CzVX1EjOv6apkq+vV5LtWlmIM7l8/7Tqx3zZ/P65kEnyhx6KMrnqM77vVfCZXGPyyz/q6COS22N+/Ezk/b49GmVyZeNMrkKy7UbKvu8Xq36fWaw/wpUtXO/KI8vJc01EmVzFKBIv0/Dt3jSTKzr+1Op+H1pc8c+Vy/ptk80k687nj7i60rVRplvZZ19lism68lM+d22rKpXkmDR7+UFXV62u+OeN8qvGxn2GWcU2zuSqR7vqZLTvxjla28rkCn5t80vJa3zgIX/8zuf8fl8o+DKZXEDi9PP7ubYnd1/k1Gf7+YToqx62nySpX9uwt+c73cMyJ2/bXkt2Vw/nY58wgGYA+wC/5AIAAAAAAAAAAMDQ4SIXAAAAAAAAAAAAhg4XuQAAAAAAAAAAADB0yOQCAADAhkLTZ6HEGVxxZleznsq1iUJZCnmfbZXJ+XCiOMMlt2kOV2Pzcsvn6ah2f3J7+Yuuqr7s3xIvL/vMFmv5/JyRSpKfU6z5x+bz/rH5SZ/Nk4kyuTZTyG9e31xMZe80fJ5SZXHBtyPqy4J8Fk9zMnl8aPpsohD8uluNS75cvduVG6Mnkttj0bomo21e6vJxpJXKA2v4bdpa8blP1Vk/vpYe8q957OKXU7fvcnXTIz477Yj5/hsv++8GXq4kr2ul4UeuWZzR5R+7GH3NcKmeTd32eWgrFmUkjbSiev/ciyNJBtVc3mephVGfT5WbfKwrl6PMpXIqE+5Y5YqrK7Z8OzNFX5b8thpRsv8V9XlX14qCtFYmr/Oraj7aFQupPLBy3WfiZZo+py0T4qPKZvyyzabvvzijS8Efc1qtJIzNMtFxYcJnqeVGfOabUplmlt/eR/RmM2lXnMFVqSy7cqPuA+Ti7mql8uQaI/6YUfdFNXObp26F1P8NrXpzkyWlTJRPqGjd9UbyGpcrfjsVcv7A2Whs/lwAAAAYfvySCwAAAAAAAAAAAEOHi1wAAAAAAAAAAAAYOlzkAgAAAAAAAAAAwNAhkwsAAAAbyo34t4vlIz5TqVn1GUHF8SQPxTI+R2Ux+GyUK3GmTRQIM5VJ1jVt8dvWhah82berdtaVV64ky6/c79u1Up/wj53xGVz5mUe4cvb6JMsof91XubrM5FFXtlyXYK1tKI4k2WBTR477uoLPpyopLvvtWJpO+iBb8vlKreh7cSvRulbkc6OupJa/rHlXZ7royvno48ik/Law/OGkUL7J1RUmHnDlmbGHfLvLd7qyqkmWmNVu8HVln/uknB8D0VDWTCm549GTPj+o5ncJzUd3fKHqx3lVSY5bZdJvx+r1fjs1oiynSpQ3VLkm2Tb5EZ+jNVb0z3so67fboarfH0cfSHLL5s/7DLPRY74dIzf4HC1r+P2xMpvkuq3c7593uexfc3Pqka6cHXuUK2dGk/GVKfvxY0d8vpeKvX/cNfmNnM/4/WA04/P2cpko48ySfT3OtatfnnPlxiW/bTIjyXbOH/KvITvhn7ebUilp1/SM79t63WeWlcd8RqBF2X3lsaR8zbVRPmMUgzgx6Y8TcaRiYzbJzqqd99lgscLRUVfOHfbHnIly8hqvPepzD3PZKFtuxD8WAAAA+w8XuYbVnad7WKiXZSTd/vbua7r9x3tY0cnenq+ndvWyrt6e7+Rtb+tpuZ7W1UPbe+z1/jnVPVD75O1P7mlVp3+l+1jQP/dr+0k61X3bnDzV67jqj5O39RBQ3mN/9tIPJ5/Q46p6cPr5mwd+Sz2+PgAAAADAvnbyts/2tNzp5/eyrm02Zr/45Vt2uwUPU29jYdDPx7gC0CumKwQAAAAAAAAAAMDQ4SIXAAAAAAAAAAAAhg7TFQIAAGBD+RGfNzQWZaO0mn4a1PTycb7LPhdpywAAIABJREFUUpTJ9VCr5sqNKJMrm3r8VJTJZVdlcvl8pkaUybWcyuSaPevbVZ/xuTTNmetduXDdY3y7rksyuXLXPtbV2YjPz7Gcz/Xpp2Ipya2ZjjK5xid9plRWfjvmoo8B2WLSzjiTq1mLM7l8TtRslMl1MfU9uvPms4iy5jO5psxncAX5MWD5VPZTlL9UqPhlZ8Z9BtfI2CdcebF+7drtpbrPWVP5Rl/Od8vkSl5jIesrLyz7PKZzS758fjnKNlKSL1SbPObqmiN+bLYO1X05+HI4tLJ2O1/yuU+HonyqR+V89tPhml9X84GkP+c+99/989x0wpXz01/vypmcH2/LqUyu2bN+vNRP+NfcmPZ5ablr/HPZRNLfmYnoO5tlf3yyQu+ZeFdlctnmmVzZjH+u7CaZXI0rfj+onvHHp+zU+NrtdD6XtPVMLndciDK5mi1/DC4Wo/4y359jSbOUzfpt2oqy50ZHff9dncmV5IFV7pm9uuEpmYJ/rvwRn9E1PpaUc9FYi//fGS0VN30uAAAADD9+yQUAAAAAAAAAAIChw0UuAAAAAAAAAAAADB2mKwQAADhw/HRpodVYu91q+ikEsyU/FVS2EE0baL1/Z6re8s+7FPx8V3X5ci2avtAJi77cetAXq75cmZ9fu714seHqNBa9JS5G04ONRVPqjSTTy4W8n9IsNPy6W4vz8uLXlC5H839d9X00X7ZUuRRN56gR365MIS5H07jFc4ulNGrR9I7yj61E0xcup+YxW6j77ZSt+WnbVhoVV65F3ZPLJtP1ZXN+6r58+bIvj/u+H5+61z9368ja7WbDT0doJT91X4jGanPZT/03mk36YCzqy0rVFfWlup8i7r4Vv51bpaT/mtH0oBqLx4SXzfj9dax0bu32eMlP6Xk47/vn2rwfT4cz/jVfXLq0dvvSuS+6uvqRaNrExWiazpFoSsJq8roqVT8daMhd58qZaT/FXva4n84wkxoG5odEd/ExZZNxn432qXwm2oei6Qwzqf0xRHP5VZf8OF+45KfrK6Takav6vt3qhKeFQmnd2w/HyEj69sZ91YvmSjJW65eXXV0r+r8gsxi1u+6nVczlU1PZRlMuZq76P4nv9QIAAOx3vOMDAAAAAAAAAADA0OEiFwAAAAAAAAAAAIYOF7kAAAAAAAAAAAAwdMjkGlZPeFvXRU7e1n0ZbNGpTbJBOk4OoBlbduqzPS22J9u+F/Xan6d2uB3x893WfXwOs9PP754Fsd/7AOiX0PIZQfVakt1TWTrn6rLBZxXliuO+PufzUDZTNp83dCzjs4yaUV7OeLS8U/NZRKr6/CEt+Qwl1dJln+WkRZ/fpYd8Hkyj5UOWluZSWU9n41CguD/icjMqr6Ru16O6+LFxvs7IhnWZos8RG3nENX5Nj7jWL5+PMrrSdVFW2Khrs9SUzxeqLydjplbxOVDNKK+qVvTb/KEp/1zj2eTYP5b1/w8UCj5XSzPRO5noyYq55Pt94y0/Xpr2eVeuX/DjZ9a+4tc1luRGlcZ9ZlSrWfbl6CNXq7jxR7BMLaqzzf9fy2f9dxYPFZM+uTbr13Us68fqqEVjpuT7d/SRX7d2u/mN3+frZvxYzVV82eq+/0amj67dnnzSDa4uXP9VrqzpUVcsFPwYSsUxqRXvMt1EGVyW7r+or2vyx5gV+RypbJSvN6KkndmM3y5zo35MPDBz2JXHx5Pjai7Kz/O9Mbwy5aRPcsf8sX257jfkRfnxU73ss/0mU5mDEyP+2FXK+3Gdk+/77L7pUWBwTt622y0AAGBz/JILAAAAAAAAAAAAQ4eLXAAAAAAAAAAAABg6XOQCAAAAAAAAAADA0CGTCwAA4IAJwedCNarza7criz4rJZ/xuTOZnM+L2Uom12iUsXXc/LpaUfzQqCXfx7oqla8ehTstR5lcy1EmVzojKER1i1FGS9N/D6wxf8Gv+oEkP6ZWijO2pqJynNkVhwjNpW6vRHXxY+Py1IZ1+YnjftGM78Hi8aO+fguZXCNRO7NRJldzOckuakSZXMsrfiPXp3z5fN0/V0h9J68UfT2vUPB5cZr2mVxW9H1QbP3D2u1M5R9dXWXhrG/neZ/BtXjJ9+/40cev3c4ee4Kra5V837Ysyugq+n3G6sl+kalFOXStzfMoC3n/ce5QK8nkOpH1uWzT2aIrj1yVyeXHwMgNX7t2Ozvm889yK/8clX1/qun3x9LM16/dtqNf75cdj8biuO+fbMHvM+lWtvzw6soyvn9dRFfU9fXgM7mWwpJvR3S8yqf2bYsyueZH/THm7LTP5JoZS17zVMFvp/0incmVPeo7u7nij6MXo2P0+Uv+mHPtTNJfmYLv22zO76tmfh8hkwsAAGD/4ZdcAAAAAAAAAAAAGDpc5AIAAAAAAAAAAMDQ4SIXAAAAAAAAAAAAhg6ZXAAAAAdMCD5MptmorN1O53NJUrM+7sqtrYbgpIyY/37VSPx9q83jh3w76j7Dpbno83May1E7U0+VG/PZQ/Frai377J3msu+Tauby2u16xtdJh6Kyz95pBp8l1mxdTJ43+ByjbOaIK+fMr9ssvW7/PI0Zv41Hv+qEK4eWz77aTMaiPK+sz9MpFvxHikYqNalR8flCuSiHbaXqx8BC07d7PJeUmyEaIDk/NjV+ky+PPdYVC6nctsLiP/ll65ddcXHWl5eXzrtyMZ/k/rTK17q6YGOubFH/ZKNcu1xI+jPfjDKjWpt/J7EcZa1NNpO8oUNRyNRo1H9RBJUyUS5b8dhj1r0tSbrP72/6yhdcMVR9hlLxyLG12/nrnugfa3FLYhuP1RBH4nUT5Wi1UsekEFU2gn/emkXtiMotSx4fon2mMuJzoOaj6L7iSDJGGnk/PqImq9mK2xnlJqaeOxe1I7OFY2w3IdouzVZ0TA7+uNpM5RdmD0enIZb8OF+u+fFzcdnvj+PlZB+rxc8bjexm8H3fks+is9QpkTi/a0v/KUmyVH/HuWyu3MftAAAAAC5yAQCGxMnb4tM8AAAAAAAAAA4ypisEAAAAAAAAAADA0OEiFwAAAAAAAAAAAIYO0xUCAAAcMJbxmSX54sTa7dKYz4EqlGZcOZv1GUu7Zanqc48W5o+7cq3l85nsuiQ3aarsM4GWln0GztKSf40Z89OljpSTXK2R0TijbCwq+9yoxerGWTOL1UVXd7jsM7imRn05n51Ilfzz5KLHlq7z/ZPJbeFjQK7sy5Nf68vXfp8rFiaTvh5f9rlYufz1rlw7MunK9bwfmxPZJLwmv+Ucm+gB5dRzH/tm367So/2ifjdQpuL7a3QmWT53yL+mYvCvaWzZP/ZQ1WcIjZWSbKPxUT/Wcrb5VL3ZjK9vpbLW7p71y04XfH8cKvrHjm3lk2HBZ8Bp6ut9OZXz1175I9ZuxtlfssF97zKKb1K9kvRXo+EzpjIZvy+P5X32Wj7ns53ymWQ/yUbhV4dKvnMfM+kfO15Ixn057/ujEWVwXarUfbnqj0FjueTxh0q+r8fy3fLPeldv+nzB2epFV56rXXDl0WbymsvFEVdXzvr/Z443/DE52/DHtyPl1Lqyvi+jXUL1pm9Xo+Xz9fLZZGcvZP2On7HN/7+zKPMsmxrbhRH/GhupfTnO6wIAAMD28O4KAAAAAAAAAAAAQ4eLXAAAAAAAAAAAABg6TFcIAABwwJj5KatyqekKi+VrXF1+xE8Tldkj0xUuV/0Uehfmj7lys+mnipq5Lmn39E3+NTQv+um/Fi/V/JNFU0uNHE6mpJqeiaZeUyEq+/rawrIrL1+6snb74tKSq5s65KfwGp/x5ZFCepou/7yZvH/9+UPTrmxbmq4wmoJx8ut8ueDbVagn22as7p+3lPFT+bXGR3254Pu6mJr2LWdbnK8wXn4sNa1g1vdXbspvl7IfEio2fbvypeR15EamXF1hzi87fsmvbOaKnzPv6NFkmrwj036utUJh8+kKa1H1xWp6ukJfedzP6qbiuK8fjeo3lY+mK5z20xVa8K/RxpOp/iwf7yOD02z6KQnrK0k7K8u+zfmyP8aUx3y78wW/b+ezyViOZivUoaLf3wrRAoXUMSaeUjCervBiND3h3fN+CtQjqSkKSzm/rn5OV1hr+ekKL1cfdOX7F77oyseLN6zdHimd8O0anXDlTMv/vzMR/D40mprecSQ+lgU/T2elcc63u+mnKxxVst1z0fGp23SF8Yyo6ekK89F0hYXU1KsZpisEAADoK95dAQAAAAAAAAAAYOhwkQsAAAAAAAAAAABDh+kKAQAAAAAAgLTb397bcqdu2dl2AACwB7291/8nB4CLXAAAAPueKdNK3vZlo/ymfC7JPymO+qydfCEK6vGRNlIjKmc2uN1n1YbPy5mv+EwuZXz58DVJeeLRvm7p3Lx/6AO+nI1ybUrXJPkxE8eivKouZmd99lPjXJIfszzns3V0jc+HKR/32U9jxQG9lc/63CyNP27Tck5JhtDVCUA+X8iiUBvbNIIqbFrsauTY+rd1dTtH9PAVKhVXHqsvuPLhRb/TXHMkuX1d9MTFLg2JVqXL1aRTzvuhpmzL77xH8r4DpzK+nI6NysYhU4XpTcshzkPLpvKrgj8wZKJ1x+WtRrFtJtR8hzXqSR5Tfdn3T7Hkx/1ozucz5fK9H+Cmon01Lm9moe6zwmarPjPwvkWf5aeQHLOvLW+eEbgdzVaUZVjzWVgXVs668ng+ld1X8K9/dMQf66IjzpZUGv442mz5/qk2fLsK2aNrt0OI/0PbnEWDM5NNjiS5QpT7l/7P05hQBwAAoJ94dwUAAAAAAAAAAIChw0UuAAAAAAAAAAAADB0ucgEAAAAAAAAAAGDokMkFAACwz2VaeZVXrl0rj5jP2co3kkwui/JyworP6WktRUFIjShjaSzJKMmUo+9T9fHrVaNjPqzoyDVTGyy5/vJpIyM+p2ZmxifCZLO+4aXSw38LPVrw6U/XTSTtKuV93ZFylAGUHY7vp9VTQW1V+dyeEHzuUaGVi8pXp3gNm3zOv8bJaf+ashmf1TM+lYy/XJTVlMltvs0LUfWRcrL/PTbOCwq+fKXu29mI9u1DI8nyh6L8qTiiK1av+3UtLiQ5UotLUWbZhN//xid9/xSL/RsT8b5cGN143fkRX5fJ9jEcbAtMPpMraz7jLZd5yNdnkszAjPwxRIoyFrchn/Xrnikdd+VHTjzelQ+NXLN2u5DdTurd5rIZv+5i7jpXtigPq5BN8vkyFmeYbS4EP86b9eR4V1vx2WC1alIOrTjcEgAAANsxHJ+UAQAAAAAAAAAAgBQucgEAAAAAAAAAAGDobPsil5kdMrMXm9kfmdmXzGzFzObM7FNm9mMWzweQPO4pZvZhM7vcecw/mNnLzWz45ygBAAAAAAA4wDhfBAAABqEfmVynJP2epHOSPi7pXknHJP2ApN+X9B1mdiqkJqw2s++V9EFJFUnvl3RZ0vdI+l1JT+2sEwAAAH2QaeU1upzK5Mr4DJx8fWzttkXfgQqVKJPrks8SCTVfn02fr/LRVn1VHvPZMnbN9KbLj6byrSzKKoozueL6uLydTK5y3j/2uskkP2Zm1OfBTBR9u3LdgpD2iHQm11LwuTSt4POFyk3/mnONOENo+ORzfp+IM7lGRv0+NjqZzuTy2zyT23ybF6KIvCOpsVqKuvLisl/X+SVff6nm9+1MKiNuJhflU3X5qmSz1nDludkkq+jBB/yYOHatP1CUSv65+pnJFfdnMZXJlYtyx7KF6DiwW3OgmN9nMt0yuSzZjmabHxe3I5/xx+A4k6sY5W6N5iZSdf3LBotlLRpPUSZXLjPpyvlUeauZXIr2v3QmVz3K5KpWlpOHHaxMLs4XAQCAHdePi1xflPQ8Sf8jpJKkzew1kj4j6QfVfgPzwc79E5LeIakp6RkhhM927n+tpDsk3WxmLwghvG87jRqVdLLLMm+//XRP6zqp7sv1uqbe9La2veZkj6/v9MBfXy/t2ottkoZ1LPRuL26bXuzV7bcX+3Mvtknau+3aW3o9rgMAAADr2JPni6Qezxn1uK5bbt9mY7b4fLuxtm5u0S0Dfb639/T6Btumtr3YrsGOhd4Mcx/sxbbvxTZJe7Nde7FNe9Ogj+vbte3vo4UQ7gghfCj9hqVz/4OS3topPiNVdbOkI5Let/qGpbN8RdIvdoo/ud12AQAAAAAAYHdwvggAAAzCTk+6sPp7/fR8Fc/q/P3IOst/UtKypKeY2fDPVQIAAAAAAIAY54sAAEBf9GO6wnWZWU7SD3eK6TcoN3b+fjF+TAihYWb3SPpqSY+W9Pmdah8AAMBBkQk5jVQPr5VLeZ9xk2smGSYWokyuKHOrNR9lckWZXZnxVI5NlFfSTyPl4qblrSiV8puW+2kk6vu4vCVhBzt4G9KZXCuh6uqawWc1FZo+96jV9B9PNkukCtHrD1HMTWj5ektlml2VKWX9yzvLZnxDymO+fmTMP1cmlf0U7X5qRe3KRA3PR/WHUkP3UNSuKHJLdy/4O+aqfl2Hx5Lnali0Xbp8VbLW8jlS8wvJdr/w0LKrGy37dR8+FuU1XbWdw4Z1ymyep5fJRuWRZP/L+wipruLx10qVW3GzomUz8n1v6Q6NtrFFy+Yyvv9KmVlXLmSSF5JRXTsln/H5VVPFI5uWByUjvyELcdmijbONfT8eA81GMu4bFX/sa6xUkscdrEyudXG+CAAA9NOOXeSS9HpJXyPpwyGEj6buX012ndvgcav3T3V7AjPbKDDlpp5aCAAAAAAAgEHa8fNFEueMAAA4KHZkukIze5mkV0j6gqQf2onnAAAAAAAAwPDgfBEAAOi3vv+Sy8xeKumNku6U9OwQwuVokdVv3kxqfav3z25QvyaEcHKDNpyW9KTurQUAANj/Wpm6lkYfSMojfpqpei6ZViqYnyrMSv47UdlD8XSG/rmsnJr6qX8zwB1IoXnV/Hu+uEenK0x/wBgN/uNGK/qOXcH81JCZXO/TFVYrvj/mL/up2ebnfHlyOnmuiWn/vIVi/777t7K46Mpzl6648uLCgiu3isn+2Cr5fXN83M91OD3hP0KNl8s9t2u84HvzhnE/VeZs3tc3Ut37pVk/zWSmy77d8jO1KZST13XdDeOubvqQn2o0X/Dtalb9dmzMJv1bn/N9nZ8aj8q+/zLF/k1FuhS16+JCMh3d4uKKq5tp+CkGZ+q+XEhtR5uZcXW5Ud8/00Vf/8jxR7ryVGF67fZIbotzMO4DYSWaRnLWT50ZFnw5M52MN5vyY88Kmw90i45Q2VYyvgqpaYAlqZ7aheJpgQ+SQZ4vkjhnBADAQdHXd1dm9nJJb5b0T5KeGUJ4cJ3F7ur8fdw6j89JepTawaN397NtAAAAAAAAGDzOFwEAgJ3St19ymdmr1Z5X+e8lfXsI4eIGi94h6d9Keq6k/xrVPU3SqKRPhhClVG/NiXvOntMLX/26TRda1uim9atGtdx1me5LtNfUm97WtteM9vj6lgf++npp115skzSsY6F3e3Hb9GKvbr+92J97sU3S3m3X3tKP4/q5s+eUz/fvm/MAAAAYLnvsfJHU8zmj3rxNb9tmc9o26pS9sLZu+tUHvbrY0+sbbJva9mK7BjsWejPMfbAX274X2yTtzXbtxTbtTb0c13s7Fm+uX+eM+nKRy8xeK+lXJZ2W9Jx1fnKe9gFJvynpBWb25hDCZzvrKEn6tc4yv7fNJs1Xa3V94Z57z6TuWw0W/cI2143e0eeDR5/vDvp98OjzwXu4fX6iXqvP97sxAAAA2Pv24Pki6epzRtv6bHGv7u1Dk4bbw+yDHf5Mt1e3y662a498jt6r26YXW277APp8r/bnrrVrkz7fq3219zyM4/qunjPa9kUuM3uR2m9YmpL+StLLzK6au/pMCOFdkhRCmDezl6j95uUTZvY+SZclPU/SjZ3737+dNoUQHrVOO0936tadkxn9R58PHn2+O+j3waPPB48+H24tq2tpJMnkCiWf01LPJ+WgQ67OSj6jJDMTzXbt401ko6n3gQc3duThiTO2Wj5zqtVsRPV7P5NrRNG38qKPCYWMz6CKM7k2U1/y/XH5su+vc/f6wLhWqmWjk35cF/O+vB3Vmn/eSw+dd+UHHzjnyvVURl49yss7duyYKxeibzluJ5PrEeN+Bx2LMrkupTLPvhTlGnUbeqPmFzg+mryuayf8Ni6XfbkQZXK1VvxvKarnk4yzyv0XXN3IDb6/slGeVT8zuRYrfvzdfynJWnvovM9he/SKP6dfXrnkyrmjSS5itujHQG7Mb+OZKJMrH+XalbJJruKBzOSKsvpaDzaiss9S04mkv7Pl6D+tLplc8QEtm8ogLDR93zdSu1DmAP3nuBfPF3Wex50z4n3u7qDfB48+Hzz6fPDo892x2/3ej19yrb45yEp6+QbL/KWkd60WQgh/bGZPl/QLkn5QUknSlyT9nKQ3hb2aog0AAAAAAIBecL4IAADsuG1f5Aoh3Crp1ofxuL+W9J3bfX4AAAAAAADsLZwvAgAAg3BwficPAAAwQGb2bDP7IzN70MyqZvaAmX3UzK46aWNmTzGzD5vZZTNbMbN/MLOXm1n/5lADAAAAAADYZ/oxXSEAAABSzOw/SHqVpPsl/amki5KOSDop6RmSPpxa9nslfVBSRe2cicuSvkfS70p6qqRT221PK1PXysiDa+VMyWe81LJJDlcz+OydUIzeLvq4mDhiSUHJLEJXzSh01QRD3fJO0ktuvuxVER+9r3rPajX9tmhGWU/BBSNt8wWnHh6u3lAbLbr6gA3ri9F36izjy5kof0mZ+Lruxm2pRRFlV674O87eV3Xl8nQyeI9Gj1Wmf9/9q1T981664HOj7r/njF++nGQorYz6HayV8b19eMbnMR2Ncts2Mxp17eioL5eiLji/lPT9V+Z8h1WjLL54Mx0e8Ss7eiw5jhw96jOkslF+Vzy+qrN+3Fcvzq7dXjzj881stOTK+WO+vzLleDw9/FnPFit+O59NZXLdc/aiqxtb8O28dvEBVy42UjlRR4+6uszR4648kZt05cm8L/vDrn99ra7j5eojeu+6HYTDBrfXW1W341lY96YkNVf84Gyc9+OneSY6jo6lnut4dHzqFmkWdWemmYzzXNOPxUKqWRb4rjEAAEA/cZELAACgjzqB6a+S9G5Jt4QQalF9PnV7QtI71A5kf0YI4bOd+18r6Q5JN5vZC0II7xtU+wEAAAAAAIbFgbnIFUI4udttOGjo88Gjz3cH/T549Png0ee9MbOipNdJulfrXOCSpBBC6iv7ulntX3j9weoFrs4yFTP7RUl/IeknJXGRCwAAYAfwPnd30O+DR58PHn0+ePT57tjtfj8wF7kAAAAG4NvVvmj1BkktM/suSV+j9lSEnwkh/E20/LM6fz+yzro+KWlZ0lPMrBhCqK6zDAAAAAAAwIHFRS4AAID++cbO34qkz6l9gWuNmX1S0s0hhNWQnhs7f78YryiE0DCzeyR9taRHS/r8Zk9sZqc3qLopK2k6dUe+6YNEVuYra7fvPTfr6kZzPhulKH+tLau6K1dSt+OrciEO9JLPLMkGX19oJtk9+abP8SmNW1T2a87FTzUEmlEG19yC3xZz874cqkmuS77hA5YyLd8BjZzf5vWo3CwkW6tVXPYNy/g8pkzV932mFuXnhI3zdMz8xw/LlTct+1HkR9TiXMWV5+u+3Bzx5dnq3Nrt+y/4sJ3LlTgL7OGbveLzmBajdocxv22smGy7fMG//mrNZ/ecv3TJPzba/7aj0vB90FpKZ5j5Ni83fBDSSjPOfvLtvjCX9Pdd0TFlrOB/8DqW9/3VbPpxfyW7lNwu+mXnq0uuXLow58q5lfiolB4jV/3wdlPn5/x+Uq8kz1Uw347lgh/3D4weduUrKq7dzl654uqyZ7/iyqVoHynl/L5fbyavo9JciuriMLpil3J6fFWiumg/b/mDcAi+bLaYKiy4ukzej59swe+f2aL/v6JZXVn3tiQ1Lvrt2KpH5WJ8PEvGdva8306FRd8fxah/rOH7YHFhfu12Vb7vq7nUMdZ6z9IDAABAdySeAgAA9M/Rzt9XSQqS/pWkcUlfJ+ljkp4m6fbU8pOdv/5MbGL1/qn+NhMAAAAAAGD48UsuAACA/ln9AlFD0vNCCGc65X80s++XdJekp5vZt64zdeG2bDQHducXXk/q53MBAAAAAADsBfySCwAAoH9W59X6XOoClyQphLAs6aOd4jd1/q7+UmtS61u9f3aDegAAAAAAgAOLX3IBAAD0z12dvxtdlFoNW1kNHLlL0pMlPU6Sy9SydnjRo9T+Vdjd22lUTj6TK0T5OStzSabJfQ0/c2I54/NMJjTvynn5PJT0o/2SUtBYdM+Eb2fL14/Vk6yZcs1ntEwe99/VykZf3craxrlQe1Wj4fOVZqMMrrMXHnDlsJjklI1UDrm6XNPn9qwUfd7XSsnn0tTHkq3VmLjsnyfrs4dyCz67KRuVbZNMLkW5bJaZ2rQspbN7/NisVX1G0ELdv6bWiC/P1ZKPPq0L/mNQfq5/3/2rLPv+Wgi+na1x3weZbLKtcjl/vbta9315/rLP5Fpe8eXt8bl3Csm2OBrNmDofRYHN1nxfN2q+fy+mcriWzT/P0bI/hhwd9XlNFmVyXcokWUcXokyufDUaq+f9mMnM+nX7o9SitmKp6juhvpJs50LG1y0V/DY/a35/zYekv2zWv9580/fPZPGIL5d8vtdyPXkdc9ULrm6l7td19fcrJqJyOlcqPqL7fSY0j/tyy+doWWY2dftBv6aSPz4Vx6dduTDm21lbSHLLqgs+w6w5719jq+Hzr0LRlzOV5HXYQ/5YNpr3eWcTUf8UWz6jaymVyVWJM7myyVgNZHIBAAD0Fb/kAgAA6J+/UDuL6wlmtt77rK/p/L2n8/eOzt/nrrPs0ySNSvp0CKG6Tj0AAAAAAMCBtu8vcpnZ9Wb2X8zzcU7WAAAY1ElEQVTsATOrmtkZM3uDmU13fzTWY2Y3m9mbzeyvzGzezIKZvbfLY55iZh82s8tmtmJm/2BmLzez7GaPQ5uZHTKzF5vZH5nZlzp9OGdmnzKzH9vgRCr9vk1m9ptm9hdmdl+n/y6b2efM7JfNoq/gJo+hz/vMzF7YOc4EM3vxBst8t5l9orNfLJrZ35nZiwbd1mHV+b8xbPDvwQ0ew1hfRwjhK5I+JOkGST+TrjOz50j612r/yusjnbs/IOmipBeY2ZNTy5Yk/Vqn+Hs73GwAAIADh/NFO4NzRoPHOaPdwTmjvYFzRjtrWM4X7evpCs3sMZI+LemopD+R9AW1MzB+RtJzzeypIYR+zvFxUPyipK9Xe06P+yXdtNnCZva9kj4oqSLp/ZIuS/oeSb8r6amSTu1kY/eJU2qf5Dwn6eOS7pV0TNIPSPp9Sd9hZqdCCGvzT9HvffGzkv63pP8p6byksqRvkXSrpFvM7FtCCPetLkyf95+ZPULSW9Q+3sTznK0u81JJb5Z0SdJ7JdUk3SzpXWb2tSGEVw6oucNuTtIb1rn/qvmbGOtd/ZSkJ0r6HTP7LkmfU3vawe+T1JT04hDCnCSFEObN7CVqX+z6hJm9T+3+fJ6kGzv3v3+7DcpKbrKxWtNPlXQxNb3ThXk/vde4/PReVV105WI0hdWFDW5LUksz0T1+KsRi1K7p1CxvUxX/tjWb8Z/Vy5N+WrdCaQinK6z5/phd8NOW3R9PVzibTOE4seingCvU/eeH+bKfPm1hzD9XpZa8Ja5n/PO08n4bF2ajqf4u+bK1Nuv7kahci8ohKqffqscjalmbip5qLvVUc/GqBmksmrJRyZRouWj6uFo0vdyFy77hF6IpHLejlPUddmy0kbrt25yr++1Uq0RTbYZousLUFIWV4J+n2vKvMZfxrykXT1eYTaaBO1+Mxk/VTxGnC3H/NKNyuj8vq18K5l//cjTt3XI+Pu+V6oNZv40LC/6HvEf9qtQq+/6crybT951ffiCqi6drPBKV4/5J93200wR/jAkNPz1haPppFC07l7p91tXlxvz4GYmmHh2Jvpu7ktoPVi6ec3WNSjQGYsWoXNngtq6envCw/Gsa17grL6b+v6xG0xXWsslYDWK6wr2A80U7inNGg8c5o93BOaNdxjmjgdnz54v29UUuSf9J7TcsLwshvHn1TjP7HbUPRK+T9BO71LZh9rNqv1H5kqSnq/0f6LrMbELSO9T+xPSMEMJnO/e/Vu0pmm42sxeEEN63460ebl9U+4Tn/wghrH0qMrPXSPqMpB9U+83LBzv30+/9MRFCFKQhycxeJ+k1kv5fSf++cx993mdmZpLeqfYbkf8m6ao3HmZ2QtJvqf2f5pNDCGc69/+qpP8l6RVm9sEQwt8MptVDbTaEcGu3hRjr3YUQ7jezk5J+Se1j99PUDjP5kKTfCCF8Jlr+j83s6ZJ+Qe3jeUnt/2N/TtKb0h9GAQAA0BecL9o5nDMaPM4Z7Q7OGe0izhkN1J4/X7RvpyvsfCvnOZLOSPqPUfUvq52i+0NmVha2JITw8RDCv/R40u1mtb8i+L7Vgd1ZR0Xtb/dI0k/uQDP3lRDCHSGED6XfrHTuf1DSWzvFZ6Sq6Pc+WO/NSsdtnb+PTd1Hn/ffyyQ9S9KPSNroa7k/qvZ3ct+y+mZFkkIIVyT9eqfIh9P+Yqz3IIRwIYTw0yGER4YQCiGEwyGE748vcKWW/+sQwneGEKZDCCMhhK8NIfxuCCH+Wj0AAAC2gfNFO4tzRoPHOaPdwTmjXcc5o71n18b5vr3IJemZnb8fW+cgvyDpr9UOc/+WQTfsgHlW5+9H1qn7pNrzzDzFzOKJI9C71fk90vN60O8763s6f/8hdR993kdm9nhJr5f0xhDCJzdZdLN+/7NoGWyu2JnL+jVm9jNm9swN5ktmrAMAAGCYcb5o7+Czxc7jnNHgcc5oh3HOaOD2/Pmi/Txd4Y2dv1/coP5f1P7mzuMk/cVAWnQwbbgdQggNM7tH0ldLerSkzw+yYfuBmeUk/XCnmD6A0O99ZGavVHtu30lJT5b0bWq/WXl9ajH6vE864/o9as8j/poui2/W7+fMbEnS9WY2GkLoEt5y4B1Xu9/T7jGzHwkh/GXqPsY6AAAAhhnni/YOPlvsIM4ZDQbnjAaLc0a7Ys+fL9rPF7lWU5s3SmNevX9qg3r0B9thZ71e0tdI+nAI4aOp++n3/nql2qGtqz4i6d+FENIJ3PR5//ySpCdK+rYQwkqXZXvp93JnOd6wbOydkv5K0j9LWlD7DcdLJd0i6c/M7FtDCP+nsyxjHQAAAMOM97N7B9tiZ3HOaDA4ZzRYnDMarKE4X7SfpysE9jUze5mkV0j6gqQf2uXm7GshhOMhBFP7mws/oPYB/XNm9qTdbdn+Y2bfrPY3cX6b4M/BCSH8Smce94dCCMshhH8KIfyEpN+RNCLp1t1tIQAAAACgV5wzGhzOGQ0O54wGb1jOF+3nX3KtXhmc3KB+9f7ZAbTlIGM77AAze6mkN0q6U9KzQwiXo0Xo9x0QQnhI0h+Z2f9W+6e3f6D2t6Ik+nzbOj85/wO1+/a1PT5sTtJhtfv30jr13b5Fgs29Ve0PRk9L3cdYHz4n7jl7Ti989evW7ggyt0Aj9ZawEb09zMhFVSjnpvOXMmq6cj112y8pSfG03XlXsqg+10rK2VZUF83inS/5cibrX+MwiGJBVKlXfbnmy2om31fLNqO+DNloUZ/93sz6csgmWyvk6q5O5rexNSyqjvp605j5+Dt28ceRuNzY4LakaGwOj3hs5ja4LV39GuM+aKpfzPy2yWfy696WpEbUrHorGl/RukM2eV2tjB+bhaxfupj1r9GCL9frSblei5+p23iKpcd6//py8228XjndodHrt+gYnCm4cj4qN0PyOhqtmq9rdeuvfFTebP+L93t/UA7yZVOqLVbxddHxyXK+HZmo3Gok2y00/PEqtPp3XMjG/ydd9f+j32caqT5qRP0VUgfGc2fPSdKJvjQSDxfvZ/cOtsUO4JzR7uCc0c7inNGes6fOF+3ni1x3df4+boP6x3b+bjQHM/rjLrXno32cpNPpis7B6VFqf2K6e/BNG05m9nJJvyvpn9R+s3J+ncXo9x0UQviKmd0p6RvM7HAI4aLo834YU3LMrpite4L6HWb2DrXDRV+udr8f7jzOfYvHzK5R+2fn9zO38sO2Or1COXUfY334zFdrdX3hnntXLwN9YVdbMzxu6vylv3pDf20N/dU7+mpr6K+t2Y3+OiFpfoDPh6txvmjv4LNFn3HOaPdxzmjHcM5ob9lT54v280Wuj3f+PsfMMiH11VgzG5f0VLXn2vzb3WjcAXKHpH8r6bmS/mtU9zRJo5I+GUKoxg/E1czs1WrPqfz3kr698x/leuj3nXdt5+/qV2Lp8+2rSvrPG9Q9Se05lz+l9n+aq29O7lD7eP5cRW9YJH1Hahk8PN/S+Zt+A8JYHzIhhEdJkpmd7pRP7m6LhgP9tTX019bQX72jr7aG/toa+uvA4nzR3sFniz7inNGewjmj/uOc0d6yp84X7dtMrhDClyV9TO1vSf1UVP0ral9lfE8IYWnATTtoPiDpoqQXmNmTV+80s5KkX+sUf283GjZszOy1ar9ZOa32t3E2erMi0e/bZmaPM7Orfl5rZhkze52ko5I+HUK40qmiz7cphLASQnjxev8k/WlnsXd37nt/p/xOtd/ovNTMTqyuy8ym1Z6nWWr/hBobMLPHm1l5nftPSHpLp/jeVBVjHQAAAEOL80V7Cp8t+oRzRoPFOaPB45zR4A3T+aL9/EsuSfr3kj4t6U1m9mxJn5f0zZKeqfbPzn9hF9s2tMzs+yR9X6d4vPP3W83sXZ3bF0MIr5SkEMK8mb1E7UH+CTN7n6TLkp4n6cbO/asHHmzAzF4k6VfV/gbIX0l62To/yz0TQniXRL/3yXdK+g0z+5Ske9Seu/eYpKerHSL6oKSXrC5Mn++OEMI9ZvYqSW+S9Fkze7+kmqSbJV0vwkh78W8kvcLMPinpK5IWJD1G0ndJKkn6sKTfWl2YsQ4AAIB9gPNFO4RzRoPHOaNdwTmjIcA5o20bmvNF+/oiVwjhy52rhr+q9s/kvlPSObXDF38ldTUdW/MNkl4U3ffozj+pPehfuVoRQvhjM3u62m8Sf1DtneBLkn5O0ptCCJvGk0NSe85SScpKevkGy/ylpHetFuj3bftzSV8l6dvU/snzlKQltT/wvEftPnThrfT57gghvNnMzqh93PlhtX+lfKekXwwhvHs32zYkPq72m40nqv0z/rLaIaCfUnusvyceu4x1AAAADDPOF+0ozhkNHueMBo9zRkOCc0bbMjTni4z9BwAAYP8jd2Rr6K+tob+2hv7qHX21NfTX1tBfAAAAw2/fZnIBAAAAAAAAAABg/+KXXAAAAAAAAAAAABg6/JILAAAAAAAAAAAAQ4eLXAAAAAAAAAAAABg6XOQCAAAAAAAAAADA0OEiFwAAAAAAAAAAAIYOF7kAAAAAAAAAAAAwdLjIBQAAAAAAAAAAgKHDRS4AAAAAAAAAAAAMHS5yAQAA7GNmdr2Z/Rcze8DMqmZ2xszeYGbTu9223WBmh8zsxWb2R2b2JTNbMbM5M/uUmf2Yma37/tjMnmJmHzazy53H/IOZvdzMsoN+DbvNzF5oZqHz78UbLPPdZvaJTt8umtnfmdmLBt3W3WJmz+6MsQc7+90DZvZRM/vOdZY90GPLzL7LzD5mZvd3Xv/dZna7mX3rBsvv6/4ys5vN7M1m9ldmNt/Zz97b5TFb7pP9so9upb/M7LFm9mozu8PM7jOzmpk9ZGZ/YmbP7PI8LzKzz3T6aq7Td9+9M68KAAAAW2EhhN1uAwAAAHaAmT1G0qclHZX0J5K+IOmbJD1T0l2SnhpCuLR7LRw8M/sJSb8n6Zykj0u6V9IxST8gaVLSByWdCqk3yWb2vZ37K5LeL+mypO+RdKOkD4QQTg3yNewmM3uEpH+UlJU0JuklIYTfj5Z5qaQ3S7qkdn/VJN0s6XpJvx1CeOVAGz1gZvYfJL1K0v2S/kzSRUlHJJ2U9OchhJ9PLXugx5aZ/aakn1d7rPyx2n31VZKeJykn6YdDCO9NLb/v+8vM/l7S10taVHsM3STpD0MIL9xg+S33yX7aR7fSX2b2Pkn/RtKdkj6ldl/dqPZ4y0r6mRDCm9Z53G9JekVn/R+QVJD0Akkzkn46hPCW/r8yAAAA9IqLXAAAAPuUmX1U0nMkvSyE8ObU/b8j6WclvS2E8BO71b7dYGbPklSW9D9CCK3U/cclfUbSIyTdHEL4YOf+CUlfUvsC2FNDCJ/t3F+SdIekb5X0f4UQ3jfQF7ILzMwk/U9Jj5L03yS9UtFFLjM7ofbF1CVJJ0MIZzr3T0v6X5IeI+kpIYS/GWTbB8XMXiLp7ZLeLemWEEItqs+HEOqd2wd6bHX2ubOSLkj6uhDC+VTdM9Xug3tCCI/u3Hcg+qvz2u9X+7U+Xe2L8RtdtNlyn+y3fXSL/fXvJP2fEMLnovufrvaxLUg6EUI4l6p7iqS/lvRlSd8YQrjSuf+EpNNq/39y02o/AgAAYPCYrhAAAGAf6vyK6zmSzkj6j1H1L6t9gvOHzKw84KbtqhDCHSGED6UvcHXuf1DSWzvFZ6Sqblb7VzjvWz2B3Fm+IukXO8Wf3LkW7ykvk/QsST+i9vhZz49KKkp6S/qkb+fE8K93ivvywqqZFSW9Tu1fB151gUuSVi9wdRz0sfVItT+P/l36ApckhRA+LmlB7f5ZdSD6K4Tw8RDCv6R/TbqJh9Mn+2of3Up/hRDeFV/g6tz/l5I+ofYvtJ4SVa/2xetWL3B1HnNG7f9bi2ofEwEAALBLuMgFAACwP63mi3xsnQs6C2p/M31U0rcMumF72OoFiEbqvmd1/n5kneU/KWlZ0lM6Fzj2LTN7vKTXS3pjCOGTmyy6WX/9WbTMfvPtal9w+G+SWp2sqVeb2c9skC910MfWv6g9Td43mdnhdIWZPU3SuKQ/T9190PtrPQ+nTw7yPrqZ9Y7/Ev0FAACw53GRCwAAYH+6sfP3ixvU/0vn7+MG0JY9z8xykn64U0yfzNywH0MIDUn3qJ0d9OgdbeAu6vTNe9T+hdJruiy+WX+dU/sXYNeb2WhfG7k3fGPnb0XS5yT9d7UvDL5B0qfN7C/NLP3LpAM9tkIIlyW9Wu1MvDvN7O1m9htmdpukj6k9fdyPpx5yoPtrAw+nTw7yProuM3ukpGerfVHwk6n7y5Kuk7SYnsIwhf9HAQAA9gAucgEAAOxPk52/cxvUr94/NYC2DIPXS/oaSR8OIXw0dT/9KP2SpCdK+nchhJUuy/baX5Mb1A+zo52/r1I72+dfqf1rpK9T+6LN0yTdnlr+wI+tEMIbJP2A2hdiXiLp/5F0StJ9kt4VTWN44PtrHQ+nTw7yPnqVzq/c/lDtaQdvTU9JKMYcAADAUOAiFwAAAA40M3uZpFdI+oKkH9rl5uwpZvbNav9667dDCH+z2+3Z41Y/WzUkPS+E8KkQwmII4R8lfb+k+yU9fYOpCw8kM/t5SR+Q9C5Jj5FUlnRS0t2S/tDM/sPutQ77nZll1f6V6lMlvV/Sb+1uiwAAAPBwcJELAABgf+r2bfzV+2cH0JY9y8xeKumNku6U9MzOFGppB7YfO9MU/oHa05q9tseH9dpfG/0yYpitjoHPhRDOpCtCCMuSVn8h+E2dvwd2bEmSmT1D0m9K+tMQws+FEO4OISyHEP632hcFz0p6hZmtTrV3oPtrAw+nTw7yPrqmc4HrvWr/cvA2SS8MIYRoMcYcAADAEOAiFwAAwP50V+fvRlkhj+383Siza98zs5dLerOkf1L7AteD6yy2YT92LgI9Su1f7ty9U+3cRWNqv+7HS6qYWVj9J+mXO8u8o3PfGzrlzfrrGrV/qXN/56LPfrP62jc64b06DdpItPxBHFuS9N2dvx+PKzrj4zNqf159Yufug95f63k4fXKQ91FJkpnlJf1XSS+Q9P9J+r87GWZOCGFJ7YutY52+iR34/0cBAAD2Ai5yAQAA7E+rJ46fY2buPZ+Zjas9PdOypL8ddMP2AjN7taTflfT3al/gOr/Bond0/j53nbqnSRqV9OkQQrX/rdx1VUn/eYN/n+ss86lOeXUqw8366zuiZfabv1A7i+sJ8T7X8TWdv/d0/h7ksSW1M5Ak6cgG9av31zp/D3p/refh9MlB3kdlZgW1s/FOqf1L1R8KITQ3eciB7i8AAIBhwEUuAACAfSiE8GVJH5N0QtJPRdW/ova39d/T+ab6gWJmr5X0ekmnJT07hHBxk8U/IOmipBeY2ZNT6yhJ+rVO8fd2qq27KYSwEkJ48Xr/JP1pZ7F3d+57f6f8TrUvjr3UzE6srsvMptXO9pKktw7oJQxUCOErkj4k6QZJP5OuM7PnSPrXav/K6yOduw/s2Or4q87fW8zsunSFmX2H2hfiK5I+3bn7oPfXeh5OnxzYfdTMipL+SNL3qn1x/kdCCK0uD1vti1/o9NHquk6o/X9rVe0+BQAAwC6xq6edBgAAwH5gZo9R+wTxUUl/Iunzkr5Z0jPVnl7pKSGES7vXwsEzsxdJepekptpTFa6XO3MmhPCu1GO+T+2TyRVJ75N0WdLzJN3Yuf/562S57GtmdqvaUxa+JITw+1HdT0t6k6RLkt6v9i9xbpZ0vaTf/v/bu2PWqIIoDKDfNGIfBAUD1intxEILS4V0WqYXQSSdIImNhVgYgqXiD7Cz0Sq2FtpZiSAIWoiC9l6LWXBZQuJKiMzmnG7ZN/vmXWa2eB8zU1Xrh9vbw9NaO50+55bTV3a9Td8ybjV9lde1qno2df2RHVuT1W4vklxK8jM9fPiSvj3m5SQtyc2qejjVZuHrNXnG1cnHk+nh6If8CQW/Ts+hf6nJIs3ReerVWnuSZC09GHyUPidn7VTVzsw9HiS5leRTek2PJbmaZCnJjaraPrgnAgBgXkIuAIAF1lpbTnI3faulpSSf018mb1bV973aLqKpcGYvr6rq4ky780luJzmX5HiS90keJ9naZ6urhbRXyDX5/kqS9SRn03ePeJdku6qeHmY//4fW2okkd9KDhlNJfqS/cL9XVa93uf7Ijq3J2UjX089GWknfXu9b+nlcW1X1cpc2C12vv/iP+lhVZ2bazF2TRZmj89SrtbaT5MI+P7lZVRu73GctfayuJPmV5E2S+1X1fN4+AwBwsIRcAAAAAAAADMeZXAAAAAAAAAxHyAUAAAAAAMBwhFwAAAAAAAAMR8gFAAAAAADAcIRcAAAAAAAADEfIBQAAAAAAwHCEXAAAAAAAAAxHyAUAAAAAAMBwhFwAAAAAAAAMR8gFAAAAAADAcIRcAAAAAAAADEfIBQAAAAAAwHCEXAAAAAAAAAxHyAUAAAAAAMBwhFwAAAAAAAAMR8gFAAAAAADAcIRcAAAAAAAADOc33UlA+q5R1z8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 155, "width": 860 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from PIL import ImageFilter\n", "def rebuild_img(path):\n", " '''\n", " 读取本地验证码图片进行随机加点噪声为新图片\n", " 参数:path:图片路径\n", " 返回:重组后图片 \n", " '''\n", " if re.search('FileInfo0508', path)!=None:\n", " label = path.split('_')[-1][:-4].lower().replace('1','l')\n", "# print(re.search('FileInfo0508', path))\n", " else:\n", " label = path.split('_')[-1][:-4]\n", " crop_n = len(label) \n", " img = Image.open(path)\n", " img = img.convert('RGB')\n", " w, h = img.size\n", "# img2 = img2.resize((100,50), Image.BILINEAR)\n", " draw = ImageDraw.Draw(img)\n", " for _ in range(random.randint(20,250)):\n", " draw.point(xy=(random_xy(w, h)),fill=random_color((125, 255))) \n", " for _ in range(random.randint(0, 3)):\n", " draw.line(xy=(random_xy(w, h),random_xy(w, h)), fill=random_color((120, 250)), width=random.randint(0,1))\n", " return img.resize((width, height), Image.BILINEAR), label.lower()\n", "\n", "files = glob.glob(path2)\n", "img = Image.open(files[0]).convert('RGB')\n", "rebiuld, label = rebuild_img(files[0])\n", "\n", "# fil = img.filter(ImageFilter.GaussianBlur(radius=1))\n", "\n", "# fil = img.filter(ImageFilter.UnsharpMask(radius=1, percent=150, threshold=5))\n", "\n", "# fil = img.filter(ImageFilter.RankFilter(size=3, rank=3))\n", "\n", "fil = img.filter(ImageFilter.MedianFilter(size=3))\n", "\n", "fil = img.filter(ImageFilter.ModeFilter(size=3))\n", "\n", "\n", "# print(img.size)\n", "# plt.imshow(img)\n", "# plt.title(label)\n", "imgs = [img,rebiuld, fil]\n", "plt.figure(figsize=(20,40))\n", "for i in range(len(imgs)): \n", " plt.subplot(len(imgs)//4+1,4,i+1)\n", " plt.imshow(imgs[i])\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuUAAADJCAYAAACEy0yaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFqFJREFUeJzt3Xu0VOV5x/HfIxzuAkJUYtGgRuTEC8JBRCCIkhATxWgkbf4wtTaxy7RNllbTrpWkjXY1bdrmYmKuK2njSuyKNrqMMVXxBh6BKFcF5CCggBpv3O+gwNM/9j7J5OQMvMLMfubMfD9rzdqevZ/Z8zCvc+Y3++zZr7m7AAAAAMQ5KroBAAAAoNERygEAAIBghHIAAAAgGKEcAAAACEYoBwAAAIIRygEAAIBghHIAAAAgGKEcAAAACEYoBwAAAIIRygEAAIBghHIAAAAgGKEcAAAACEYoBwAAAIIRygEAAIBghHIAAAAgGKEcAAAACNY98sHNbKikf5Z0saTBkl6T9EtJt7j75iPY7xpJ/SWtrUCbAAAAQDnDJG1z95OPZCfm7pVp550+sNmpkuZKOk7SfZJWSBor6UJJz0ua4O4bD3PfG3v37j2oubm5Uu0CAAAAf6StrU27d+/e5O6Dj2Q/kUfKv6cskH/O3W9rX2lm35B0g6SvSLruMPe9trm5edDChQuPvEsAAACgjJaWFi1atGjtke4n5Jzy/Cj5VGWnl3y3w+YvS9op6ZNm1rfg1gAAAIDCRX3R88J8+bC7Hyjd4O7bJc2R1EfSuKIbAwAAAIoWdfrK6flyZZntq5QdSR8u6bFyOzGzcuenjDj81gAAAIBiRR0pH5Avt5bZ3r5+YAG9AAAAAKFCL4l4pNy9pbP1+RH00QW3AwAAAByWqCPl7UfCB5TZ3r5+SwG9AAAAAKGiQvnz+XJ4me2n5cty55wDAAAAdSMqlM/Ml1PN7A96MLOjJU2QtEvSU0U3BgAAABQt5Jxyd3/BzB5WdoWVv5F0W8nmWyT1lfRDd99Z7V4mvm9ycm33o5qS6gYPPjZ5nxs2bEiq69evX/I+t+3YnlT35HOPJO+zqxj13jOS6k4alj4T7qrVLyTVNTX1TKp7dtUzyY+NxjT+jElJdT17HDh0Ua5HT0uqe3PTa0l1i1euTn7sruJDF12cVLdrc/pb09Y3y13P4A8NHjgoeZ8zn5uVXAsU6f1jTjt0Ua5Hr7T3zPXr1yfvs1e/tOlt5i18MXmfRYr8oudfS5or6dtmNkVSm6TzlF3DfKWkLwb2BgAAABQm6vQVufsLksZIul1ZGL9R0qmSviVpnLtvjOoNAAAAKFLoJRHd/WVJ10T2AAAAAEQLO1IOAAAAIEMoBwAAAIIRygEAAIBghHIAAAAgGKEcAAAACEYoBwAAAIKFXhKxFvTtkT5T5oxnfl3FTlDOuPeelVy7ePVzVeykMi44d3Jy7RPzZ1WtDxRr+Amjk2tXvrqoip1UxuTzzk6unfX0kip2cnBjx45Jrp03b0EVO6mcSSOnJtW1PvtwlTtBoxg6IW227FcWrKpyJ5UxcXzav0eSZs8tLldwpBwAAAAIRigHAAAAghHKAQAAgGCEcgAAACAYoRwAAAAIRigHAAAAghHKAQAAgGCEcgAAACAYoRwAAAAIRigHAAAAgnWPbiDavn37oltoWBeMSJt2/KnVS6vcSbGemD8rugUEWPnqougWKmr3nh3RLSSZN29BdAsV95Z430KxXplT3FTzRdi6fU90C53iSDkAAAAQjFAOAAAABCOUAwAAAMEI5QAAAEAwQjkAAAAQjFAOAAAABCOUAwAAAMEI5QAAAEAwQjkAAAAQrOFn9FSTR3fQsPo09Y5uAcBhOqD90S00rH59eka3AHRp+/c3RbfQKY6UAwAAAMEI5QAAAEAwQjkAAAAQjFAOAAAABCOUAwAAAMEI5QAAAEAwQjkAAAAQjFAOAAAABCOUAwAAAMHCQrmZrTUzL3N7PaovAAAAoGjdgx9/q6RbO1m/o6gG3jqwN7n2kvHTkuq2bNmSvM9u3bol1bUunZW8z65i/57KT9M95vjmpLpBxw9O3mdT77Qprf/v6ceS9wnUqg+MPyepbv6z66rcSWO5cOzE5NqZ82ZXsROg6xrdcm5S3fLlK6rcyeGJDuVb3P3m4B4AAACAUJxTDgAAAASLPlLe08yuknSSpJ2SlkhqdffKn9cAAAAA1KjoUD5E0s86rFtjZte4+xOHurOZLSyzacQRdwYAAAAUJPL0lZ9ImqIsmPeVdJakH0oaJulBMxsZ1xoAAABQnLAj5e5+S4dVyyRdZ2Y7JN0o6WZJVxxiHy2drc+PoI+uQJsAAABA1dXiFz1/kC8nhXYBAAAAFKQWQ/n6fNk3tAsAAACgILUYysflyxdDuwAAAAAKEnJOuZk1S3rJ3Xd2WD9M0nfyH+8oopcnn51VxMMcsUmj08/maV3UWsVOKqeb9Uiqmz7qw8n7XPBG2+G2c8SmTfhQUt39c2ZUuRN0dSce/ydJdaedPDR9p74vqezxp59J32edGfqe45LqJpw3IXmfixcsSqpb+WLjzpA65sy0mZh79mpK3mf3oyypbtvWzcn7POmEE5Lqfvvb3ybvc8jQdyfVbduVPtF561PLk2u7guFnvi+5duWyrv1vj/qi559JutHMWiWtk7Rd0qmSLpHUS9IDkr4W1BsAAABQqKhQPlPS6ZJGSZqg7PzxLZJmK7tu+c/c3YN6AwAAAAoVEsrziYEOOTkQAAAA0Ahq8YueAAAAQEMhlAMAAADBCOUAAABAMEI5AAAAEIxQDgAAAAQjlAMAAADBCOUAAABAsKjJg/AOtS5qTa4d2XxWUt2zbUsPt52K6N9nQFLdXYvvr3InlXH/nBlJdWedkj5l8NIXKz9l8Dlnj0qqa2pKn9J6/etvJNWdNPQ9yfs8cOBAUt3ObenTT/fv3z+p7on56a+3anj5jfRpuitt4tlnJ9XNXrKkyp0U75V1b4Y99vRLP5xce/evH6xiJ8VbsKwtugUEGHl+2nvRymWVfx+sVRwpBwAAAIIRygEAAIBghHIAAAAgGKEcAAAACEYoBwAAAIIRygEAAIBghHIAAAAgGKEcAAAACEYoBwAAAIIxo2cdOm7wu6JbSLJl0/boFkIc3S9tVslqeWbJ4tDHR21LnanzyimXJe/znsd+dbjtNIx3MkvnpSPGJtX9esW8w20HqLoDvje6hZrDkXIAAAAgGKEcAAAACEYoBwAAAIIRygEAAIBghHIAAAAgGKEcAAAACEYoBwAAAIIRygEAAIBghHIAAAAgGKEcAAAACNY9ugFU3o5tXWP6+kHHHBvdQoi39++LbgE4Yq+t2RDdQuPq1ze6g4oaM+rMpLqmpm7J++zZLe2Y465tO5L3OXjAwLTC/cm71LYdu5Lq+g1MfGxJM+bMSW8g0NKnlke3UHM4Ug4AAAAEI5QDAAAAwQjlAAAAQDBCOQAAABCMUA4AAAAEI5QDAAAAwQjlAAAAQDBCOQAAABCsIqHczKab2W1m9qSZbTMzN7M7DnGf8Wb2gJltMrPdZrbEzK43s/TZAQAAAIA6UKkZPb8kaaSkHZJekTTiYMVm9lFJ90jaI+kuSZskTZP0TUkTJH28Qn0d0rnDRiXXzl+7uIqdHNxlEy9Orv3NkgVV7KRyfv7sL5Lqrmy+Inmf97Tde7jtHLEpoy9Kqpv/XNcYH1TWB8Z+MLn20XmPVLGTyujf613RLSQZM2Jscu2CFfOq2EnlbNbb0S1U1ILFy6JbQIAzx56YVLds3stV7qR2VOr0lRskDZfUX9JnDlZoZv0l/UjZRLST3f1T7v55SedI+o2k6Wb2iQr1BQAAANS8ioRyd5/p7qvc3RPKp0s6VtKd7v67Q4buvkfZEXfpEMEeAAAAqCcRX/Rs/xv/Q51sa5W0S9J4M+tZXEsAAABAnEqdU/5OnJ4vV3bc4O77zGyNpDMknSKp7WA7MrOFZTYd9Jx2AAAAoJZEHCkfkC+3ltnevn5gAb0AAAAA4SKOlFeMu7d0tj4/gj664HYAAACAwxJxpLz9SPiAMtvb128poBcAAAAgXEQofz5fDu+4wcy6SzpZ0j5JLxbZFAAAABAlIpQ/ni87mw1nkqQ+kua6+97iWgIAAADiRITyuyVtkPQJMxvTvtLMekn6l/zH7wf0BQAAAISoyBc9zexySZfnPw7Jl+eb2e35f29w95skyd23mdm1ysL5LDO7U9ImSZcpu1zi3ZLuqkRfKeavXZxcO/n0iUl13bunP63dullS3YwlM5P3WW/uabs3ufayEdOS6vZ3P5C8z/Xb1ifVzXupa0zRjRiPznskuXZay6VJdW9vT59uvZv1SKrr26fc133+0EPLf5X82JEWrEh/XV48bkpS3e5d5S4e9sf69m5Kqtuze0fyPucsWZpcC9Sqbkelvw83ikpdfeUcSVd3WHdKfpOkdZJuat/g7r80swskfVHSlZJ6SVot6e8kfTtxZlAAAACgLlQklLv7zZJufof3mSPpI5V4fAAAAKArizinHAAAAEAJQjkAAAAQjFAOAAAABCOUAwAAAMEI5QAAAEAwQjkAAAAQjFAOAAAABLN6nKfHzBaOHj169MKFC6NbAQAAQB1raWnRokWLFrl7y5HshyPlAAAAQDBCOQAAABCMUA4AAAAEI5QDAAAAwQjlAAAAQDBCOQAAABCMUA4AAAAEI5QDAAAAwQjlAAAAQLB6ndFzY+/evQc1NzdHtwIAAIA61tbWpt27d29y98FHsp96DeVrJPWXtLZk9Yh8uaLwhpCKMap9jFFtY3xqH2NU2xif2leLYzRM0jZ3P/lIdlKXobwzZrZQkty9JboXdI4xqn2MUW1jfGofY1TbGJ/aV89jxDnlAAAAQDBCOQAAABCMUA4AAAAEI5QDAAAAwQjlAAAAQLCGufoKAAAAUKs4Ug4AAAAEI5QDAAAAwQjlAAAAQDBCOQAAABCMUA4AAAAEI5QDAAAAwQjlAAAAQLC6D+VmNtTM/tvMXjWzvWa21sxuNbNjontrFGY23cxuM7MnzWybmbmZ3XGI+4w3swfMbJOZ7TazJWZ2vZl1K6rvRmFmg83s02Z2r5mtzp/vrWY228w+ZWad/p5gjIplZv9uZo+Z2cv5873JzBab2ZfNbHCZ+zBGgczsqvz3nZvZp8vUXGpms/LX3A4ze9rMri6610aQv/97mdvrZe7DayiAmU3J35Nez7Pbq2Y2w8w+0klt3YxRXU8eZGanSpor6ThJ90laIWmspAslPS9pgrtvjOuwMZjZM5JGStoh6RVJIyT9j7tfVab+o5LukbRH0l2SNkmaJul0SXe7+8eL6LtRmNl1kr4v6TVJMyW9JOl4SR+TNEDZWHzcS35ZMEbFM7O3JC2StFzSm5L6ShonaYykVyWNc/eXS+oZo0BmdqKkpZK6Seon6Vp3/3GHmr+VdJukjcrG6C1J0yUNlfR1d7+p0KbrnJmtlTRQ0q2dbN7h7l/rUM9rKICZ/YekzyvLCw9K2iDpWEktkh51978vqa2vMXL3ur1JmiHJJX22w/pv5Ot/EN1jI9yUfQg6TZJJmpw/93eUqe2vLHDslTSmZH0vZR+wXNInov9N9XSTdJGyX2JHdVg/RFlAd0lXMkbh49SrzPqv5M/59xij2rjlv+selfSCpP/Mn+9Pd6gZpixIbJQ0rGT9MZJW5/c5P/rfUk83SWslrU2s5TUUM0bX5s/t7ZJ6dLK9qZ7HqG5PX8mPkk9V9iL8bofNX5a0U9Inzaxvwa01HHef6e6rPH+1HMJ0ZZ+I73T3BSX72CPpS/mPn6lCmw3L3R939/vd/UCH9a9L+kH+4+SSTYxRgPz57cz/5svTStYxRrE+p+zD7jXK3ms685eSekr6jruvbV/p7psl/Wv+43VV7BEHx2uoYGbWU9lBhpck/ZW7v9Wxxt3fLvmx7saoe3QDVXRhvny4k7Cx3czmKAvt4yQ9VnRzKOuifPlQJ9taJe2SNN7Merr73uLaaljtvwD3laxjjGrLtHy5pGQdYxTEzJolfVXSt9y91cwuKlN6sDF6sEMNKqenmV0l6SRlH5iWSGp19/0d6ngNFe+DykL2rZIOmNklks5U9helee7+mw71dTdG9RzKT8+XK8tsX6UslA8XobyWlB03d99nZmsknSHpFEltRTbWaMysu6Q/z38s/aXHGAUys5uUnaM8QNn55BOVBYuvlpQxRgHy18zPlB3p+8Ihyg82Rq+Z2U5JQ82sj7vvqmynDW2IsjEqtcbMrnH3J0rW8Roq3rn5co+kxcoC+e+YWauk6e6+Pl9Vd2NUt6evKHvDkqStZba3rx9YQC9Ix7jVjq8q+6X4gLvPKFnPGMW6SdkpeNcrC+QPSZpa8kYlMUZR/knSKEl/4e67D1GbOkYDymzHO/cTSVOUBfO+ks6S9ENl5/c/aGYjS2p5DRXvuHz5eWXng79f0tGSzpb0sKRJkn5RUl93Y1TPoRzAYTKzz0m6UdkViz4Z3A5KuPsQdzdlweJjyo4CLTaz0bGdNTYzO0/Z0fGvd/JndtQAd78l/w7NG+6+y92Xuft1yi7+0FvSzbEdNrz2TLpP0mXuPtvdd7j7UklXKLsaywVmdn5Yh1VWz6H8UEcZ2tdvKaAXpGPcguWXafuWskvvXejumzqUMEY1IA8W9yo7DW+wpJ+WbGaMCpSftvJTZX9G/8fEu6WOUbmjgKic9i+0TypZx2uoeO3P5eLSLz9LUn4KV/tfbMfmy7obo3oO5c/ny+FltrdfqaDcOeeIUXbc8je+k5V9in6xyKYahZldr+y6ycuUBfLOJtRgjGqIu69T9gHqDDN7V76aMSpWP2XPdbOkPaWT0ig71UiSfpSva79G9sHG6N3KTq94hfPJC9F+6lfp1dh4DRWv/TkvF6I358veHerrZozqOZTPzJdTO85IaGZHS5qg7Ju5TxXdGA7q8Xx5cSfbJknqI2luV/kmdVdiZv8g6ZuSnlEWyN8sU8oY1Z4T8mX7FSQYo2LtlfRfZW6L85rZ+c/tp7YcbIw+3KEG1TUuX5aGN15DxXtM2bnk7yszk3T7Fz/X5Mv6G6PoC6VX8yYmD6q5m9ImD1qvOpoMoCvclP3J3SUtkDToELWMUfHjM1zSgE7WH6XfTx40hzGqvZuy85Q7mzzoZDF5UJHj0Cypbyfrhym7GptL+kLJel5DMeN0X/7c3tBh/VRJB5QdLR9Qr2Nk+T+gLuUTCM1V9o3e+5RdEuc8ZdcwXylpvLtvjOuwMZjZ5ZIuz38cIulDyo5IPJmv2+Al00nn9Xcre8O6U9m0uZcpnzZX0p96Pf+PWzAzu1rZ7Gn7lZ260tk5rGvd/faS+zBGBcpPK/o3ZUdb1ygLcsdLukDZFz1flzTF3ZeX3IcxqgFmdrOyU1iudfcfd9j2WUnfVjaed0l6S9mEKEOVfWH0JqEi8nG4Udn1q9dJ2i7pVEmXKAtxD0i6wksmrOE1VDwzG6ost52o7Mj5YmUfYC/X70P2PSX19TVG0Z8KCvjUdaKyyyC9puwX3jplF6Y/Jrq3Rrnp90eKyt3WdnKfCcp+SW6WtFvSUkk3SOoW/e+pt1vC+LikWYxR6BidKek7yk4t2qDsPMmtkubn49fpXzcYo/ibyhwpL9k+TdITykLiznxMr47uu95uyj7A/lzZFaW2KJsYbb2kR5TNx2Bl7sdrqPixOlbZAaJ1eW7bIOleSWPrfYzq+kg5AAAA0BXU8xc9AQAAgC6BUA4AAAAEI5QDAAAAwQjlAAAAQDBCOQAAABCMUA4AAAAEI5QDAAAAwQjlAAAAQDBCOQAAABCMUA4AAAAEI5QDAAAAwQjlAAAAQDBCOQAAABCMUA4AAAAEI5QDAAAAwQjlAAAAQDBCOQAAABDs/wG+WRUeEjs6xgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 100, "width": 370 }, "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[0, 7, 8, 9, 17, 18, 26, 27, 34, 35, 36, 43, 44, 45, 46, 55, 56, 63]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVMAAAH0CAYAAACAUs4iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFudJREFUeJzt3XmwnXV5wPHvY4KIbAqCzlSryAjEWpVEUUQhQKUKNaLC1Om4lBHt1AVwQRwXRFunLlVZtDLj0qjYatHiVgZQCQYEiwbcatiUqKioASEgYYl5+sf7Xrlec0LuvQ/v7+Tm+5k583LPe3Ly5M7Nl98573veRGYiSZqd+7QeQJLmAmMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVGB+6wHuDRFxLbADsKrxKJLG3yOANZm522yeZE7GFNhhm2222WnBggU7tR5E0nhbuXIla9eunfXzzNWYrlqwYMFOK1asaD2HpDG3aNEiLrvsslWzfR7fM5WkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpQNOYRsRDI+JjEfGLiLgjIlZFxMkR8cCWc0nSdDX7BFRE7A5cDOwKfAG4AtgHOBZ4RkTsl5k3tJpPkqaj5cr03+hCekxmHp6Zb8jMg4D3A3sC72g4myRNS5OY9qvSQ+iu6vTBKbvfCvwOeGFEbDvwaJI0I61Wpgf22/Myc/3kHZl5C/AN4P7Ak4ceTJJmotV7pnv226tG7L+abuW6B/C1UU8SEaMuC7XXzEeTpOlrtTLdsd/ePGL/xP0PGGAWSZq1zfp6ppm5aEP39yvWhQOPI2kL1mplOrHy3HHE/on7bxpgFkmatVYxvbLf7jFi/6P67aj3VCVprLSK6bJ+e0hE/NEMEbE9sB9wG/DNoQeTpJloEtPM/BFwHt2/CviKKbvfBmwLfDIzfzfwaJI0Iy0PQL2c7uOkp0bEwcBK4El056BeBbyp4WySNC3NPk7ar06fACyli+hrgd2BU4An+7l8SZuTpqdGZebPgKNaziBJFbyeqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFNuvrmY67pz56cesRAJh/n61aj8DOO+/SegQAVq9e3XoEtttuu9YjALDm1ltaj8CF//eV1iOUcWUqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkF5rceYC7b9r7btR4BgHO/8+XWI0hznitTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kq0CSmEbFzRBwdEWdFxDURsTYibo6IiyLiJRFh5CVtVlp9nPRI4EPAL4FlwE+BBwPPBT4CPDMijszMbDSfJE1Lq5heBSwB/icz10/cGRFvBC4FnkcX1s+1GU+SpqfJy+nMPD8zvzQ5pP391wOn918uHnwwSZqhcXxv8q5+u67pFJI0DWN1Cb6ImA+8qP/ynE14/IoRu/YqG0qSNsG4rUzfCTwGODszz209jCRtqrFZmUbEMcBrgSuAF27Kr8nMRSOeawWwsG46Sdq4sViZRsQrgVOAHwIHZuaNjUeSpGlpHtOIOA44DfgBXUivbzySJE1b05hGxAnA+4Hv0IX01y3nkaSZahbTiHgL3QGnFcDBmbm61SySNFtNDkBFxIuBtwO/By4EjomIqQ9blZlLBx5Nkmak1dH83frtPOC4EY/5OrB0kGkkaZZafZz0pMyMe7gtbjGbJM1E86P5kjQXGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCY3M907lo3Tr/5RVpS+HKVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSCsxvPcCctlW2nkDSQFyZSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSgbGJaUS8ICKyvx3deh5Jmo6xiGlEPAz4AHBr61kkaSaaxzQiAvh34Abg9MbjSNKMNI8pcAxwEHAU8LvGs0jSjDSNaUQsAN4JnJKZy1vOIkmz0ewSfBExH/gk8FPgjTN8jhUjdu0107kkaSZaXs/0RGBv4KmZubbhHJI0a01iGhFPoluNvjczL5np82TmohHPvwJYONPnlaTpGvw90/7l/SeAq4C3DP37S9K9ocUBqO2APYAFwO2TTtRP4K39Yz7c33dyg/kkadpavMy/A/joiH0L6d5HvQi4EpjxWwCSNKTBY9ofbNrgx0Uj4iS6mH48Mz8y5FySNBvjcNK+JG32jKkkFRirmGbmSZkZvsSXtLkZq5hK0ubKmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBVoeXHoOe/O9Xe0HgGAw57yrNYjcNNNN7UeAYB58+a1HoHl37+g9Qi6F7gylaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAvNbDzCXXfjdC1qPoDG0/8L9W48AwPLLlrceYU5xZSpJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWaxzQiDo6IsyLi+oi4IyJ+ERHnRsShrWeTpE3V9OOkEfFu4HjgOuCLwGpgF2ARsBg4u9lwkjQNzWIaES+lC+nHgZdl5p1T9m/VZDBJmoEmL/MjYmvgHcBP2UBIATLzrsEHk6QZarUyfTrdy/mTgfURcRjwGOB24NLMvKTRXJI0I61i+sR+eztwOV1I/yAilgNHZOZvNvYkEbFixK69Zj2hJE1Dq6P5u/bb44EEngZsDzwWOA/YHzizzWiSNH2tVqYTEV8HLMnMVf3X34+I5wBXAgdExL4be8mfmYs2dH+/Yl1YOK8kbVSrlelN/fbySSEFIDNvA87tv9xnyKEkaaZaxfTKfnvTiP2/7bfbDDCLJM1aq5h+je690kdHxIZmmDggde1wI0nSzDWJaWb+BPgS8OfAsZP3RcQhwF/TrVrPGX46SZq+lh8nfQWwN/C+/jzTy4HdgMOB3wNHZ+bNDeeTpE3WLKaZeV1ELAJOBJbQnQ61hm7F+i+ZeWmr2SRpuppe6KQ/Kf9V/U2SNlvNL8EnSXOBMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSrQ9KR9aUu0/LLlrUcA4HEL/rL1CHx35fdbj1DGlakkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBWY33oASW3suvODWo8wp7gylaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAk1jGhGHRcR5EXFdRKyNiB9HxJkRsW/LuSRpuprFNCLeBXwZWAicA5wCXAY8G/hGRLyg1WySNF1NPpsfEQ8BXgf8CnhsZv560r4DgfOBtwNntJhPkqar1cr04f3v/b+TQwqQmcuAW4BdWgwmSTPRKqZXA3cC+0TEH126JiL2B7YHvtpiMEmaiSYv8zPzxog4AXgf8MOI+DxwA7A7sAT4CvAP9/Q8EbFixK69qmaVpE3R7HqmmXlyRKwCPga8dNKua4ClU1/+S9I4a3k0//XAZ4GldCvSbYFFwI+BT0XEu+/pOTJz0YZuwBX34uiS9CeaxDQiFgPvAr6Yma/JzB9n5m2ZeRnwHODnwGsj4pEt5pOk6Wq1Mv2bfrts6o7MvA24lG62vYccSpJmqlVMt+63o05/mrj/zgFmkaRZaxXTC/vtyyLizybviIhnAvsBtwMXDz2YJM1Eq6P5n6U7j/SvgJURcRZwPbCA7i2AAN6QmTc0mk+SpqXVeabrI+JQ4BXA8+kOOt0fuBE4Gzg1M89rMZskzUTL80zvAk7ub5K0WfN6ppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVaHbSvqS2bl1zS+sR5hRXppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVGB+6wHmsic+Yu/WIwDwrVWXtx5Bkyx56jNajwDAJd/7dusR5hRXppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVKAkphFxREScFhEXRsSaiMiIOOMefs1TIuLsiLgxItZGxPci4riImFcxkyQNqerjpG8GHgfcClwH7LWxB0fEs4HPAbcDnwFuBJ4FvB/YDziyaC5JGkTVy/xXA3sAOwD/uLEHRsQOwIeB3wOLM/MlmXk88HjgEuCIiHh+0VySNIiSmGbmssy8OjNzEx5+BLAL8OnM/MOVFjLzdroVLtxDkCVp3LQ4AHVQvz1nA/uWA7cBT4mIrYcbSZJmp8Ul+Pbst1dN3ZGZ6yLiWuAvgEcCKzf2RBGxYsSujb5nK0nVWqxMd+y3N4/YP3H/AwaYRZJKbNYXh87MRRu6v1+xLhx4HElbsBYr04mV544j9k/cf9MAs0hSiRYxvbLf7jF1R0TMB3YD1gE/HnIoSZqNFjE9v99u6B/C2R+4P3BxZt4x3EiSNDstYvpZYDXw/Ih4wsSdEXE/4J/7Lz/UYC5JmrGSA1ARcThweP/lQ/rtvhGxtP/v1Zn5OoDMXBMRL6WL6gUR8Wm6j5MuoTtt6rN0HzGVpM1G1dH8xwMvnnLfI/sbwE+A103syMzPR8QBwJuA5wH3A64BXgOcuomfpJKksVES08w8CThpmr/mG8ChFb+/JLXm9UwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKrBZX8903H1r1eWtRwBg8Z5PbT0C8+ePx4/avHnRegTO/d6y1iPoXuDKVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQC81sPoHvfBVde1HoEac5zZSpJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVKIlpRBwREadFxIURsSYiMiLOGPHYR0XECRFxfkT8LCLujIhfRcQXIuLAinkkaWhVn81/M/A44FbgOmCvjTz2n4C/BX4InA3cCOwJLAGWRMSxmXlq0VySNIiqmL6aLqLXAAcAyzby2HOAd2Xm5ZPvjIgDgK8A74mIMzPzl0WzSdK9ruRlfmYuy8yrMzM34bFLp4a0v//rwAXAfYGnVMwlSUMZtwNQd/XbdU2nkKRpGpvrmUbEw4GDgduA5Zv4a1aM2LWx92wlqdxYxDQitgY+BWwNvD4zf9t4JEmaluYxjYh5wCeB/YDPAP+6qb82MxeNeM4VwMKSASVpEzR9z7QP6RnAkcB/AS/YlINYkjRumsU0IrYC/hN4PvAfwN9lpgeeJG2WmrzMj4j70q1Enw18AjgqM9e3mEWSKgy+Mu0PNp1FF9KPYkglzQElK9OIOBw4vP/yIf1234hY2v/36sx8Xf/fpwOHAquBnwMnRsTUp7wgMy+omE2ShlD1Mv/xwIun3PfI/gbwE2Aiprv12wcBJ27kOS8omk2S7nUlMc3Mk4CTNvGxiyt+T0kaJ+P2cVJJ2iwZU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpQMzFizRFxA3bbLPNTgsWLGg9iqQxt3LlStauXXtjZu48m+eZqzG9FtgBWDWLp5m4Wv8Vsx5o8+f34m5+Lzpz6fvwCGBNZu52Tw/cmDkZ0woT/yTKqAtQb0n8XtzN70XH78Of8j1TSSpgTCWpgDGVpALGVJIKGFNJKuDRfEkq4MpUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGdIiIeGhEfi4hfRMQdEbEqIk6OiAe2nm0oEbFzRBwdEWdFxDURsTYibo6IiyLiJRGxRf/cRMQLIiL729Gt5xlaRBzc/2xc3/8d+UVEnBsRh7aeraX5rQcYJxGxO3AxsCvwBbprNe4DHAs8IyL2y8wbGo44lCOBDwG/BJYBPwUeDDwX+AjwzIg4MrfAT3xExMOADwC3Ats1HmdwEfFu4HjgOuCLwGpgF2ARsBg4u9lwrWWmt/4GnAsk8Kop97+vv//01jMO9H04CHgWcJ8p9z+ELqwJPK/1nA2+LwF8FfgR8J7++3B067kG/PO/tP8zLwXuu4H9W7WeseVti365Nlm/Kj2E7ur8H5yy+63A74AXRsS2A482uMw8PzO/lJnrp9x/PXB6/+XiwQdr7xi6/9EcRffzsMWIiK2Bd9D9z/RlmXnn1Mdk5l2DDzZGjOndDuy3520gIrcA3wDuDzx56MHGzMRfmHVNpxhYRCwA3gmckpnLW8/TwNPpXs7/N7A+Ig6LiBMi4tiI2LfxbGPB90zvtme/vWrE/qvpVq57AF8bZKIxExHzgRf1X57TcpYh9X/uT9Ktyt7YeJxWnthvbwcuBx4zeWdELAeOyMzfDD3YuHBlercd++3NI/ZP3P+AAWYZV++k+0t0dmae23qYAZ0I7A38fWaubT1MI7v22+Pp3jd9GrA98FjgPGB/4Mw2o40HY6pNEhHHAK+lO8PhhY3HGUxEPIluNfrezLyk9TwNTbRiHbAkMy/KzFsz8/vAc+iO7h+wJb/kN6Z3m1h57jhi/8T9Nw0wy1iJiFcCpwA/BA7MzBsbjzSI/uX9J+je+nlL43Fam/i5vzwzV03ekZm30Z0JA92phFskY3q3K/vtHiP2P6rfjnpPdU6KiOOA04Af0IX0+sYjDWk7up+HBcDtk07UT7ozPAA+3N93crMphzHx92PUYuK3/XabAWYZSx6AutuyfntIRNxn8hH9iNge2A+4Dfhmi+FaiIgT6N4n/Q7w9Mxc3Xikod0BfHTEvoV076NeRBeauf4WwNfo3it99NS/H72JA1LXDjvWGGl9ous43fCk/cl/5rf0f+ZvAzu1nmfcbsBJbHkn7X+h/zO/esr9hwDr6VanO7aes9XNlekfezndx0lPjYiDgZXAk+jOQb0KeFPD2QYTES8G3g78HrgQOCYipj5sVWYuHXg0tfUKutX4+yLiMLpTpHYDDqf7WTk6M0edDTPnGdNJMvNHEfEEupA8AziU7vPppwBvy8zfbuzXzyG79dt5wHEjHvN1uo8VaguRmddFxCK6U8WW0J0OtQb4EvAvmXlpy/la818nlaQCHs2XpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAv8PSFrlWLOqV0QAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 250, "width": 169 }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAH0CAYAAAAt09aLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGKxJREFUeJzt3Xu0XnV54PHvI8EQEKKoyFq9aEAhsbaVRFGk5SKVKtaIFWZYs7wsl2BnSosoAi6tSJ1xFWyrgO3IWl4mVWxrgUFlygAK4eoFjdihJVxiiBQ1KkQuGsItz/yx92mOx5wkhNf9O+9zvp+1ztqcd7958+TlnG9+2e9+94nMRJI0/p7UegBJ0mgYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqYg5rQf4ZYiIO4DdgDWNR5GkbfEc4P7MXPBEHqRk0IHd5s2bt/uiRYt2bz2IJG3NypUr2WmnnZ5wr6oGfc2iRYt2X7FiRes5JGmrlixZMpLH8Ri6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QimgY9In41Ij4VEd+PiIciYk1EnBURT2s5lySNo2bvFI2IvYGvAHsAXwBuAfYH3g68MiIOzMx7Ws0nSeOm5Qr9f9LF/ITMPDIz352ZLwc+AuwLfLDhbJI0dpoEvV+dH053NcS/nbL7/cDPgDdGxC4DjyZJY6vVCv3Qfnt5Zm6cvCMzHwCuB3YGXjr0YJI0rlodQ9+33942zf7b6Vbw+wBXTPcgETHd5RQXbv9okjSeWq3Q5/fb+6bZP3H7UweYRZJKGOvroWfmZi8i3K/cFw88jiQ11WqFPrECnz/N/onb7x1gFkkqoVXQb+23+0yz/3n9drpj7JKkKVoFfXm/PTwifm6GiNgVOBBYD3xt6MEkaVw1CXpmfge4nO4nXR8/ZfefA7sAn8nMnw08miSNrZYviv4x3Vv/z4mIw4CVwEvozlG/DXhvw9kkaew0e+t/v0p/EbCMLuQnAXsDZwMv9ToukvT4ND1tMTP/HXhLyxkkqQqvhy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqYixvh66xst+z/2N1iPw689Z0HoEAG5f9Z3WI7DjjnNbjwDAv9z+7dYjlOEKXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoqY03oA/fK99Lm/2XoEAG5c9W+tR9AMdPCLD2k9Ald/46rWI4yEK3RJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqoknQI+LpEXFsRFwUEasi4sGIuC8irouIt0aEf9FI0uPU6q3/RwMfA34ALAfuBJ4F/CHwCeBVEXF0Zmaj+SRp7LQK+m3AUuCfM3PjxI0R8R7gBuD1dHG/sM14kjR+mhzayMwrM/PiyTHvb18LnNt/esjgg0nSGJuJx6of6bePNp1CksbMjLp8bkTMAd7Uf3rpNtx/xTS7Fo5sKEkaEzNthX4G8ALgksy8rPUwkjROZswKPSJOAE4CbgHeuC2/JjOXTPNYK4DFo5tOkma+GbFCj4g/Ac4GbgYOzcx1jUeSpLHTPOgRcSLwUeBf6WK+tvFIkjSWmgY9Ik4FPgJ8my7mP2o5jySNs2ZBj4j30b0IugI4LDPvbjWLJFXQ5EXRiHgz8AHgMeBa4ISImHq3NZm5bODRJGlstTrLZUG/3QE4cZr7XA0sG2QaSSqg1Vv/T8/M2MrHIS1mk6Rx1fwsF0nSaBh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqYgZcz30ig5eODMuyf61VTe1HkGa1tXfuKr1CGW4QpekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6Qi5rQeoLKdd5zXegRJs4grdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSpixgQ9It4QEdl/HNt6HkkaNzMi6BHxa8DfAD9tPYskjavmQY+IAP4XcA9wbuNxJGlsNQ86cALwcuAtwM8azyJJY6tp0CNiEXAGcHZmXtNyFkkad80unxsRc4DPAHcC79nOx1gxza6F2zuXJI2rltdDPw3YD/idzHyw4RySVEKToEfES+hW5X+dmV/d3sfJzCXTPP4KYPH2Pq4kjaPBj6H3h1o+DdwGvG/o31+SqmrxouhTgH2ARcCGSW8mSuD9/X0+3t92VoP5JGkstTjk8hDwyWn2LaY7rn4dcCuw3YdjJGm2GTzo/Qugm31rf0ScThf0v8vMTww5lySNu5nwxiJJ0ggYdEkqYkYFPTNPz8zwcIskPX4zKuiSpO1n0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiWv6Ai/Ie2/BY6xFmlBc9a1HrEdj9WU9vPQIAO86b23oE/vnrV7QeQSPmCl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKmNN6gMp2iCe3HgGAo/Z7VesRAPjmD1e2HkGTvObA3289AgAXX39Z6xHKcIUuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRTQPekQcFhEXRcTaiHgoIr4fEZdFxBGtZ5OkcdL0rf8R8SHgZOAu4IvA3cAzgSXAIcAlzYaTpDHTLOgRcRxdzP8OeFtmPjxl/45NBpOkMdXkkEtEzAU+CNzJZmIOkJmPDD6YJI2xViv0V9AdWjkL2BgRrwZeAGwAbsjMrzaaS5LGVqugv7jfbgBupIv5f4iIa4CjMvPHW3qQiFgxza6FT3hCSRozrc5y2aPfngwk8LvArsBvAZcDBwHntxlNksZTqxX6xF8kjwJLM3NN//lNEfE64Fbg4Ig4YEuHXzJzyeZu71fui0c4ryTNeK1W6Pf22xsnxRyAzFwPTPwIk/2HHEqSxlmroN/ab++dZv9P+u28AWaRpBJaBf0KumPnz4+Izc0w8SLpHcONJEnjrUnQM/O7wMXArwNvn7wvIg4Hfp9u9X7p8NNJ0nhq+db/44H9gA/356HfCCwAjgQeA47NzPsazidJY6VZ0DPzrohYApwGLKU7VfF+upX7X2TmDa1mk6Rx1PTiXP0bh/60/5AkPQHNL58rSRoNgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQV0fSNRdXttvP81iMA8LkbL249gmagi6+/bOt3GsBv7vX81iNw0+qbW48wEq7QJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqYg5rQeo7N51D7QeQZrxdn3Kbq1HKMMVuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBXRNOgR8eqIuDwi7oqIByNidUScHxEHtJxLksZRs6BHxJnA/wEWA5cCZwPfAl4LXB8Rb2g1mySNoybXcomIPYF3AT8EfiszfzRp36HAlcAHgPNazCdJ46jVCv3Z/e/99ckxB8jM5cADwDNbDCZJ46pV0G8HHgb2j4hnTN4REQcBuwJfbjGYJI2rJodcMnNdRJwKfBi4OSI+D9wD7A0sBb4E/NHWHiciVkyza+GoZpWkcdHseuiZeVZErAE+BRw3adcqYNnUQzGSpC1reZbLKcAFwDK6lfkuwBJgNfDZiPjQ1h4jM5ds7gO45Zc4uiTNSE2CHhGHAGcCX8zMd2bm6sxcn5nfAl4HfA84KSL2ajGfJI2jViv0P+i3y6fuyMz1wA10s+035FCSNM5aBX1uv53u1MSJ2x8eYBZJKqFV0K/tt2+LiF+ZvCMiXgUcCGwAvjL0YJI0rlqd5XIB3XnmvwesjIiLgLXAIrrDMQG8OzPvaTSfJI2dVuehb4yII4DjgWPoXgjdGVgHXAKck5mXt5hNksZVy/PQHwHO6j8kSU+Q10OXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklREszcWzQa7P80fiyptzSOPPdp6hDJcoUtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRc1oPUNk//Mv5rUcA4PWLXtd6BAAuXHlR6xE0yWGLX956BAC+8W/fbD1CGa7QJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqYiRBD0ijoqIj0bEtRFxf0RkRJy3lV/zsoi4JCLWRcSDEfH/IuLEiNhhFDNJ0mwzqrf+/xnw28BPgbuAhVu6c0S8FrgQ2AB8DlgHvAb4CHAgcPSI5pKkWWNUh1zeAewD7Ab8ty3dMSJ2Az4OPAYckplvzcyTgRcCXwWOiohjRjSXJM0aIwl6Zi7PzNszM7fh7kcBzwT+MTP/46o8mbmBbqUPW/lLQZL0i1q8KDpxibdLN7PvGmA98LKImDvcSJI0/lpcPnfffnvb1B2Z+WhE3AH8BrAXsHJLDxQRK6bZtcVj+JJUUYsV+vx+e980+yduf+oAs0hSGWP9Ay4yc8nmbu9X7osHHkeSmmqxQp9Ygc+fZv/E7fcOMIskldEi6Lf2232m7oiIOcAC4FFg9ZBDSdK4axH0K/vtKzez7yBgZ+ArmfnQcCNJ0vhrEfQLgLuBYyLiRRM3RsROwP/oP/1Yg7kkaayN5EXRiDgSOLL/dM9+e0BELOv/++7MfBdAZt4fEcfRhf2qiPhHurf+L6U7pfECussBSJIeh1Gd5fJC4M1Tbtur/wD4LvCuiR2Z+fmIOBh4L/B6YCdgFfBO4JxtfMepJGmSkQQ9M08HTn+cv+Z64IhR/P6SJK+HLkllGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpiLG+Hrq2zYUrL2o9AgBLF76m9Qg8Nmdj6xEA+PH9P249AjfceUPrETRirtAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBUxp/UAmj2+eMvFrUeQSnOFLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqYiRBj4ijIuKjEXFtRNwfERkR501z3+dFxKkRcWVE/HtEPBwRP4yIL0TEoaOYR5Jmo1Fdy+XPgN8GfgrcBSzcwn3/O/CfgZuBS4B1wL7AUmBpRLw9M88Z0VySNGuMKujvoAv5KuBgYPkW7nspcGZm3jj5xog4GPgS8JcRcX5m/mBEs0nSrDCSQy6ZuTwzb8/M3Ib7Lpsa8/72q4GrgCcDLxvFXJI0m8y0F0Uf6bePNp1CksbQjLkeekQ8GzgMWA9cs42/ZsU0u7Z0DF+SSpoRQY+IucBngbnAKZn5k8YjSdLYaR70iNgB+AxwIPA54K+29ddm5pJpHnMFsHgkA0rSmGh6DL2P+XnA0cA/AW/YlhdWJUm/qFnQI2JH4B+AY4C/B/5LZvpiqCRtpyaHXCLiyXQr8tcCnwbekpkbW8wiSVUMvkLvXwC9iC7mn8SYS9JIjGSFHhFHAkf2n+7Zbw+IiGX9f9+dme/q//tc4AjgbuB7wGkRMfUhr8rMq0YxmyTNFqM65PJC4M1Tbtur/wD4LjAR9AX99hnAaVt4zKtGNJskzQojCXpmng6cvo33PWQUv6ck6efNtLf+S5K2k0GXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRUfHihhFxz7x583ZftGhR61EkaatWrlzJTjvtxLp1637hbfOPR9Wg3wHsBqx5Ag8z8VOPbnnCA40/n4tNfC46Pg+bjOK5eA5wf2Yu2Nodt6Rk0Edh4sfbTfdDNGYTn4tNfC46Pg+bzKTnwmPoklSEQZekIgy6JBVh0CWpCIMuSUV4loskFeEKXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoE8REb8aEZ+KiO9HxEMRsSYizoqIp7WebSgR8fSIODYiLoqIVRHxYETcFxHXRcRbI2JWf91ExBsiIvuPY1vPM7SIOKz/2ljbf498PyIui4gjWs82pIh4dURcHhF39d8jqyPi/Ig4oNlMvrFok4jYG/gKsAfwBbrrG+8PHArcChyYmfe0m3AYEfFfgY8BPwCWA3cCzwL+EJgPXAgcnbPwiycifg24CdgBeApwXGZ+ou1Uw4mIDwEnA3cB/xe4G3gmsAT4cmae0nC8wUTEmcApwD3A5+meh+cCS4E5wJsy87zBB8tMP/oP4DIggT+dcvuH+9vPbT3jQM/Dy4HXAE+acvuedHFP4PWt52zwvATwZeA7wF/2z8Oxreca8M9/XP9nXgY8eTP7d2w940DPw57AY8BaYI8p+w7tn6PVLWab1f90nqxfnR9O91OO/nbK7vcDPwPeGBG7DDza4DLzysy8ODM3Trl9LXBu/+khgw/W3gl0f9m9he7rYdaIiLnAB+n+Qn9bZj489T6Z+cjgg7XxbLrD1V/PzB9N3pGZy4EH6P7VMjiDvsmh/fbyzYTsAeB6YGfgpUMPNsNMfNM+2nSKgUXEIuAM4OzMvKb1PA28gi5S/xvY2B8/PjUi3t7ymHEjtwMPA/tHxDMm74iIg4Bd6f4lN7g5LX7TGWrffnvbNPtvp1vB7wNcMchEM0xEzAHe1H96actZhtT/uT9Dtzp9T+NxWnlxv90A3Ai8YPLOiLgGOCozfzz0YEPLzHURcSrdodibI+LzdMfS96Y7hv4l4I9azGbQN5nfb++bZv/E7U8dYJaZ6gy6b+RLMvOy1sMM6DRgP+B3MvPB1sM0ske/PRm4Gfhd4NvAAuCv6BY75zNLDsVl5lkRsQb4FN1rCxNWAcumHooZiodctE0i4gTgJLozf97YeJzBRMRL6Fblf52ZX209T0MTrXgUWJqZ12XmTzPzJuB1dGe9HDxbDr9ExCnABXQvEO8N7EJ3ps9q4LP92UCDM+ibTKzA50+zf+L2eweYZUaJiD8BzqZbmR2amesajzSI/lDLp+kOw72v8TitTXzd35iZaybvyMz1dGeIQXeab2kRcQhwJvDFzHxnZq7OzPWZ+S26v9y+B5wUEXsNPZtB3+TWfrvPNPuf12+nO8ZeUkScCHwU+Fe6mK9tPNKQnkL39bAI2DDpzURJd+YTwMf7285qNuUwJr4/plvQ/KTfzhtgltb+oN8un7qj/8vtBrq27jfkUOAx9Mkm/uccHhFPmnymS0TsChwIrAe+1mK4FvoXfs6gO1b6isy8u/FIQ3sI+OQ0+xbTfcNeRxe76odjrqA7v/r5U78/ehMvkt4x7FhNzO23052aOHH7L5za+UvX+iT9mfSBbyya/Gd+X/9n/iawe+t5ZtoHcDqz741FX+j/zO+YcvvhwEa6Vfr81nMO8Dz8p/55WAv8ypR9r+qfiweBpw89myv0n/fHdG/9PyciDgNWAi+hO0f9NuC9DWcbTES8GfgA3bvhrgVOiIipd1uTmcsGHk1tHU/3r5IPR8Sr6U5fXAAcSfe1cmxmTneWWCUX0J1n/nvAyoi4iC7ui+gOxwTw7mxwmRCDPklmficiXkQXs1cCR9Bdz+Rs4M8z8ydb+vWFLOi3OwAnTnOfq+le4dcskZl3RcQSutM4lwIHAfcDFwN/kZk3tJxvKJm5sb8Q2fHAMXQvhO4MrAMuAc7JzMtbzObFuSSpCM9ykaQiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIv4/Mif3W5RLO6AAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 250, "width": 186 }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAH0CAYAAAAt09aLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAF5ZJREFUeJzt3XmQZWV5gPHnlUE2AUVFqlwHIjDGUplRFFEWUaKoIyokVMqlLEETUUQRsFwQTayAK2CMVLlkVEw0YHBJCKAyCLgRRyy1GFmEUVFHhREQhtV588c5nWnbuTPDcD1f37efX1XXoe+5ffvtS/fTZ7577u3ITCRJk+8+rQeQJI2HQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoqY13qAP4eIuBbYDljReBRJ2hiPAm7OzPn35kZKBh3YbqutttphwYIFO7QeRJI2ZPny5Wy55Zb3uldVg75iwYIFOyxbtqz1HJK0QYsWLRrL7biGLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpiKZBj4iHRcQnIuKXEXFHRKyIiFMi4gEt55KkSdTsmaIRsQvwTWBH4IvAj4E9gdcDz46IvTPzhlbzSdKkaXmE/i90MT8qMw/OzDdn5jOADwK7Ae9uOJskTZwmQe+Pzg+kezXED8/Y/Q7gVuClEbHNwKNJ0sRqdYS+f789PzPXTN+Rmb8HvgFsDTxl6MEkaVK1WkPfrd9eOWL/VXRH8LsCXxt1IxEx6uUUd9/00SRpMrU6Qt++3940Yv/U5fcfYBZJKmGiXw89M9f5IsL9kfvCgceRpKZaHaFPHYFvP2L/1OU3DjCLJJXQKuhX9NtdR+x/dL8dtcYuSZqhVdCX9tsDI+KPZoiIbYG9gdXAt4ceTJImVZOgZ+ZPgPPp/tL1kTN2vxPYBvh0Zt468GiSNLFaPij6Grqn/p8WEQcAy4En052jfiXw1oazSdLEafbU//4o/YnAErqQHwPsApwKPMXXcZGke6bpaYuZ+XPgFS1nkKQqfD10SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJURJOgR8QDI+LwiDg7Iq6OiNsi4qaIuCQiXhkR/qKRpHtoXqPPeyjwEeBXwFLgZ8BDgBcBHwOeExGHZmY2mk+SJk6roF8JLAb+OzPXTF0YEW8BLgVeTBf3z7cZT5ImT5Oljcy8IDO/PD3m/eUrgdP7d/cbfDBJmmCzca36rn57d9MpJGnCtFpyWaeImAe8rH/33I24/rIRu3Yf21CSNCFm2xH6ScBjgXMy87zWw0jSJJk1R+gRcRRwDPBj4KUb8zGZuWjEbS0DFo5vOkma/WbFEXpEvBY4Fbgc2D8zVzUeSZImTvOgR8TRwIeAH9HFfGXjkSRpIjUNekQcD3wQ+D5dzH/Tch5JmmTNgh4Rb6d7EHQZcEBmXt9qFkmqoMmDohHxcuBdwB+Ai4GjImLm1VZk5pKBR5OkidXqLJf5/XYz4OgR1/k6sGSQaSSpgFZP/T8xM2MDb/u1mE2SJlXzs1wkSeNh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqYtYEPSJeEhHZvx3eeh5JmjSzIugR8XDgn4FbWs8iSZOqedAjIoB/BW4ATm88jiRNrOZBB44CngG8Ari18SySNLGaBj0iFgAnAadm5kUtZ5GkSTev1SeOiHnAp4GfAW/ZxNtYNmLX7ps6lyRNqmZBB04A9gCelpm3NZxDkkpoEvSIeDLdUfn7M/Nbm3o7mbloxO0vAxZu6u1K0iQafA29X2r5FHAl8PahP78kVdXiQdH7AbsCC4Dbpz2ZKIF39Nf5aH/ZKQ3mk6SJ1GLJ5Q7g4yP2LaRbV78EuALY5OUYSZprBg96/wDoOp/aHxEn0gX9k5n5sSHnkqRJNxueWCRJGgODLklFzKqgZ+aJmRkut0jSPTergi5J2nQGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6Qimgc9Ig6IiLMjYmVE3BERv4yI8yLioNazSdIkmdfyk0fEe4BjgeuALwHXAw8GFgH7Aec0G06SJkyzoEfEEXQx/yTwqsy8c8b+zZsMJkkTqsmSS0RsAbwb+BnriDlAZt41+GCSNMFaHaE/i25p5RRgTUQ8F3gscDtwaWZ+q9FckjSxWgX9Sf32duAyupj/v4i4CDgkM3+7vhuJiGUjdu1+ryeUpAnT6iyXHfvtsUACTwe2BR4HnA/sA5zZZjRJmkytjtCnfpHcDSzOzBX9+z+MiBcCVwD7RsRe61t+ycxF67q8P3JfOMZ5JWnWa3WEfmO/vWxazAHIzNXAef27ew45lCRNslZBv6Lf3jhi/+/67VYDzCJJJbQK+tfo1s4fExHrmmHqQdJrhxtJkiZbk6Bn5k+BLwOPAF4/fV9EHAj8Fd3R+7nDTydJk6nlU/+PBPYAPtCfh34ZMB84GPgDcHhm3tRwPkmaKM2CnpnXRcQi4ARgMd2pijfTHbn/U2Ze2mo2SZpETV+cq3/i0Ov6N0nSvdD85XMlSeNh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6Qimj6xqLonPG6P1iMAsPnms+Pvbf925a9bj8AjHvbI1iMAsGbNmtYjcOvNt7QeAYDtttuu9Qh8/X8vaj3CWHiELklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUXMaz1AZd//wWWtR5A0h3iELklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUU0DXpEPDcizo+I6yLitoi4JiLOjIi9Ws4lSZOoWdAj4mTgv4CFwLnAqcD3gBcA34iIl7SaTZImUZPXcomInYA3Ab8GHpeZv5m2b3/gAuBdwBkt5pOkSdTqCP2R/ef+zvSYA2TmUuD3wINbDCZJk6pV0K8C7gT2jIgHTd8REfsA2wJfbTGYJE2qJksumbkqIo4HPgBcHhFfAG4AdgEWA18BXr2h24mIZSN27T6uWSVpUjR7PfTMPCUiVgCfAI6YtutqYMnMpRhJ0vq1PMvlOOAsYAndkfk2wCLgGuAzEfGeDd1GZi5a1xvw4z/j6JI0KzUJekTsB5wMfCkz35iZ12Tm6sz8HvBC4BfAMRGxc4v5JGkStTpCf16/XTpzR2auBi6lm22PIYeSpEnWKuhb9NtRpyZOXX7nALNIUgmtgn5xv31VRDx0+o6IeA6wN3A78M2hB5OkSdXqLJez6M4zfyawPCLOBlYCC+iWYwJ4c2be0Gg+SZo4rc5DXxMRBwFHAofRPRC6NbAKOAc4LTPPbzGbJE2qlueh3wWc0r9Jku4lXw9dkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVMZagR8QhEfGhiLg4Im6OiIyIMzbwMU+NiHMiYlVE3BYRP4iIoyNis3HMJElzzbwx3c7bgMcDtwDXAbuv78oR8QLg88DtwOeAVcDzgQ8CewOHjmkuSZozxrXk8gZgV2A74O/Xd8WI2A74KPAHYL/MfGVmHgs8AfgWcEhEHDamuSRpzhhL0DNzaWZelZm5EVc/BHgw8NnM/O6027id7kgfNvBLQZL0p1o8KPqMfnvuOvZdBKwGnhoRWww3kiRNvnGtod8Tu/XbK2fuyMy7I+Ja4C+BnYHl67uhiFg2Ytd61/AlqaIWR+jb99ubRuyfuvz+A8wiSWW0OEIfm8xctK7L+yP3hQOPI0lNtThCnzoC337E/qnLbxxgFkkqo0XQr+i3u87cERHzgPnA3cA1Qw4lSZOuRdAv6LfPXse+fYCtgW9m5h3DjSRJk69F0M8CrgcOi4gnTl0YEVsC/9i/+5EGc0nSRBvLg6IRcTBwcP/uTv12r4hY0v/39Zn5JoDMvDkijqAL+4UR8Vm6p/4vpjul8Sy6lwOQJN0D4zrL5QnAy2dctnP/BvBT4E1TOzLzCxGxL/BW4MXAlsDVwBuB0zbyGaeSpGnGEvTMPBE48R5+zDeAg8bx+SVJvh66JJVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBl2SijDoklSEQZekIgy6JBVh0CWpCIMuSUUYdEkqYixBj4hDIuJDEXFxRNwcERkRZ4y47qMj4viIuCAifh4Rd0bEryPiixGx/zjmkaS5aN6YbudtwOOBW4DrgN3Xc91/AP4GuBw4B1gF7AYsBhZHxOsz87QxzSVJc8a4gv4GupBfDewLLF3Pdc8FTs7My6ZfGBH7Al8B3hsRZ2bmr8Y0myTNCWNZcsnMpZl5VWbmRlx3ycyY95d/HbgQuC/w1HHMJUlzyWx7UPSufnt30ykkaQKNa8nlXouIRwIHAKuBizbyY5aN2LW+NXxJKmlWBD0itgA+A2wBHJeZv2s8kiRNnOZBj4jNgE8DewOfA963sR+bmYtG3OYyYOFYBpSkCdF0Db2P+RnAocB/AC/ZmAdWJUl/qlnQI2Jz4N+Bw4B/A/42M30wVJI2UZMll4i4L90R+QuATwGvyMw1LWaRpCoGP0LvHwA9my7mH8eYS9JYjOUIPSIOBg7u392p3+4VEUv6/74+M9/U//fpwEHA9cAvgBMiYuZNXpiZF45jNkmaK8a15PIE4OUzLtu5fwP4KTAV9Pn99kHACeu5zQvHNJskzQljCXpmngicuJHX3W8cn1OS9Mdm21P/JUmbyKBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJamIqPjihhFxw1ZbbbXDggULWo8iSRu0fPlyttxyS1atWvUnT5u/J6oG/VpgO2DFvbiZqb969ON7PdDk875Yy/ui4/2w1jjui0cBN2fm/A1dcX1KBn0cpv683ag/ojGXeF+s5X3R8X5YazbdF66hS1IRBl2SijDoklSEQZekIgy6JBXhWS6SVIRH6JJUhEGXpCIMuiQVYdAlqQiDLklFGHRJKsKgS1IRBn2GiHhYRHwiIn4ZEXdExIqIOCUiHtB6tqFExAMj4vCIODsiro6I2yLipoi4JCJeGRFz+vsmIl4SEdm/Hd56nqFFxAH998bK/mfklxFxXkQc1Hq2IUXEcyPi/Ii4rv8ZuSYizoyIvZrN5BOL1oqIXYBvAjsCX6R7feM9gf2BK4C9M/OGdhMOIyL+DvgI8CtgKfAz4CHAi4Dtgc8Dh+Yc/OaJiIcDPwQ2A+4HHJGZH2s71XAi4j3AscB1wP8A1wMPBhYBX83M4xqON5iIOBk4DrgB+ALd/fAXwGJgHvCyzDxj8MEy07f+DTgPSOB1My7/QH/56a1nHOh+eAbwfOA+My7fiS7uCby49ZwN7pcAvgr8BHhvfz8c3nquAb/+I/qveQlw33Xs37z1jAPdDzsBfwBWAjvO2Ld/fx9d02K2Of1P5+n6o/MD6f7K0Ydn7H4HcCvw0ojYZuDRBpeZF2TmlzNzzYzLVwKn9+/uN/hg7R1F98vuFXTfD3NGRGwBvJvuF/qrMvPOmdfJzLsGH6yNR9ItV38nM38zfUdmLgV+T/evlsEZ9LX277fnryNkvwe+AWwNPGXowWaZqR/au5tOMbCIWACcBJyamRe1nqeBZ9FF6j+BNf368fER8fqWa8aNXAXcCewZEQ+aviMi9gG2pfuX3ODmtfiks9Ru/fbKEfuvojuC3xX42iATzTIRMQ94Wf/uuS1nGVL/dX+a7uj0LY3HaeVJ/fZ24DLgsdN3RsRFwCGZ+duhBxtaZq6KiOPplmIvj4gv0K2l70K3hv4V4NUtZjPoa23fb28asX/q8vsPMMtsdRLdD/I5mXle62EGdAKwB/C0zLyt9TCN7NhvjwUuB54OfB+YD7yP7mDnTObIUlxmnhIRK4BP0D22MOVqYMnMpZihuOSijRIRRwHH0J3589LG4wwmIp5Md1T+/sz8Vut5Gppqxd3A4sy8JDNvycwfAi+kO+tl37my/BIRxwFn0T1AvAuwDd2ZPtcAn+nPBhqcQV9r6gh8+xH7py6/cYBZZpWIeC1wKt2R2f6ZuarxSIPol1o+RbcM9/bG47Q29X1/WWaumL4jM1fTnSEG3Wm+pUXEfsDJwJcy842ZeU1mrs7M79H9cvsFcExE7Dz0bAZ9rSv67a4j9j+6345aYy8pIo4GPgT8iC7mKxuPNKT70X0/LABun/ZkoqQ78wngo/1lpzSbchhTPx+jDmh+12+3GmCW1p7Xb5fO3NH/cruUrq17DDkUuIY+3dT/nAMj4j7Tz3SJiG2BvYHVwLdbDNdC/8DPSXRrpc/KzOsbjzS0O4CPj9i3kO4H9hK62FVfjvka3fnVj5n589GbepD02mHHamKLfjvq1MSpy//k1M4/u9Yn6c+mN3xi0fSv+e391/xdYIfW88y2N+BE5t4Ti77Yf81vmHH5gcAauqP07VvPOcD98Nf9/bASeOiMfc/p74vbgAcOPZtH6H/sNXRP/T8tIg4AlgNPpjtH/UrgrQ1nG0xEvBx4F92z4S4GjoqImVdbkZlLBh5NbR1J96+SD0TEc+lOX5wPHEz3vXJ4Zo46S6ySs+jOM38msDwizqaL+wK65ZgA3pwNXibEoE+TmT+JiCfSxezZwEF0r2dyKvDOzPzd+j6+kPn9djPg6BHX+TrdI/yaIzLzuohYRHca52JgH+Bm4MvAP2XmpS3nG0pmrulfiOxI4DC6B0K3BlYB5wCnZeb5LWbzxbkkqQjPcpGkIgy6JBVh0CWpCIMuSUUYdEkqwqBLUhEGXZKKMOiSVIRBl6QiDLokFWHQJakIgy5JRRh0SSrCoEtSEQZdkoow6JJUhEGXpCL+D5l3xYjk7G8jAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 250, "width": 186 }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVMAAAH0CAYAAACAUs4iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFvJJREFUeJzt3XuwXWV5gPHnlQgCAhZFnaq1gRFIdSgmFgQUAihFrBErTJ2OlzqindYWsEpxvCDaOt5a5dJWZrw0Fdpq1VKhZQCFIBeptAFLO0QCSlQEtCECIgm3vP1jrVOOx+xwLi/r2zl5fjN7Vs5e++y8OZM8fHuvtReRmUiS5uZxrQeQpPnAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVWNB6gMdCRNwC7AysaTyKpPH3q8A9mblwLk8yL2MK7Lz99tvvumjRol1bDyJpvK1atYr169fP+Xnma0zXLFq0aNeVK1e2nkPSmFuyZAnXXnvtmrk+j++ZSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklSgaUwj4pkR8dmIuC0i7o+INRFxWkT8Usu5JGmmmn0CKiL2AL4BPBX4CvBtYD/gBODIiDgoM+9sNZ8kzUTLlenf0IX0+Mw8OjPfmZmHAZ8A9gI+2HA2SZqRJjHtV6VH0F3V6a+n7H4f8DPgdRGx48CjSdKstFqZHtpvL87MjZN3ZOZPgauAHYAXDj2YJM1Gq/dM9+q3q0fsv4lu5boncMmoJ4mIUZeF2nv2o0nSzLVame7Sb+8esX/i/icNMIskzdkWfT3TzFyyqfv7FevigceRtBVrtTKdWHnuMmL/xP13DTCLJM1Zq5je2G/3HLH/Of121HuqkjRWWsV0Rb89IiJ+boaI2Ak4CLgP+PehB5Ok2WgS08z8DnAx3f8V8K1Tdr8f2BE4OzN/NvBokjQrLQ9A/SHdx0nPiIjDgVXA/nTnoK4G3t1wNkmakWYfJ+1Xpy8AltNF9O3AHsDpwAv9XL6kLUnTU6My8wfAG1vOIEkVvJ6pJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQW26OuZanoOfO7BrUdgu203PvqDBrDtdtF6BH687vbWIwBw3eqbW48wr7gylaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAgtaDzCf7fnLi1uPAMDq265tPYLG0NL992k9Apd98/rWI5RxZSpJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWaxDQinhwRx0XEuRFxc0Ssj4i7I+LKiHhTRBh5SVuUVh8nPRb4JHA7sAL4PvA04LeBTwMvi4hjMzMbzSdJM9IqpquBZcC/ZebGiTsj4l3ANcCr6cL65TbjSdLMNHk5nZmXZub5k0Pa338HcFb/5dLBB5OkWRrH9yYf7LcPNZ1CkmZgrC7BFxELgNf3X144jcevHLFr77KhJGkaxm1l+mHgecAFmXlR62EkabrGZmUaEccDbwe+DbxuOt+TmUtGPNdKYDyuzCxpqzAWK9OI+CPgdOAG4NDMXNd4JEmakeYxjYgTgTOB/6EL6R2NR5KkGWsa04g4GfgE8C26kP645TySNFvNYhoR76U74LQSODwz17aaRZLmqskBqIh4A/AB4GHgCuD4iJj6sDWZuXzg0SRpVlodzV/Yb7cBThzxmK8DyweZRpLmqNXHSU/NzHiU29IWs0nSbDQ/mi9J84ExlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKjA21zOdj1bfdm3rEaSR1m+4t/UI84orU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKrCg9QCS2tjIw61HmFdcmUpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUoGxiWlEvDYisr8d13oeSZqJsYhpRDwL+Cvg3tazSNJsNI9pRATwt8CdwFmNx5GkWWkeU+B44DDgjcDPGs8iSbPSNKYRsQj4MHB6Zl7echZJmotml+CLiAXA2cD3gXfN8jlWjti192znkqTZaHk901OA5wMvysz1DeeQpDlrEtOI2J9uNfqXmXn1bJ8nM5eMeP6VwOLZPq8kzdTg75n2L+8/B6wG3jv07y9Jj4UWB6CeCOwJLAI2TDpRP4H39Y/5VH/faQ3mk6QZa/Ey/37gMyP2LaZ7H/VK4EZg1m8BSNKQBo9pf7Bpkx8XjYhT6WL6d5n56SHnkqS5GIeT9iVpi2dMJanAWMU0M0/NzPAlvqQtzVjFVJK2VMZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpQMuLQ0tbpZccuG/rEQD4j//6XusR5hVXppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVGBB6wH02HvW057RegSes/CZrUfo5EOtJ+DSb36r9Qh6DLgylaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAs1jGhGHR8S5EXFHRNwfEbdFxEURcVTr2SRpupp+nDQiPgqcBNwKnAesBXYDlgBLgQuaDSdJM9AsphHxZrqQ/h3wlsx8YMr+xzcZTJJmocnL/IjYDvgg8H02EVKAzHxw8MEkaZZarUxfSvdy/jRgY0S8HHgesAG4JjOvbjSXJM1Kq5j+Rr/dAFxHF9L/FxGXA8dk5v9u7kkiYuWIXXvPeUJJmoFWR/Of2m9PAhJ4MbATsA9wMXAw8MU2o0nSzLVamU5E/CFgWWau6b/+74h4FXAjcEhEHLC5l/yZuWRT9/cr1sWF80rSZrVamd7Vb6+bFFIAMvM+4KL+y/2GHEqSZqtVTG/st3eN2P+Tfrv9ALNI0py1iukldO+V/lpEbGqGiQNStww3kiTNXpOYZub3gPOBXwFOmLwvIo4AfpNu1Xrh8NNJ0sy1/DjpW4HnAx/vzzO9DlgIHA08DByXmXc3nE+Spq1ZTDPz1ohYApwCLKM7HeoeuhXrhzLzmlazSdJMNb3QSX9S/h/3N0naYjW/BJ8kzQfGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqUDTk/Y1jB/86IetR9AkL9pnn9YjAHDl9de3HmFecWUqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFFrQeQNraXHn99a1HAODVhy9rPQJfvuS81iOUcWUqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFmsY0Il4eERdHxK0RsT4ivhsRX4yIA1rOJUkz1SymEfER4F+BxcCFwOnAtcArgasi4rWtZpOkmWry2fyIeDrwDuBHwD6Z+eNJ+w4FLgU+AJzTYj5JmqlWK9Nn97/3NyeHFCAzVwA/BXZrMZgkzUarmN4EPADsFxFPmbwjIg4GdgK+1mIwSZqNJi/zM3NdRJwMfBy4ISL+BbgT2ANYBnwV+P1He56IWDli195Vs0rSdDS7nmlmnhYRa4DPAm+etOtmYPnUl/+SNM5aHs3/U+BLwHK6FemOwBLgu8DfR8RHH+05MnPJpm7Atx/D0SXpFzSJaUQsBT4CnJeZf5KZ383M+zLzWuBVwA+Bt0fE7i3mk6SZarUy/a1+u2Lqjsy8D7iGbrbnDzmUJM1Wq5hu129Hnf40cf8DA8wiSXPWKqZX9Nu3RMQzJu+IiJcBBwEbgG8MPZgkzUaro/lfojuP9CXAqog4F7gDWET3FkAA78zMOxvNJ0kz0uo8040RcRTwVuA1dAeddgDWARcAZ2TmxS1mk6TZaHme6YPAaf1NkrZoXs9UkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALNTtqX1Nbtt6xtPcK84spUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKLGg9wHz2kv1e2noEAL52zVdbj6AxtPMTntJ6hHnFlakkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUoiWlEHBMRZ0bEFRFxT0RkRJzzKN9zYERcEBHrImJ9RFwfESdGxDYVM0nSkKo+Tvoe4NeBe4Fbgb039+CIeCXwZWAD8AVgHfAK4BPAQcCxRXNJ0iCqXua/DdgT2Bn4g809MCJ2Bj4FPAwszcw3ZeZJwL7A1cAxEfGaorkkaRAlMc3MFZl5U2bmNB5+DLAb8PnM/M9Jz7GBboULjxJkSRo3LQ5AHdZvL9zEvsuB+4ADI2K74UaSpLlpcQm+vfrt6qk7MvOhiLgFeC6wO7Bqc08UEStH7Nrse7aSVK3FynSXfnv3iP0T9z9pgFkkqcQWfXHozFyyqfv7FevigceRtBVrsTKdWHnuMmL/xP13DTCLJJVoEdMb++2eU3dExAJgIfAQ8N0hh5KkuWgR00v77ZGb2HcwsAPwjcy8f7iRJGluWsT0S8Ba4DUR8YKJOyPiCcCf919+ssFckjRrJQegIuJo4Oj+y6f32wMiYnn/67WZ+Q6AzLwnIt5MF9XLIuLzdB8nXUZ32tSX6D5iKklbjKqj+fsCb5hy3+79DeB7wDsmdmTmv0TEIcC7gVcDTwBuBv4EOGOan6SSpLFREtPMPBU4dYbfcxVwVMXvL0mteT1TSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgps0dczHXdfu+arrUcA4BVLfqv1CDz40wdbjwDANrFt6xHYcYdRV58c1oU3nNd6hHnFlakkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBRa0HkCPvfNX/mvrEaR5z5WpJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVKAkphFxTEScGRFXRMQ9EZERcc6Ixz4nIk6OiEsj4gcR8UBE/CgivhIRh1bMI0lDq/ps/nuAXwfuBW4F9t7MY/8M+B3gBuACYB2wF7AMWBYRJ2TmGUVzSdIgqmL6NrqI3gwcAqzYzGMvBD6SmddNvjMiDgG+CnwsIr6YmbcXzSZJj7mSl/mZuSIzb8rMnMZjl08NaX//14HLgG2BAyvmkqShjNsBqAf77UNNp5CkGRqb65lGxLOBw4H7gMun+T0rR+za3Hu2klRuLGIaEdsBfw9sB/xpZv6k8UiSNCPNYxoR2wBnAwcBXwD+Yrrfm5lLRjznSmBxyYCSNA1N3zPtQ3oOcCzwT8Brp3MQS5LGTbOYRsTjgX8EXgP8A/C7memBJ0lbpCYv8yNiW7qV6CuBzwFvzMyNLWaRpAqDr0z7g03n0oX0MxhSSfNAyco0Io4Gju6/fHq/PSAilve/XpuZ7+h/fRZwFLAW+CFwSkRMfcrLMvOyitkkaQhVL/P3Bd4w5b7d+xvA94CJmC7st08BTtnMc15WNJskPeZKYpqZpwKnTvOxSyt+T0kaJ+P2cVJJ2iIZU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpQMzHizRFxJ3bb7/9rosWLWo9iqQxt2rVKtavX78uM588l+eZrzG9BdgZWDOHp5m4Wv+35zzQls+fxSP8WXTm08/hV4F7MnPhoz1wc+ZlTCtM/C9RRl2Aemviz+IR/iw6/hx+ke+ZSlIBYypJBYypJBUwppJUwJhKUgGP5ktSAVemklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYzpFBHxzIj4bETcFhH3R8SaiDgtIn6p9WxDiYgnR8RxEXFuRNwcEesj4u6IuDIi3hQRW/Xfm4h4bURkfzuu9TxDi4jD+78bd/T/Rm6LiIsi4qjWs7W0oPUA4yQi9gC+ATwV+ArdtRr3A04AjoyIgzLzzoYjDuVY4JPA7cAK4PvA04DfBj4NvCwijs2t8BMfEfEs4K+Ae4EnNh5ncBHxUeAk4FbgPGAtsBuwBFgKXNBsuNYy01t/Ay4CEvjjKfd/vL//rNYzDvRzOAx4BfC4Kfc/nS6sCby69ZwNfi4BfA34DvCx/udwXOu5Bvzzv7n/My8Htt3E/se3nrHlbat+uTZZvyo9gu7q/H89Zff7gJ8Br4uIHQcebXCZeWlmnp+ZG6fcfwdwVv/l0sEHa+94uv/QvJHu78NWIyK2Az5I9x/Tt2TmA1Mfk5kPDj7YGDGmjzi03168iYj8FLgK2AF44dCDjZmJfzAPNZ1iYBGxCPgwcHpmXt56ngZeSvdy/p+BjRHx8og4OSJOiIgDGs82FnzP9BF79dvVI/bfRLdy3RO4ZJCJxkxELABe3395YctZhtT/uc+mW5W9q/E4rfxGv90AXAc8b/LOiLgcOCYz/3fowcaFK9NH7NJv7x6xf+L+Jw0wy7j6MN0/ogsy86LWwwzoFOD5wO9l5vrWwzTy1H57Et37pi8GdgL2AS4GDga+2Ga08WBMNS0RcTzwdrozHF7XeJzBRMT+dKvRv8zMq1vP09BEKx4ClmXmlZl5b2b+N/AquqP7h2zNL/mN6SMmVp67jNg/cf9dA8wyViLij4DTgRuAQzNzXeORBtG/vP8c3Vs/7208TmsTf++vy8w1k3dk5n10Z8JAdyrhVsmYPuLGfrvniP3P6bej3lOdlyLiROBM4H/oQnpH45GG9ES6vw+LgA2TTtRPujM8AD7V33dasymHMfHvY9Ri4if9dvsBZhlLHoB6xIp+e0REPG7yEf2I2Ak4CLgP+PcWw7UQESfTvU/6LeClmbm28UhDux/4zIh9i+neR72SLjTz/S2AS+jeK/21qf8+ehMHpG4Zdqwx0vpE13G64Un7k//M7+3/zP8J7Np6nnG7Aaey9Z20/5X+z/y2KfcfAWykW53u0nrOVjdXpj/vD+k+TnpGRBwOrAL2pzsHdTXw7oazDSYi3gB8AHgYuAI4PiKmPmxNZi4feDS19Va61fjHI+LldKdILQSOpvu7clxmjjobZt4zppNk5nci4gV0ITkSOIru8+mnA+/PzJ9s7vvnkYX9dhvgxBGP+Trdxwq1lcjMWyNiCd2pYsvoToe6Bzgf+FBmXtNyvtb8v5NKUgGP5ktSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlKB/wMAF+ly87Ss/AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 250, "width": 169 }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVMAAAH0CAYAAACAUs4iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFupJREFUeJzt3XmwnXV5wPHvo1EMq+I6U62iIyTWcUkwiFHWiogaUWHqdFzqiHbqArggjguireNWFVArMy6NW6sVi1sRUAiyqM0QsGoNmxAUFZVdTMIiT/9431uu15xwl4f3d3Lz/cycebnnPffkyZ3ky++c9z1vIjORJM3NPVoPIEnzgTGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKrCg9QB3h4i4AtgRWNd4FEnj7xHATZm5y1yeZF7GFNhx4cKFOy9evHjn1oNIGm9r165lw4YNc36e+RrTdYsXL955zZo1reeQNOaWLl3KBRdcsG6uz+N7ppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVaBrTiHhoRHw6In4VEbdExLqIOC4i7tdyLkmaqWafgIqIRwHfAx4EfA24CFgGHAEcGBHLM/PaVvNJ0ky0XJn+C11ID8/MgzPzzZm5H/BhYDfg3Q1nk6QZaRLTflV6AN1VnT42Zfc7gD8AL46I7QYeTZJmpdXKdN9+e3pm3jF5R2b+HjgP2BZ48tCDSdJstHrPdLd+e8mI/ZfSrVx3Bc4Y9SQRMeqyUItmP5okzVyrlelO/fbGEfsn7r/vALNI0pxt0dczzcylm7q/X7EuGXgcSVuxVivTiZXnTiP2T9x/wwCzSNKctYrpxf121xH7H91vR72nKkljpVVMV/XbAyLiT2aIiB2A5cB64AdDDyZJs9Ekppn5M+B0un8V8NVTdr8T2A74XGb+YeDRJGlWWh6AehXdx0lPiIj9gbXAHnTnoF4CvLXhbJI0I80+TtqvTncHVtJF9A3Ao4DjgSf7uXxJW5Kmp0Zl5i+Al7WcQZIqeD1TSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgps0dcz1fQ8Y78DW4/A+uvH4zILN/521PXIh3P/++7cegQAVv3vWa1HmFdcmUpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUoEFrQeYz5Yt2731CACsXn1+6xE0hvZ6/AGtR+Ds/zm99QhlXJlKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlKBJjGNiPtHxGERcXJEXBYRGyLixog4NyJeHhFGXtIWpdXHSQ8FPg78GlgF/Bx4MPB84JPAMyPi0MzMRvNJ0oy0iuklwArgvzLzjok7I+ItwGrgBXRh/Uqb8SRpZpq8nM7MMzPzG5ND2t9/NXBi/+U+gw8mSbM0ju9N3tZvb286hSTNwFhdgi8iFgAv6b88dRqPXzNi16KyoSRpGsZtZfpe4LHAKZl5WuthJGm6xmZlGhGHA28ALgJePJ3vycylI55rDbCkbjpJ2ryxWJlGxGuA44GfAvtm5nWNR5KkGWke04g4EvgI8BO6kF7deCRJmrGmMY2Io4EPAz+kC+lvW84jSbPVLKYR8Xa6A05rgP0z85pWs0jSXDU5ABURLwXeBfwROAc4PCKmPmxdZq4ceDRJmpVWR/N36bf3BI4c8ZjvAisHmUaS5qjVx0mPzcy4i9s+LWaTpNlofjRfkuYDYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklRgbK5nOh+tXn1+6xGkkW71XwYq5cpUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKLGg9gKQ2tt92m9YjzCuuTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqcDYxDQiXhQR2d8Oaz2PJM3EWMQ0Ih4GfBS4ufUskjQbzWMaEQH8K3AtcGLjcSRpVprHFDgc2A94GfCHxrNI0qw0jWlELAbeCxyfmWe3nEWS5qLZJfgiYgHwOeDnwFtm+RxrRuxaNNu5JGk2Wl7P9BjgicBTM3NDwzkkac6axDQi9qBbjX4wM78/2+fJzKUjnn8NsGS2zytJMzX4e6b9y/vPApcAbx/615eku0OLA1DbA7sCi4GNk07UT+Ad/WM+0d93XIP5JGnGWrzMvwX41Ih9S+jeRz0XuBiY9VsAkjSkwWPaH2za5MdFI+JYuph+JjM/OeRckjQX43DSviRt8YypJBUYq5hm5rGZGb7El7SlGauYStKWyphKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVaHlxaGmrtO+yp7YeAYBVq89tPcK84spUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKLGg9gO5+D334g1qPwPI9lrceAYALz7+g9QhccvmVrUfQ3cCVqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFWge04jYPyJOjoirI+KWiPhVRJwWEQe1nk2Spqvpx0kj4v3AUcBVwNeBa4AHAkuBfYBTmg0nSTPQLKYR8Qq6kH4GeGVm3jpl/72aDCZJs9DkZX5EbAO8G/g5mwgpQGbeNvhgkjRLrVamT6d7OX8ccEdEPAt4LLARWJ2Z3280lyTNSquYPqnfbgQupAvp/4uIs4FDMvN3m3uSiFgzYteiOU8oSTPQ6mj+xAU2jwISeBqwA/A44HRgL+DLbUaTpJlrtTKdiPjtwIrMXNd//eOIeB5wMbB3ROy5uZf8mbl0U/f3K9YlhfNK0ma1Wpne0G8vnBRSADJzPXBa/+WyIYeSpNlqFdOL++0NI/Zf328XDjCLJM1Zq5ieQfde6WMiYlMzTByQumK4kSRp9prENDOvBL4B/CVwxOR9EXEA8Ay6Veupw08nSTPX8uOkrwaeCHyoP8/0QmAX4GDgj8BhmXljw/kkadqaxTQzr4qIpcAxwAq606FuoluxviczV7eaTZJmqumFTvqT8l/b3yRpi9X8EnySNB8YU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpAJNT9rXMK668retR9Akhzz7ma1HAOCkb36r9QjziitTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqsKD1ANLW5qRvfqv1CAA8e9Gy1iPwzYtWtx6hjCtTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kq0DSmEfGsiDg9Iq6KiA0RcXlEfDki9mw5lyTNVLOYRsT7gG8CS4BTgeOBC4DnAudFxItazSZJM9Xks/kR8RDgjcBvgMdl5m8n7dsXOBN4F/D5FvNJ0ky1Wpk+vP+1/3tySAEycxXwe+CBLQaTpNloFdNLgVuBZRHxgMk7ImIvYAfgOy0Gk6TZaPIyPzOvi4ijgQ8BP42IrwLXAo8CVgDfBv7+rp4nItaM2LWoalZJmo5m1zPNzOMiYh3waeAVk3ZdBqyc+vJfksZZy6P5bwJOAlbSrUi3A5YClwNfiIj339VzZObSTd2Ai+7G0SXpzzSJaUTsA7wP+Hpmvj4zL8/M9Zl5AfA84JfAGyLikS3mk6SZarUyfXa/XTV1R2auB1bTzfbEIYeSpNlqFdNt+u2o058m7r91gFkkac5axfScfvvKiPiLyTsi4pnAcmAj8L2hB5Ok2Wh1NP8kuvNI/xpYGxEnA1cDi+neAgjgzZl5baP5JGlGWp1nekdEHAS8Gngh3UGnbYHrgFOAEzLz9BazSdJstDzP9DbguP4mSVs0r2cqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUoFmJ+1Lamz77VpPMK+4MpWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpAILWg8wn+2+aFnrEQA4/6LVrUfQGLqe21qPMK+4MpWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpAIlMY2IQyLiIxFxTkTcFBEZEZ+/i+95SkScEhHXRcSGiPhRRBwZEfesmEmShlT1cdK3AY8HbgauAhZt7sER8VzgK8BG4EvAdcBzgA8Dy4FDi+aSpEFUvcx/HbArsCPwD5t7YETsCHwC+COwT2a+PDOPAp4AfB84JCJeWDSXJA2iJKaZuSozL83MnMbDDwEeCHwxM8+f9Bwb6Va4cBdBlqRx0+IA1H799tRN7DsbWA88JSK2GW4kSZqbFpfg263fXjJ1R2beHhFXAH8FPBJYu7kniog1I3Zt9j1bSarWYmW6U7+9ccT+ifvvO8AsklRii744dGYu3dT9/Yp1ycDjSNqKtViZTqw8dxqxf+L+GwaYRZJKtIjpxf1216k7ImIBsAtwO3D5kENJ0ly0iOmZ/fbATezbC9gW+F5m3jLcSJI0Ny1iehJwDfDCiNh94s6IuA/wT/2XH28wlyTNWskBqIg4GDi4//Ih/XbPiFjZ//c1mflGgMy8KSJeQRfVsyLii3QfJ11Bd9rUSXQfMZWkLUbV0fwnAC+dct8j+xvAlcAbJ3Zk5lcjYm/grcALgPsAlwGvB06Y5iepJGlslMQ0M48Fjp3h95wHHFTx60tSa17PVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCW/T1TMfd+Retbj0CAAc+ef/WI7Bh/ahrgQ9ru4X3aj0CGzfc3HoEAM770Y9bjzCvuDKVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqcCC1gPo7nfqD85oPYI077kylaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgqUxDQiDomIj0TEORFxU0RkRHx+xGMfHRFHR8SZEfGLiLg1In4TEV+LiH0r5pGkoVV9Nv9twOOBm4GrgEWbeew/An8D/BQ4BbgO2A1YAayIiCMy84SiuSRpEFUxfR1dRC8D9gZWbeaxpwLvy8wLJ98ZEXsD3wY+EBFfzsxfF80mSXe7kpf5mbkqMy/NzJzGY1dODWl//3eBs4B7A0+pmEuShjJuB6Bu67e3N51CkmZobK5nGhEPB/YH1gNnT/N71ozYtbn3bCWp3FjENCK2Ab4AbAO8KTOvbzySJM1I85hGxD2BzwHLgS8B/zzd783MpSOecw2wpGRASZqGpu+Z9iH9PHAo8B/Ai6ZzEEuSxk2zmEbEvYB/B14I/Bvwt5npgSdJW6QmL/Mj4t50K9HnAp8FXpaZd7SYRZIqDL4y7Q82nUwX0k9hSCXNAyUr04g4GDi4//Ih/XbPiFjZ//c1mfnG/r9PBA4CrgF+CRwTEVOf8qzMPKtiNkkaQtXL/CcAL51y3yP7G8CVwERMd+m3DwCO2cxznlU0myTd7UpimpnHAsdO87H7VPyakjROxu3jpJK0RTKmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlKBmI8XaYqIaxcuXLjz4sWLW48iacytXbuWDRs2XJeZ95/L88zXmF4B7Aism8PTTFyt/6I5D7Tl82dxJ38Wnfn0c3gEcFNm7nJXD9yceRnTChP/JMqoC1BvTfxZ3MmfRcefw5/zPVNJKmBMJamAMZWkAsZUkgoYU0kq4NF8SSrgylSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZ0iIh4aEZ+OiF9FxC0RsS4ijouI+7WebSgRcf+IOCwiTo6IyyJiQ0TcGBHnRsTLI2Kr/nMTES+KiOxvh7WeZ2gRsX//Z+Pq/u/IryLitIg4qPVsLS1oPcA4iYhHAd8DHgR8je5ajcuAI4ADI2J5Zl7bcMShHAp8HPg1sAr4OfBg4PnAJ4FnRsShuRV+4iMiHgZ8FLgZ2L7xOIOLiPcDRwFXAV8HrgEeCCwF9gFOaTZca5nprb8BpwEJvHbK/R/q7z+x9YwD/Rz2A54D3GPK/Q+hC2sCL2g9Z4OfSwDfAX4GfKD/ORzWeq4Bf/+v6H/PK4F7b2L/vVrP2PK2Vb9cm6xflR5Ad3X+j03Z/Q7gD8CLI2K7gUcbXGaemZnfyMw7ptx/NXBi/+U+gw/W3uF0/6N5Gd2fh61GRGwDvJvuf6avzMxbpz4mM28bfLAxYkzvtG+/PX0TEfk9cB6wLfDkoQcbMxN/YW5vOsXAImIx8F7g+Mw8u/U8DTyd7uX8fwJ3RMSzIuLoiDgiIvZsPNtY8D3TO+3Wby8Zsf9SupXrrsAZg0w0ZiJiAfCS/stTW84ypP73/Tm6VdlbGo/TypP67UbgQuCxk3dGxNnAIZn5u6EHGxeuTO+0U7+9ccT+ifvvO8As4+q9dH+JTsnM01oPM6BjgCcCf5eZG1oP08iD+u1RdO+bPg3YAXgccDqwF/DlNqONB2OqaYmIw4E30J3h8OLG4wwmIvagW41+MDO/33qehiZacTuwIjPPzcybM/PHwPPoju7vvTW/5Demd5pYee40Yv/E/TcMMMtYiYjXAMcDPwX2zczrGo80iP7l/Wfp3vp5e+NxWpv4c39hZq6bvCMz19OdCQPdqYRbJWN6p4v77a4j9j+63456T3VeiogjgY8AP6EL6dWNRxrS9nR/HhYDGyedqJ90Z3gAfKK/77hmUw5j4u/HqMXE9f124QCzjCUPQN1pVb89ICLuMfmIfkTsACwH1gM/aDFcCxFxNN37pD8Enp6Z1zQeaWi3AJ8asW8J3fuo59KFZr6/BXAG3Xulj5n696M3cUDqimHHGiOtT3QdpxuetD/59/z2/vd8PrBz63nG7QYcy9Z30v7X+t/z66bcfwBwB93qdKfWc7a6uTL9U6+i+zjpCRGxP7AW2IPuHNRLgLc2nG0wEfFS4F3AH4FzgMMjYurD1mXmyoFHU1uvpluNfyginkV3itQuwMF0f1YOy8xRZ8PMe8Z0ksz8WUTsTheSA4GD6D6ffjzwzsy8fnPfP4/s0m/vCRw54jHfpftYobYSmXlVRCylO1VsBd3pUDcB3wDek5mrW87Xmv86qSQV8Gi+JBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFfg/4GfrN0FFFhUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 250, "width": 169 }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAH0CAYAAAAexAvHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGF1JREFUeJzt3XuQpXdd5/HPlwyGcAtyk1UUAkvIuJRCBrkYhQSE5aIhCOxSWyBFGXRXNKBcSwSju5SACgmsK1UCG7ns6gLLbTdLghAMVymGWCtFSIAQMGDUJJAQMgFCfvvHOb0Z2/Qk6f5yfj0zr1fVqSf9PKdPf+ekp9/zXM7pGmMEALrcbPYAABxYhAWAVsICQCthAaCVsADQSlgAaCUsALQSFgBaCQsArYQFgFbCAkArYQGglbAA0EpYAGglLAC0EhYAWu2YPcD3QlV9Mcltk1w4eRSA/cndk1wxxjhiKw9yQIYlyW0PO+yw2+/cufP2swcB2F+ce+652bNnz5Yf50ANy4U7d+68/e7du2fPAbDf2LVrVz71qU9duNXHcY4FgFbCAkArYQGglbAA0EpYAGglLAC0EhYAWgkLAK2mhqWq7lpVb6iqr1bVt6rqwqo6paq+f+ZcAGzetFfeV9U9k3w0yZ2TvCvJZ5M8IMmzkjyqqo4ZY1w6az4ANmfmHst/ySIqJ40xThhjvHCM8bAkr0py7yQvnTgbAJs0JSzLvZVHZvHuw3+0bvNvJ/lmkqdW1a1WPBoAWzRrj+W45fLMMca1e28YY3wjyUeS3DLJg1Y9GABbM+scy72Xy/M32P65LPZojkzy/o0epKo2evviozY/GgBbMWuP5fDl8vINtq+tv90KZgGg0X79+1jGGLuub/1yT+boFY8DQObtsaztkRy+wfa19V9fwSwANJoVlvOWyyM32H6v5XKjczAAbFOzwnLWcvnIqvonM1TVbZIck+SqJB9f9WAAbM2UsIwxvpDkzCR3T/LMdZt/J8mtkrxpjPHNFY8GwBbNPHn/K1m8pcurq+rhSc5N8sAsXuNyfpIXTZwNgE2a9pYuy72W+yc5LYugPCfJPZOcmuRB3icMYP809XLjMcbfJnn6zBkA6OX3sQDQSlgAaCUsALQSFgBaCQsArYQFgFbCAkArYQGglbAA0EpYAGglLAC0EhYAWgkLAK2EBYBWwgJAK2EBoJWwANBKWABoJSwAtBIWAFoJCwCthAWAVsICQCthAaCVsADQSlgAaCUsALQSFgBaCQsArYQFgFbCAkArYQGglbAA0EpYAGglLAC0EhYAWgkLAK2EBYBWwgJAK2EBoJWwANBKWABoJSwAtBIWAFoJCwCthAWAVsICQCthAaCVsADQSlgAaCUsALQSFgBaTQlLVd2hqk6sqndU1eerak9VXV5VH66qX6wqwQPYT+2Y9HWflOSPk/xdkrOSfDnJDyT5+SSvS/LoqnrSGGNMmg+ATZoVlvOTHJ/kf48xrl1bWVW/meQTSZ6QRWTePmc8ADZryiGnMcYHxhjv2Tsqy/UXJ3nt8sNjVz4YAFu2Hc9lfGe5vGbqFABsyqxDYderqnYk+YXlh++9EfffvcGmo9qGAuAm2W57LC9Lcp8kp48xzpg9DAA33bbZY6mqk5I8J8lnkzz1xnzOGGPXBo+1O8nRfdMBcGNtiz2WqvrVJKcm+UyS48YYl00eCYBNmh6Wqnp2ktck+XQWUbl48kgAbMHUsFTVC5K8KslfZxGVf5g5DwBbNy0sVfXiLE7W707y8DHGJbNmAaDPlJP3VfW0JL+b5LtJPpTkpKpaf7cLxxinrXg0ALZo1lVhRyyXhyR59gb3+cskp61kGgDazHpLl5PHGHUDt2NnzAbA1ky/KgyAA4uwANBKWABoJSwAtBIWAFoJCwCthAWAVsICQCthAaCVsADQSlgAaCUsALQSFgBaCQsArYQFgFbCAkArYQGglbAA0EpYAGglLAC0EhYAWgkLAK2EBYBWwgJAK2EBoJWwANBKWABoJSwAtBIWAFoJCwCthAWAVsICQCthAaCVsADQSlgAaCUsALQSFgBaCQsArYQFgFbCAkArYQGglbAA0EpYAGglLAC0EhYAWgkLAK2EBYBWwgJAK2EBoJWwANBKWABoJSwAtNo2Yamqp1TVWN5OnD0PAJuzLcJSVT+c5D8nuXL2LABszfSwVFUl+a9JLk3y2snjALBF08OS5KQkD0vy9CTfnDwLAFs0NSxVtTPJy5KcOsY4e+YsAPTYMesLV9WOJG9K8uUkv7nJx9i9waajNjsXAFszLSxJXpLkfkl+aoyxZ+IcADSaEpaqemAWeyl/OMb42GYfZ4yxa4PH353k6M0+LgCbt/JzLMtDYG9Mcn6SF6/66wPwvTXj5P2tkxyZZGeSq/d6UeRI8tvL+/zJct0pE+YDYAtmHAr7VpLXb7Dt6CzOu3w4yXlJNn2YDIA5Vh6W5Yn6633Llqo6OYuw/OkY43WrnAuAHtvhBZIAHECEBYBW2yosY4yTxxjlMBjA/mtbhQWA/Z+wANBKWABoJSwAtBIWAFoJCwCthAWAVsICQCthAaCVsADQSlgAaCUsALQSFgBaCQsArYQFgFbCAkArYQGglbAA0EpYAGglLAC0EhYAWgkLAK2EBYBWwgJAK2EBoJWwANBKWABoJSwAtBIWAFoJCwCthAWAVsICQCthAaCVsADQSlgAaCUsALQSFgBaCQsArYQFgFbCAkArYQGglbAA0GrH7AEOZPe/z87ZIyRJDr3FzWePkB03q9kjJEmuuPxrs0fIj/zgD84eIUnyla98ZfYIuctd/8XsEZIkV1x15ewRcvbHPzN7hDb2WABoJSwAtBIWAFoJCwCthAWAVsICQCthAaCVsADQSlgAaDU9LFX18Kp6R1VdXFXfqqqvVtUZVfWY2bMBcNNNfUuXqnpFkucluSjJu5NckuROSXYlOTbJ6dOGA2BTpoWlqp6RRVT+NMkvjTG+vW77/De4AuAmm3IorKoOTfLSJF/O9UQlScYY31n5YABs2aw9lkdkccjrlCTXVtVjk9wnydVJPjHG+NikuQDYollh+Ynl8uok52QRlf+vqs5O8sQxxj/u60GqavcGm47a8oQAbMqsq8LuvFw+L8lI8tNJbpPkx5KcmeQhSd46ZzQAtmLWHsta0K5JcvwY48Llx39TVY9Pcl6Sh1bVg/d1WGyMsev61i/3ZI5unBeAG2nWHsvXl8tz9opKkmSMcVWSM5YfPmCVQwGwdbPCct5y+fUNtq/9/tjDVjALAI1mheX9WZxb+dGqur4Z1k7mf3F1IwHQYUpYxhhfSvKeJD+S5Fl7b6uqRyb511nszbx39dMBsBUz39LlmUnul+SVy9exnJPkiCQnJPlukhPHGJdPnA+ATZgWljHGRVW1K8lLkhyfxSXGV2SxJ/N7Y4xPzJoNgM2b+iaUyxdA/tryBsABYPrb5gNwYBEWAFoJCwCthAWAVsICQCthAaCVsADQSlgAaDX1BZIHuk9++tzZIwCsnD0WAFoJCwCthAWAVsICQCthAaCVsADQSlgAaCUsALQSFgBaCQsArYQFgFbCAkArYQGglbAA0EpYAGglLAC0EhYAWgkLAK2EBYBWwgJAK2EBoJWwANBKWABoJSwAtBIWAFoJCwCthAWAVsICQCthAaCVsADQSlgAaCUsALQSFgBaCQsArYQFgFbCAkArYQGglbAA0EpYAGglLAC0EhYAWgkLAK2EBYBWU8NSVY+tqjOr6qKq2lNVF1TVW6vqwTPnAmDzpoWlql6e5H8lOTrJe5OcmuRTSR6X5CNV9ZRZswGweTtmfNGqukuS5yb5+yQ/Nsb4h722HZfkA0l+N8mbZ8wHwObN2mO52/Jr/9XeUUmSMcZZSb6R5E4zBgNga2aF5XNJvp3kAVV1x703VNVDktwmyV/MGAyArZlyKGyMcVlVvSDJK5N8pqremeTSJPdMcnyS9yX55Rt6nKravcGmo7pmBeCmmRKWJBljnFJVFyZ5Q5Jn7LXp80lOW3+IDID9w8yrwp6f5G1JTstiT+VWSXYluSDJW6rqFTf0GGOMXdd3S/LZ7+HoAOzDlLBU1bFJXp7k3WOM3xhjXDDGuGqM8akkj0/ylSTPqap7zJgPgM2btcfys8vlWes3jDGuSvKJLGa73yqHAmDrZoXl0OVyo0uK19Z/ewWzANBoVlg+tFz+UlX90N4bqurRSY5JcnWSj656MAC2ZtZVYW/L4nUqP5Pk3Kp6R5KLk+zM4jBZJXnhGOPSSfMBsEmzXsdybVU9Jskzkzw5ixP2t0xyWZLTk7x6jHHmjNkA2JqZr2P5TpJTljcADhB+HwsArYQFgFbCAkArYQGglbAA0EpYAGglLAC0EhYAWk17geTB4P73u8/sEZIkN7/5IbNHyKGHbI9/w1x1xZWzR8gdDr/d7BEWvjt7gOSKK6+aPUKS5Na3m///5IyPfGT2CG22x992AA4YwgJAK2EBoJWwANBKWABoJSwAtBIWAFoJCwCthAWAVsICQCthAaCVsADQSlgAaCUsALQSFgBaCQsArYQFgFbCAkArYQGglbAA0EpYAGglLAC0EhYAWgkLAK2EBYBWwgJAK2EBoJWwANBKWABoJSwAtBIWAFoJCwCthAWAVjtmD3Ag++Q5n549AsDK2WMBoJWwANBKWABoJSwAtBIWAFoJCwCthAWAVsICQCthAaBVS1iq6olV9Zqq+lBVXVFVo6refAOf85NVdXpVXVZVe6rq/1bVs6vqkI6ZAJij6y1dfivJjye5MslFSY7a152r6nFJ3p7k6iR/nuSyJD+X5FVJjknypKa5AFixrkNhv57kyCS3TfIf9nXHqrptkj9J8t0kx44xfnGM8bwk903ysSRPrKonN80FwIq1hGWMcdYY43NjjHEj7v7EJHdK8mdjjE/u9RhXZ7Hnk9xAnADYvmacvH/Ycvne69l2dpKrkvxkVR26upEA6DLjbfPvvVyev37DGOOaqvpikn+V5B5Jzt3XA1XV7g027fMcDwDfOzP2WA5fLi/fYPva+tutYBYAmu3Xv+hrjLHr+tYv92SOXvE4AGTOHsvaHsnhG2xfW//1FcwCQLMZYTlvuTxy/Yaq2pHkiCTXJLlglUMB0GNGWD6wXD7qerY9JMktk3x0jPGt1Y0EQJcZYXlbkkuSPLmq7r+2sqpukeQ/LT/84wlzAdCg5eR9VZ2Q5ITlh3dZLh9cVact//uSMcZzk2SMcUVVPSOLwHywqv4si7d0OT6LS5HflsXbvACwH+q6Kuy+SZ62bt09lrck+VKS565tGGO8s6oemuRFSZ6Q5BZJPp/kN5K8+ka+gh+AbaglLGOMk5OcfBM/5yNJHtPx9QHYPvw+FgBaCQsArYQFgFbCAkArYQGglbAA0EpYAGglLAC0EhYAWgkLAK2EBYBWwgJAK2EBoJWwANBKWABoJSwAtBIWAFoJCwCthAWAVsICQCthAaCVsADQSlgAaCUsALQSFgBaCQsArYQFgFbCAkArYQGglbAA0EpYAGglLAC0EhYAWgkLAK2EBYBWwgJAK2EBoJWwANBKWABoJSwAtBIWAFoJCwCthAWAVsICQCthAaCVsADQSlgAaCUsALQSFgBaCQsArYQFgFbCAkCrlrBU1ROr6jVV9aGquqKqRlW9eYP73quqXlBVH6iqv62qb1fV31fVu6rquI55AJhnR9Pj/FaSH09yZZKLkhy1j/v+xyT/Nslnkpye5LIk905yfJLjq+pZY4xXN80FwIp1heXXswjK55M8NMlZ+7jve5O8fIxxzt4rq+qhSd6X5Per6q1jjL9rmg2AFWo5FDbGOGuM8bkxxrgR9z1tfVSW6/8yyQeTfF+Sn+yYC4DV224n77+zXF4zdQoANq3rUNiWVdXdkjw8yVVJzr6Rn7N7g037OscDwPfQtghLVR2a5C1JDk3y/DHG1yaPBMAmTQ9LVR2S5E1Jjkny50n+4MZ+7hhj1waPuTvJ0S0DAnCTTD3HsozKm5M8Kcn/SPKUG3MBAADb17SwVNXNk/z3JE9O8t+S/LsxhpP2APu5KYfCqur7sthDeVySNyZ5+hjj2hmzANBr5XssyxP178giKq+PqAAcUFr2WKrqhCQnLD+8y3L54Ko6bfnfl4wxnrv879cmeUySS5J8JclLqmr9Q35wjPHBjtkAWK2uQ2H3TfK0devusbwlyZeSrIXliOXyjkleso/H/GDTbACsUEtYxhgnJzn5Rt732I6vCcD2tN3e0gWA/ZywANBKWABoJSwAtBIWAFoJCwCthAWAVnUgvplwVV162GGH3X7nzp2zRwHYb5x77rnZs2fPZWOMO2zlcQ7UsHwxyW2TXLiFh1n7LZSf3fJA+z/PxXU8Fwueh+scSM/F3ZNcMcY44obuuC8HZFg6rP3a441+mdjBxHNxHc/FgufhOp6Lf845FgBaCQsArYQFgFbCAkArYQGglavCAGhljwWAVsICQCthAaCVsADQSlgAaCUsALQSFgBaCcs6VXXXqnpDVX21qr5VVRdW1SlV9f2zZ1uVqrpDVZ1YVe+oqs9X1Z6quryqPlxVv1hVB/X3TVU9parG8nbi7HlWraoevvzeuHj5d+SrVXVGVT1m9myrVFWPraozq+qi5d+RC6rqrVX14NmzzeYFknupqnsm+WiSOyd5Vxa/X+EBSY5Lcl6SY8YYl86bcDWq6t8n+eMkf5fkrCRfTvIDSX4+yeFJ3p7kSeMg/Oapqh9O8jdJDkly6yTPGGO8bu5Uq1NVr0jyvCQXJfk/SS5Jcqcku5L8xRjj+RPHW5mqenmS5ye5NMk7s3ge/mWS45PsSPILY4w3z5twsjGG2/KW5IwkI8mvrVv/yuX6186ecUXPw8OS/FySm61bf5csIjOSPGH2nBOel0ryF0m+kOT3l8/DibPnWuGf/xnLP/NpSb7verbffPaMK3oe7pLku0kuTnLndduOWz5HF8yec+btoD6ksbfl3sojs/itk3+0bvNvJ/lmkqdW1a1WPNrKjTE+MMZ4zxjj2nXrL07y2uWHx658sPlOyiK6T8/i++GgUVWHJnlpFv+w+KUxxrfX32eM8Z2VDzbH3bI4jfBXY4x/2HvDGOOsJN/IYi/uoCUs1zluuTzzen6gfiPJR5LcMsmDVj3YNrP2w+OaqVOsWFXtTPKyJKeOMc6ePc8Ej8jih+X/THLt8vzCC6rqWQfhOYXPJfl2kgdU1R333lBVD0lymyz2bA9aO2YPsI3ce7k8f4Ptn8tij+bIJO9fyUTbTFXtSPILyw/fO3OWVVr+ud+Uxb/Wf3PyOLP8xHJ5dZJzktxn741VdXaSJ44x/nHVg63aGOOyqnpBFofIP1NV78ziXMs9szjH8r4kvzxxxOmE5TqHL5eXb7B9bf3tVjDLdvWyLH6gnD7GOGP2MCv0kiT3S/JTY4w9s4eZ5M7L5fOSfCbJTyf56yRHJPmDLP7R9dYcJIdIxxinVNWFSd6QxbmnNZ9Pctr6Q2QHG4fCuFGq6qQkz8niSrmnTh5nZarqgVnspfzhGONjs+eZaO1nxTVJjh9jfHiMceUY42+SPD6Lq8QeerAcFquq5yd5WxYXMtwzya2yuDLugiRvWV49d9ASluus7ZEcvsH2tfVfX8Es20pV/WqSU7P4l+pxY4zLJo+0EstDYG/M4vDoiyePM9va9/05Y4wL994wxrgqiysqk8Xl+Qe0qjo2ycuTvHuM8RtjjAvGGFeNMT6VRWS/kuQ5VXWPmXPOJCzXOW+5PHKD7fdaLjc6B3NAqqpnJ3lNkk9nEZWLJ4+0SrfO4vthZ5Kr93pR5MjiSsEk+ZPlulOmTbkaa38/NvqH1deWy8NWMMtsP7tcnrV+wzKyn8jiZ+v9VjnUduIcy3XWvkkeWVU32/vKsKq6TZJjklyV5OMzhptheYLyZVkcS3/EGOOSySOt2reSvH6DbUdn8YPjw1n80D3QD5O9P4vXZ/zo+r8fS2sn87+42rGmOHS53OiS4rX1/+yS7IPG7BfSbKdbvEBy7z/zi5d/5k8muf3sebbbLcnJOfheIPmu5Z/519etf2SSa7PYazl89pwreB7+zfJ5uDjJD63b9ujlc7EnyR1mzzrrZo/ln/qVLN7S5dVV9fAk5yZ5YBavcTk/yYsmzrYyVfW0JL+bxauLP5TkpKpaf7cLxxinrXg05npmFntpr6yqx2Zx2fERSU7I4nvlxDHGRldVHkjelsXrVH4myblV9Y4sIrMzi8NkleSF4yB4+6eNCMtexhhfqKr7Z/FD9VFJHpPF+2WdmuR3xhhf29fnH0COWC4PSfLsDe7zl1lcEcNBYoxxUVXtyuLy6+OTPCTJFUnek+T3xhifmDnfqowxrl2+4eYzkzw5ixP2t0xyWZLTk7x6jHHmxBGn8yaUALRyVRgArYQFgFbCAkArYQGglbAA0EpYAGglLAC0EhYAWgkLAK2EBYBWwgJAK2EBoJWwANBKWABoJSwAtBIWAFoJCwCt/h+bwadJ2Ib/kgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 250, "width": 203 }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVMAAAH0CAYAAACAUs4iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFqhJREFUeJzt3XmwnXV5wPHvAxFEBRTXmWoVHYEoo5IgiqiAVKpYIypMnY5LHdFORQEXxHFBtHXcKgJqZcalcWu1anFpGUAlyKZlDNiKCQSEqFFRFgGRhC1P/3jfW67XnHCXJ+/v5N7vZ+bMyz3vycmTOzdffue873kTmYkkaW62aT2AJM0HxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpwKLWA2wJEXE1sBOwtvEoksbfo4CbM3PXuTzJvIwpsNMOO+ywy+LFi3dpPYik8bZ69WrWr18/5+eZrzFdu3jx4l1WrlzZeg5JY27p0qVcfPHFa+f6PL5nKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlKBpjGNiIdHxGci4lcRcVtErI2IkyLiAS3nkqSZavYJqIh4DHAh8BDgG8BlwD7A0cBzImK/zLy+1XySNBMtV6b/TBfSozLz0Mx8a2Y+C/gIsDvw3oazSdKMNIlpvyo9mO6qTh+fsvtdwB+Al0XEfQceTZJmpdXK9MB+e1Zmbpy8IzN/D1wA3Ad46tCDSdJstHrPdPd+u2bE/ivoVq67Ad8d9SQRMeqyUHvMfjRJmrlWK9Od++1NI/ZP3H//AWaRpDnbqq9nmplLN3V/v2JdMvA4khawVivTiZXnziP2T9x/4wCzSNKctYrp5f12txH7H9tvR72nKkljpVVMV/TbgyPij2aIiB2B/YBbgR8MPZgkzUaTmGbmT4Gz6P5VwCOn7H43cF/g85n5h4FHk6RZaXkA6rV0Hyc9JSIOAlYDT6E7B3UN8PaGs0nSjDT7OGm/Ot0bWE4X0TcBjwFOBp7q5/IlbU2anhqVmb8AXtlyBkmq4PVMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSqwVV/PVNPzjL0fe88P2sK2u/f2rUcA4Nprr209Ave+33j802YXrbyq9QjziitTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqsKj1APPZw/d7fOsRAFj3wytaj6Ax9PSntf/5PP/Cn7QeoYwrU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKtAkphHxwIg4IiJOi4grI2J9RNwUEedHxKsiwshL2qq0+jjp4cAngF8DK4CfAw8FXgR8CnhuRByemdloPkmakVYxXQMsA/4rMzdO3BkRbwMuAl5MF9avtRlPkmamycvpzDw7M781OaT9/dcAp/ZfHjD4YJI0S+P43uQd/fbOplNI0gyM1SX4ImIR8PL+yzOm8fiVI3btUTaUJE3DuK1M3w/sCZyemWe2HkaSpmtsVqYRcRTwJuAy4GXT+TWZuXTEc60EltRNJ0mbNxYr04h4HXAysAo4MDNvaDySJM1I85hGxDHAR4FL6UJ6TeORJGnGmsY0Io4DPgL8iC6kv205jyTNVrOYRsQ76Q44rQQOyszrWs0iSXPV5ABURLwCeA9wF3AecFRETH3Y2sxcPvBokjQrrY7m79pvtwWOGfGY7wHLB5lGkuao1cdJT8jMuIfbAS1mk6TZaH40X5LmA2MqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUYGyuZzofrbvgJ61HkEa66fcbWo8wr7gylaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAotaDyCpjbvuulfrEeYVV6aSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklRgbGIaES+NiOxvR7SeR5JmYixiGhGPAD4G3NJ6FkmajeYxjYgA/gW4Hji18TiSNCvNYwocBTwLeCXwh8azSNKsNI1pRCwG3g+cnJnntpxFkuai2SX4ImIR8Hng58DbZvkcK0fs2mO2c0nSbLS8nunxwF7A0zNzfcM5JGnOmsQ0Ip5Ctxr9cGZ+f7bPk5lLRzz/SmDJbJ9XkmZq8PdM+5f3nwPWAO8c+veXpC2hxQGo+wG7AYuBDZNO1E/gXf1jPtnfd1KD+SRpxlq8zL8N+PSIfUvo3kc9H7gcmPVbAJI0pMFj2h9s2uTHRSPiBLqYfjYzPzXkXJI0F+Nw0r4kbfWMqSQVGKuYZuYJmRm+xJe0tRmrmErS1sqYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFWh5cWhpQVqy9MmtRwBg1arLWo8wr7gylaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpgDGVpALGVJIKGFNJKmBMJamAMZWkAotaDyANabc9H9d6BNZcuqr1CNoCXJlKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlKB5jGNiIMi4rSIuCYibouIX0XEmRFxSOvZJGm6mn6cNCI+CBwLrAO+CVwHPBhYChwAnN5sOEmagWYxjYhX04X0s8BrMvP2Kfvv1WQwSZqFJi/zI2J74L3Az9lESAEy847BB5OkWWq1Mn023cv5k4CNEfE8YE9gA3BRZn6/0VySNCutYvrkfrsBuIQupP8vIs4FDsvMazf3JBGxcsSuPeY8oSTNQKuj+Q/pt8cCCTwD2BF4AnAW8EzgK21Gk6SZa7UynYj4ncCyzFzbf/3jiHghcDmwf0Tsu7mX/Jm5dFP39yvWJYXzStJmtVqZ3thvL5kUUgAy81bgzP7LfYYcSpJmq1VML++3N47Y/7t+u8MAs0jSnLWK6Xfp3it9XERsaoaJA1JXDzeSJM1ek5hm5s+AbwF/Dhw9eV9EHAz8Jd2q9Yzhp5OkmWv5cdIjgb2AE/vzTC8BdgUOBe4CjsjMmxrOJ0nT1iymmbkuIpYCxwPL6E6Hupluxfq+zLyo1WySNFNNL3TSn5T/+v4mSVut5pfgk6T5wJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVaHrSvhaOJ+67V+sRAFhz6arWI2iecmUqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFFrUeQAvDxryt9QjSFuXKVJIKGFNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSCjSNaUQ8LyLOioh1EbE+Iq6KiK9ExL4t55KkmWoW04j4APCfwBLgDOBk4GLgBcAFEfHSVrNJ0kw1+Wx+RDwMeDPwG+AJmfnbSfsOBM4G3gN8ocV8kjRTrVamj+x/7/+eHFKAzFwB/B54cIvBJGk2WsX0CuB2YJ+IeNDkHRHxTGBH4DstBpOk2WjyMj8zb4iI44ATgVUR8XXgeuAxwDLg28Df3dPzRMTKEbv2qJpVkqaj2fVMM/OkiFgLfAZ49aRdVwLLp778l6Rx1vJo/luArwLL6Vak9wWWAlcBX4yID97Tc2Tm0k3dgMu24OiS9CeaxDQiDgA+AHwzM9+YmVdl5q2ZeTHwQuCXwJsi4tEt5pOkmWq1Mv2rfrti6o7MvBW4iG62vYYcSpJmq1VMt++3o05/mrj/9gFmkaQ5axXT8/rtayLizybviIjnAvsBG4ALhx5Mkmaj1dH8r9KdR/oXwOqIOA24BlhM9xZAAG/NzOsbzSdJM9LqPNONEXEIcCTwErqDTvcBbgBOB07JzLNazCZJs9HyPNM7gJP6myRt1byeqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFmp20r4Xlxz9Y1XoEaYtyZSpJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQUWtR5AC8Oe+zyi9QgAXHrRL1qPoHnKlakkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUoiWlEHBYRH42I8yLi5ojIiPjCPfyap0XE6RFxQ0Ssj4j/jYhjImLbipkkaUhVHyd9B/BE4BZgHbDH5h4cES8AvgZsAL4M3AA8H/gIsB9weNFckjSIqpf5bwB2A3YC/n5zD4yInYBPAncBB2TmqzLzWOBJwPeBwyLiJUVzSdIgSmKamSsy84rMzGk8/DDgwcCXMvOHk55jA90KF+4hyJI0blocgHpWvz1jE/vOBW4FnhYR2w83kiTNTYtL8O3eb9dM3ZGZd0bE1cDjgUcDqzf3RBGxcsSuzb5nK0nVWqxMd+63N43YP3H//QeYRZJKbNUXh87MpZu6v1+xLhl4HEkLWIuV6cTKc+cR+yfuv3GAWSSpRIuYXt5vd5u6IyIWAbsCdwJXDTmUJM1Fi5ie3W+fs4l9zwTuA1yYmbcNN5IkzU2LmH4VuA54SUTsPXFnRNwb+Mf+y080mEuSZq3kAFREHAoc2n/5sH67b0Qs7//7usx8M0Bm3hwRr6aL6jkR8SW6j5Muoztt6qt0HzGVpK1G1dH8JwGvmHLfo/sbwM+AN0/syMyvR8T+wNuBFwP3Bq4E3gicMs1PUknS2CiJaWaeAJwww19zAXBIxe8vSa15PVNJKmBMJamAMZWkAsZUkgoYU0kqYEwlqYAxlaQCxlSSCmzV1zPV1mPbbTa2HkHaolyZSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklRgUesBtDD8zw9+2XoEaYtyZSpJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVKIlpRBwWER+NiPMi4uaIyIj4wojHPjYijouIsyPiFxFxe0T8JiK+EREHVswjSUOr+mz+O4AnArcA64A9NvPYfwD+GlgFnA7cAOwOLAOWRcTRmXlK0VySNIiqmL6BLqJXAvsDKzbz2DOAD2TmJZPvjIj9gW8DH4qIr2Tmr4tmk6QtruRlfmauyMwrMjOn8djlU0Pa3/894BxgO+BpFXNJ0lDG7QDUHf32zqZTSNIMjc31TCPikcBBwK3AudP8NStH7Nrce7aSVG4sYhoR2wNfBLYH3pKZv2s8kiTNSPOYRsS2wOeB/YAvA/803V+bmUtHPOdKYEnJgJI0DU3fM+1D+gXgcODfgZdO5yCWJI2bZjGNiHsB/wa8BPhX4G8y0wNPkrZKTV7mR8R2dCvRFwCfA16ZmRtbzCJJFQZfmfYHm06jC+mnMaSS5oGSlWlEHAoc2n/5sH67b0Qs7//7usx8c//fpwKHANcBvwSOj4ipT3lOZp5TMZskDaHqZf6TgFdMue/R/Q3gZ8BETHfttw8Cjt/Mc55TNJskbXElMc3ME4ATpvnYAyp+T0kaJ+P2cVJJ2ioZU0kqYEwlqYAxlaQCxlSSChhTSSpgTCWpQMzHizRFxPU77LDDLosXL249iqQxt3r1atavX39DZj5wLs8zX2N6NbATsHYOTzNxtf7L5jzQ1s/vxd38XnTm0/fhUcDNmbnrPT1wc+ZlTCtM/JMooy5AvZD4vbib34uO34c/5XumklTAmEpSAWMqSQWMqSQVMKaSVMCj+ZJUwJWpJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSAWM6RUQ8PCI+ExG/iojbImJtRJwUEQ9oPdtQIuKBEXFERJwWEVdGxPqIuCkizo+IV0XEgv65iYiXRkT2tyNazzO0iDio/9m4pv878quIODMiDmk9W0uLWg8wTiLiMcCFwEOAb9Bdq3Ef4GjgORGxX2Ze33DEoRwOfAL4NbAC+DnwUOBFwKeA50bE4bkAP/EREY8APgbcAtyv8TiDi4gPAscC64BvAtcBDwaWAgcApzcbrrXM9NbfgDOBBF4/5f4T+/tPbT3jQN+HZwHPB7aZcv/D6MKawItbz9ng+xLAd4CfAh/qvw9HtJ5rwD//q/s/83Jgu03sv1frGVveFvTLtcn6VenBdFfn//iU3e8C/gC8LCLuO/Bog8vMszPzW5m5ccr91wCn9l8eMPhg7R1F9z+aV9L9PCwYEbE98F66/5m+JjNvn/qYzLxj8MHGiDG924H99qxNROT3wAXAfYCnDj3YmJn4C3Nn0ykGFhGLgfcDJ2fmua3naeDZdC/n/wPYGBHPi4jjIuLoiNi38WxjwfdM77Z7v10zYv8VdCvX3YDvDjLRmImIRcDL+y/PaDnLkPo/9+fpVmVvazxOK0/utxuAS4A9J++MiHOBwzLz2qEHGxeuTO+2c7+9acT+ifvvP8As4+r9dH+JTs/MM1sPM6Djgb2Av83M9a2HaeQh/fZYuvdNnwHsCDwBOAt4JvCVNqONB2OqaYmIo4A30Z3h8LLG4wwmIp5Ctxr9cGZ+v/U8DU204k5gWWaen5m3ZOaPgRfSHd3ffyG/5Demd5tYee48Yv/E/TcOMMtYiYjXAScDq4ADM/OGxiMNon95/zm6t37e2Xic1iZ+7i/JzLWTd2TmrXRnwkB3KuGCZEzvdnm/3W3E/sf221Hvqc5LEXEM8FHgUrqQXtN4pCHdj+7nYTGwYdKJ+kl3hgfAJ/v7Tmo25TAm/n6MWkz8rt/uMMAsY8kDUHdb0W8PjohtJh/Rj4gdgf2AW4EftBiuhYg4ju590h8Bz87M6xqPNLTbgE+P2LeE7n3U8+lCM9/fAvgu3Xulj5v696M3cUDq6mHHGiOtT3QdpxuetD/5z/zO/s/8Q2CX1vOM2w04gYV30v43+j/zG6bcfzCwkW51unPrOVvdXJn+sdfSfZz0lIg4CFgNPIXuHNQ1wNsbzjaYiHgF8B7gLuA84KiImPqwtZm5fODR1NaRdKvxEyPieXSnSO0KHEr3s3JEZo46G2beM6aTZOZPI2JvupA8BziE7vPpJwPvzszfbe7XzyO79tttgWNGPOZ7dB8r1AKRmesiYindqWLL6E6Huhn4FvC+zLyo5Xyt+a+TSlIBj+ZLUgFjKkkFjKkkFTCmklTAmEpSAWMqSQWMqSQVMKaSVMCYSlIBYypJBYypJBUwppJUwJhKUgFjKkkFjKkkFTCmklTAmEpSgf8D0KvZ1C1q9NwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 250, "width": 169 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# import glob\n", "# import re\n", "# path7 = '/data/captcha/label_english/90_38/*.jpg'\n", "\n", "# files = glob.glob(path7)\n", "# sp = int(len(files)*0.8)\n", "# # sp = min(int(len(files)*0.8), 3000)\n", "# for file in files[:]:\n", "# try:\n", "# img = Image.open(file)\n", "# except:\n", "# print('打开错误:',file)\n", "# continue\n", "# if re.search('FileInfo0508', file)!=None:\n", "# label = file.split('_')[-1][:-4].lower().replace('1','l')\n", "# else:\n", "# label = file.split('_')[-1][:-4].lower()\n", "# if len(label)!=4:\n", "# print(file)\n", "# break\n", "# from PIL import ImageFilter\n", "# img2 = img.filter(ImageFilter.MedianFilter(size=3))\n", "# img2 = img2.filter(ImageFilter.MedianFilter(size=3))\n", "# img2 = img.filter(ImageFilter.ModeFilter(size=3))\n", "img2 = Image.open('/data/captcha/arithmetic/70_25/0.jpg')\n", "# img2 = img2.crop((6,4,70,17))\n", "# w0,h = img2.size\n", "# w = w0//7\n", "# for i in range(7):\n", "# if i<=4:\n", "# im = img2.crop((w*i, 0, w*(i+1), h))\n", "# else:\n", "# im = img2.crop((w*i+1, 0, min(w0,w*(i+1)+2), h))\n", "# plt.imshow(im)\n", "# plt.show()\n", "# plt.imshow(img2)\n", "# plt.show()\n", "img2 = img2.crop((6,4,70,17))\n", "w, h = img2.size\n", "ws = []\n", "for i in range(w):\n", " white_num = 0\n", " for j in range(h):\n", " if sum(img2.getpixel((i, j)))>400:\n", " img2.putpixel((i, j), (255, 255, 255))\n", " white_num += 1\n", " if white_num == h:\n", " ws.append(i)\n", "plt.imshow(img2)\n", "plt.show()\n", "print(ws)\n", "for i in range(len(ws)-1):\n", " if ws[i+1]-ws[i]>3:\n", " im = img2.crop((ws[i], 0, min(ws[i+1]+1, w), h))\n", " plt.imshow(im)\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAACaCAYAAAC5WrMVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX+UXVd137/73vfezGj0c/TL8i9JuARsCNhGmDjY1AmQRWiJSSkEaAk0XnHThBRaN2AKJG3asBwSQlilpHWCwbSEFOzwo8QNOIQVSlsbZMcg28K/sGRJ1g9L1o/RjGbmvXt3/5hnqnO+XzFPM8NI87o/a82auVvn3nfuueeed7W/d+9t7o4gCIJg8VOc6Q4EQRAE80Ms6EEQBH1CLOhBEAR9QizoQRAEfUIs6EEQBH1CLOhBEAR9QizoQRAEfUIs6EEQBH3CnBZ0M3uVmT1kZo+a2Y3z1akgCILg9LHZRoqaWQngYQCvBLAbwLcBvMndHzzVPmtWDvjGc4cSW92uuaGnNoPoo/gqsrJUxh++DcDMuAsQxyqa4viNHjom+i/G3b3iXet22qaa4GPVU2xT5OdeqPFS3/EzXyMAQLuTbFaT3C8Dj3XRbJGt6nDfvJON9ZIhatMc4GO5PKWs/zWPvWdjP90HYZua5ONX6ViYmANi2sl5gYrHuqrTdibmXVHyB1hTDEYjtanxMnHfQFzL3hBzZz5p8LxAyTYzvp89PyVxOQwdNtbKxvPfySbmhRjXex86dtDd1/KHpOSr0elwBYBH3f37AGBmfwbgWgCnXNA3njuEuz51TWIbOzDKDSfTRauEuGGGeYI1ly0lmw2tTLeLZbxfc5Bs7WKYbD5wLh+/uSbdbvCxYLxYVBVPAG8f5V0n9iXbnae3U5tifCfvJ25Aby1P2wwtpzaVmPil8fhX7XE+/oFDyfb4I9yvouApN3TORrIdPbiCbO0D6bUsX/wCarP+ogu4ry2+QepsEfbxQ9SmOv4U257aQ7bJXTvIhiPpdWsN8RdBoyEW3AluVx3n8T8+mrZrNfiLbHAZL1itc3j+d9am17wjpnCzwXOlKPn46uGIPq8zxka1W9HjF0bebOXzqUm58oVsG1xHtir74lXfr2V1mLswsZ8bjj7Jxz/xRGbh610W/I06eNVX+WYSzMXlch6AXSdt7+7agiAIgjPAj1wUNbPrzWyrmW09eLhH10AQBEFw2sxlQd8D4OT/357ftSW4+83uvsXdt6xZxf8tDIIgCOaHufjQvw3g2Wa2GdML+RsBvHmmnTwTRLxgJ1Wdtel0+Mm+PsHHbguXW1Glp2jCbznV4ONXDRZuzI+xrRpItr1gnxiMj1UrEaXDJ2UTqa09IfSEE8JWC+df5ksuKv4+txb3tW3cV1MCbpmOtQ+xM3byKI9PMTVAttbKc8hWZnpFu8E6x0QlhK6OeG7JnaPGDxu1sKlnICUi1o30+FVT+MsH+Par1bGEKOpj6fi3T4h7RNwP7TFxrGwYa3GOVVPMASn0qpcscpuY+8pdrl5WEO08e1nBxLwuK96xFLdqJ/PbK+1fHcvEyx31JOtM1USqDxr4uhXCh94rs17Q3b1jZm8H8BUAJYBb3P2BWfckCIIgmBNzeUKHu98B4I556ksQBEEwByJSNAiCoE+IBT0IgqBPmJPLZTbUuUDSmDlyLQ/qA4BOm4WVapJFxQKpYFKoYA4RlAFhKovjbPRU+KuVKCrQUaFC3Oyk59kRYmfdUVGbSvFJRZrSOfhIaMHyGrmIcCuyyFMbZtGyHuV+dZyDVporREjDyjQQpB5aQ03a4M9Uzy15lKCbUNkLFSQmRFfxiVWZiZYiyBhDfPtVIpLTxTX3TFxuH+NxnRICZTXJn1lMpZPdmzwvlFBqImDOxAsAeWSogfeTYbMisMiVUJpFGhdgkV3e0OCLUmUKt5rncHF8IZRW4mWOqkqvkzmvY0UPwVmnIp7QgyAI+oRY0IMgCPqEWNCDIAj6hAX1oTuAOvPrWVP49OrUt1W78Fu2RXY8mfAqS8Lk4pSVH0u83G9t4UO31J9WFyoAo0efmItMfrmvXWRDrNVlrMSxqtynx37jhsyqxwm7XPhn6zx741L2Z5dLRTBNYzV/5FJOhOZLUh96sxjhY5W9ZVssLB2fuhT6SykSxxUiAElExeRJnkz4g4sWj3VH3A/SLZ0l+6qd/bWdmjWAQmgMjdxWi8RuQvOpxXxV/vHc1y7PRz1aKve1upVa6fx0oX14wX7v2pSvPT139Xm1iYyn4h6s5JhleoLK/jXLDLhAPKEHQRD0DbGgB0EQ9AmxoAdBEPQJsaAHQRD0CQsrijrQzlLAVaIMWmMgFTXKgsWFxjgrKx0h0uSlwGBCLCxEBrqahQ+vudJK0UmFFWuoDHRCEJPio8jYlolrDREE5a0lvJ8IvPIsSCmv2gMALsr4FSWLR6UIPvGsgo0Pcb+aqzkYyAc4s2LVYqG0Gk5F0KGCK87IAB4puKXnbg3OjIcGi6JKSKuF6prrWi7E7IrKF4IyYgJAqTI8DqfX0od47hQDq/hYgywkNwbSKkYugu9QivFR2p3KIkrtxNwX6qNJBVS8FJBdExPXyFTmTDH+eTuVPFIdy8X9XJQ9lM4U51jI8+6NeEIPgiDoE2JBD4Ig6BNiQQ+CIOgT5uRDN7MdAEYBVAA67r5lPjoVBEEQnD7zIYr+lLsf7KWhwzCZRX12ahY8q0xck4nYVLTZlBCx8lSNbSF2KpFGZYQT9cHqZhb51RRl5Aqh1ClRVAhnnolMRYOPVWSiFgD41MzZFtttIYrWvJ8q1TU4vJT7MZgJSk0Wj6o1a3k/EfFZNTg6tdnMsjIWHPWoBO5aXMs8g2GjwWNoJZ9jx4QAnddwA9Co032tEmK5mE+lEOqaAyKz5cp0LKoJzlhZDmwg28AIC8k2nF6nWmRRrIQCWom5IoIjKaNgU0TbSpToqiKUs2yjMvtoR2VBFeXfymyxUYGcFHEN1GJdqaeELcvAKCpwyuqRvRIulyAIgj5hrgu6A/iqmd1jZtfPR4eCIAiC2TFXl8tV7r7HzNYBuNPMvufu3zi5QXehvx4Azj+H/xsdBEEQzA9zekJ39z3d3wcAfB7AFaLNze6+xd23rF6pspsFQRAE88Gsn9DNbBhA4e6j3b9/BsBv//B9SjRbKxNbrVLe5hGThUixK74bSrDwkUdMqiisWqWrVP1SZcrykmQiN6grEUgIpa7E03wsSh6LUkSKYlAIntl52gnua1ULwecEpw12EYlaLkn/B9ZYwUJd3RTnqMquCWGuzE2liI6UUaFKkMzEbCWyqwhQkZrVhKBaNEeyNnw9CpF2V8UImog4tIGs7NqwiI4cEmL5Em7nrXROVUKVM1HWrRSl2CpwNLVnY+2yBJ0qcyhGQ9y/jezFiqLisbaKBUozjn4tkEXgcg+ASkTNVrw2uChBZ538vlHnOPvn7Lm4XNYD+Hw3rL0B4E/d/S/ncLwgCIJgDsx6QXf37wN44Tz2JQiCIJgD8dpiEARBnxALehAEQZ+woOlzrSjRGkhF0UrVvswiy+papLkUqWYLUVexQCaGiIg9Fd6maihCRMZZnQkwQlBS0ZdesrimJJi1T6cRh0sqFhqbO/hIl11wMdmefnh7sr3s8FFqs2EFC2mPl4fJ9shqFp6++b53Jdv71x6jNg/vuZ9s1668gGxLtvH478fOZHvbxduozc5zd5GtGH+KbJe88/XJ9qBI9btrF4t+mzb9HNn2DryEbEOr0+jR8TFRh7LNglhHCNUbn8VpcKul6fiUF3Lk8dKlHOl69Chf8zJLmdxqiQjfSkSPCtvmg/+CbHV2z+XRzwDgsu6ueN4U7Vr5fS8ESrRZyDSVvtjz6yT61eYxRFuIwW2+74tszEwJoL3WIBbEE3oQBEGfEAt6EARBnxALehAEQZ+wsD50K9FopT7ahvAz5Vnc6op9Sk6+LsAaIugjz+boIvBH+ALzYAgAMBUQUab+OxeZ3hzsM5SlrZS/7snHks0LmiupyZJx9ul9+DX/jmyTr0l94ZvBPtaloq8HRVa6137on5Pte620H6//z2+jNq9gFz0+88rfJ9s5w3yegxs3JduPLtlPbd5z2/v5A0Sivdvv+EqyXYl5ccMNN5Dt6ASP9bIWn9TRKfap5jTB8/WWW24hm/KFX3nllcn2wAD7+4+LgLBlS7ivo+OcpXS27Prci8iWy0oq+6XMaqgCr0TkmHXStaAW/nJMieA4EcyUf6QMbpo6QqZaZXoVGU/zwKJCLMF1+NCDIAiCWNCDIAj6hFjQgyAI+oRY0IMgCPqEBRVFAYMjDVpwIXJ49j1Ti+xpeRsAKERZNytymwj8qVTZMiVk8nDlGdVqFwqciwyDlRB3RKDDi7JLtHwvC4H/6TduIlsLHFzx3k/8brL95LaHqc35JZdT+9jv3Uy22274E7L9j7/4X6mBq80Boljh+AvXkG37Mr7mK56Vimm7J1hcOyoeUUTSR6xcmYqur3vd66jNCRGg8ulPfJpsQ0Oc57/RSkXK48dZlPuFX3wj2f7xL72ZbN++62/IdscddyTbHcriB1x44YVk27dvH9lGRtLMkBMT/MLBy172MrK1VcCcSlyavWDQUHXXBKaeN4V4XU+mImg1IQTQFttkhk0yij5MsTBeTQhRtC2yLWZZSpX+Was3JnokntCDIAj6hFjQgyAI+oRY0IMgCPqEGRd0M7vFzA6Y2f0n2UbM7E4ze6T7m7MHBUEQBAtKL6LoJwF8FMCnTrLdCOBr7n6Tmd3Y3X73TAeqYZjIysnVpRAMLY2ga4luWpszAIqqaOhkKk3ZYhWiaK4gm4sskFOqpFRWqq4UwqkZH6vT4f4XFYsttn91sn3rjf+F2gyKzJNX//q1ZBs9P404PO8FP0Zttj/Ootkv/N67yHZIlIj7pcFUWPzIr3yM2rzj5l8l23W//TayvetXuJph53gqPH34ln9FbVpiOr3iGo74fP/7UkHyRDVzZCcANBr8DDQ+zpGJY4cOpf0SGQy/eNsXyHbsGGeoLMSLAytWpHNWHd+E4qZsef/z7IuAFkBLcDtv8j0yYKlA3JkSN6oqEyijrtk2YangWY7voDYNF/dWi9XyyrJIdmoBtMf53u2M7ubPnOIXGAzZBBXCbCnWi16Z8Qnd3b8B4OnMfC2AW7t/3wrgtbPuQRAEQTAvzNaHvt7d93b/3ofp+qISM7vezLaa2daDT/f2FBQEQRCcPnMWRX26lPwpX5x095vdfYu7b1kzwu84B0EQBPPDbBf0/Wa2AQC6vw/MX5eCIAiC2TDbSNEvAXgrgJu6v7/Yy04GoMzSUVYyb2YquLlI36pK0Omkk+l3lsqYibo38agsVeTazPspmxK61BmsGb483Q8bqM0JEdV60ZUsin5zMBVpvtvi/ZYKIeqx3XvJ1lzJqV/PHUujO48cZoHvc2/6KNle/8m3k+2D//U3yYY886vQ1n7n51mI3XyEU/G6CmnMWNritLXnnnsu2Xbu3km2FSvT/43WIh3zoYMsQA8M8biqUm/r1q1LtpWY+tRTXHovF1MBnp+Xv/hyarNu9Tqy3X777WQrjvC1zI9fyPtIXQ9x34h2dS7Q5ymzAXibI4/hIqI0K1kpLhswwWNtFQvjtVpXskhXFyUrZW7tHunltcXPAPg/AJ5jZrvN7DpML+SvNLNHALyiux0EQRCcQWZ8Qnf3N53in14+z30JgiAI5kBEigZBEPQJsaAHQRD0CQuePjdPiWmi4KN7KmB4rQQNpVaoj8yFidmLli4i43IxR9YFFcjjO9uWNM+b8VhLxWU8coyP1bpwc7J9bGwPtSmNRbnnb7yYbPueeoJs6w6mgtJFFWeE6Bzmvv7xte8l2y/f+TtkQxbG8LE3/xY1uWiUx2ukcz7ZBgbSiL07vvBlavPq176abFe//KVkU3U6j4o6rznLxX6fuPWTZFuzhtML79yZCrF5ClwA2Lx5M9mUULrlxVuS7VbJUaef/exnyabSBtsxMf+zuV6KVUeJgybEQSVmF7lyWbNaXk+JGsQi5bBnL2QIPRre5nga63CqZXU/1/l5dvgDilO/BT4j8YQeBEHQJ8SCHgRB0CfEgh4EQdAnLLAPnb9B8hftAfaZ1y78X2o/+Ykz+9CVX04GFkm/d7av9+ZDlwFI4vu1OWJZG0ZV9HruuZxep1qX+o0nd3I9uJuv+wDZLhaBXevBASqHb/nTZLv5FPsoj4mgjHUvXk02dMRJrUjPvjXF/Wod4s8cKdkHnZcau3Aj+9nv+CL71Tdt2kS2HU+wnnBiIg00WbuW6/Fddc1Pku11r+c8dw9tf5Rs+fGUP/tQlvERAF50xYvI1izSeXHvvfdSm+FhTtsxOspl19S8zn3oJqL7XE1i5VcXkT6OLBBRtJFlLJUtLyEpfOioxHokGrqxFuFZ1kqXTvoe9UFBPKEHQRD0CbGgB0EQ9AmxoAdBEPQJsaAHQRD0CQsqihqcX5rPRQgA7qnYVdecycxERjWZsW327+jzZyrBp4cu9H58Dlx6BKngNiqyTJbGIs2y5dzXx75zT3qs7z9CbT70N/+SbN/+97dwZ8XwP5HFVly0kjMTrlrOZb+2Hr2LDzYixjqfOoNcb86ycmcAMDjM2RaHl6VBPceOc+a95St5vyf3c+bJkdUcQDU1lYqUrZa61XoTv1QQWi5SHhf9v/rqq3s6/q5du5Lt3bu5nFqzyWM9MMBjXRQq+C61yXtEvZggbl4pqHoqhNdqPxHAo7pRZ8FM8nxMRUZxO6s4SA/t7DrVLOznwU2nQzyhB0EQ9AmxoAdBEPQJsaAHQRD0Cb0UuLjFzA6Y2f0n2f6Nme0xs/u6P5zFKAiCIFhQehFFPwngowA+ldk/7O6/fzof5nB4lSpnXrOghywy1ES2xVoIBy4irPKEbd5jpKiUTET2NxJKhZanSogpGgX3//CGVHDbRS2AJpaQ7bEnniTb8pE0unO0yaLfSMkRh6iFMKT6MZxm/Dt6mAfj6PGnyXbhVZfwwXoIuPUG9/XIcc56NznBEbHPH35Osq2yEK4a4fFZ0uHPVKLl2FgaRXnOOVzCTT9N8RxYLoTkdjt9meB5L3iePFrOtvu2kS0XPFVUa0dkJlQvCbi6R7Lx0febOJYYC7WrFY1sm0e2bLCoqyI5q6zsYFGw8JuLsADgbV7HigkheOanpErjtX+E2Rbd/RsA+C4MgiAIzirm4kN/u5l9t+uS4fe2upjZ9Wa21cy2Hnya8wgHQRAE88NsF/Q/AnARgEsB7AXwoVM1dPeb3X2Lu29ZM8IJfoIgCIL5YVYLurvvd/fKp53WfwzgivntVhAEQXC6zCpS1Mw2uPszIXM/D+D+H9b+B3iNuhrPTCIVZVZCSkWM9R4CmootSpDpWRTt6TN7S5+rPrOuOGr26fE0tewHP3sbtfkPb3gD2d73i+8n23Wf+8Nke/Mq/j4fGuOUqONtFnWrASGUnkin06oVLK4d2sdi7eiuI3ws1jGRVwC0MR7rTRdcyIca5WmeC5mv/ns/S23GTrCL8IFtD5BNiYOrVqVeyPFRjnZeMcwpiI+NcXphJdhec801ZKNjHeZjqb7m5exUVOiKFdzXyUkh6KkA3yy609V9pNVOcXjRrkwnhhUiQrNk74A1l5Kt0UrTTpdCeK+FKIpJkUpYSI/eToVSL3g/GIupvTLjgm5mnwFwDYA1ZrYbwG8BuMbMLsX0CrcDwD+ddQ+CIAiCeWHGBd3d3yTMH/8R9CUIgiCYAxEpGgRB0CfEgh4EQdAnLGj6XEeNikRRFgKRRYGqbx1ZurMQxjqryeniaCK6TWbi7SE3rglVSEbUKVFUiC0jQ5uT7eYRFihvvvV/ku0tb+XUqb/x+ncm2xdQC+BZwtYREXtv+cA/I9sHpl6Z7mfc19WrRsh22Xnn8YcKvS1P2buiw6LWk7u4vufwKq4X2mikU//Or/4Vtbn6ZVeR7eIfv1h0jFm9NBVFDx/n+p6Ke+7iep4qUvTQ0+nxCnGXTEzwCwcHD7LavHHjxmRbibBHjx4lm0qfK+kl7bS8b1T9UNUuS8/bYFHUBlnURYvDZxqtdC6WDY7CrlTq7oIFUJWyt55IRVAvWICu5/CcHU/oQRAEfUIs6EEQBH1CLOhBEAR9woL60OE16jrPtqgyJOY28b0j/OVWi/JUWXCCybJfysc9cwm0aVNqVO5C5UPXfnX2oT9xMA36uHhkE7WZGudz+tUPfoRso6vSvq5o8QmNHGBf73Mv5FJyT7JrEQNDqXHPsX3cZmQZ2b7/3Z1k2/YPOFZteGV6/MnjfN5rN20g24Gn+JwOHz6cbK9bx9kQ777rW2TL/c0AsE+Updu3Jw2gWrNmDbVRGQxzzQfQ2TofuD8NcFL+7GPHOLBoaoqDVvbuTfuv9jv/fNYhRkc5KIbzFwrkvStuLqWJyXi/3IcufPstnnc2KHzozTQYrhTZR1340KVvf5J1hzrz77sqZ9eD5nAq4gk9CIKgT4gFPQiCoE+IBT0IgqBPiAU9CIKgT1jwwKI6KyfnQgTKg3NMfO+YEkyEzbN9pfgigxW4ldy1B1SJMkUtSujtHEpTzXvFamRrBZdKa/5dFgetkQpDtRB82kKkaTQ56+CNP/5jfPxX3J1sL2+zWFgffpxsVxzibItjOzhAqBpL+9EQIviUmCsvWMfBTO27UuHsr/+ChcBVy59DttZGDscaavD4LBtPA02+89QBavPfv8KZG593GWeL/PV3byFbY0kaoNcWGTFX1TxXlnRYqPPsvlmiyig+zQKuqm4gxcG8jXxJQBxMIoIA86yMBUuzuRgJAGWThdJGIz0rK0TJQREw5yUHcakAp7xvrtaG2Wui8YQeBEHQL8SCHgRB0CfEgh4EQdAnzLigm9kFZvZ1M3vQzB4ws3d07SNmdqeZPdL9fcpC0UEQBMGPnl5E0Q6AG9z9XjNbBuAeM7sTwNsAfM3dbzKzGwHcCODdP/RIkyfgj9+XmMpBIa1kmeo6Kntag4UPb3K7op0KjaXIgNZxFrWk/qmyrGUpAGsRiaoyMDYaXMKtFqWzquwKtYUyO1Uf524ZizRFI80458YRdR0hUqPNGTGLphCnssNNNThL4NAYf+9PrODjN87l7Hj+RBrlWExwSsZlS1m82/kgj/X//mq67zniHF/8k9yHvY+z0LuD9U5sezyNkj28j4Xff/IaLtH3kl++hGz1Ei5fV2YBn0XJAugJpbe1OGK1KLPoRecMgJ2C5745j5l1OBK1bmdzUZSddFNRs2LeifvLM3E/Px8AaDY40tUKjvqdyiNKjcfCOjzvzFg8rZznv9XpDe3iRQhT0aM9MuMTurvvdfd7u3+PAtgO4DwA1wK4tdvsVgCvnXUvgiAIgjlzWj50M9sE4DIAdwNYf1Kh6H0A1p9in+vNbKuZbT10THwLB0EQBPNCzwu6mS0FcDuAd7p78tKuT1drkF4Kd7/Z3be4+5bVyxc2F1gQBMH/T/S0oJtZE9OL+afd/c+75v1mtqH77xsACE9iEARBsFDM+Mhs03lePw5gu7v/wUn/9CUAbwVwU/f3F2f8NHdUmSjZHmPBp2mpqNEaFmWahCBTl+J0MtHBZfrc2ZOn/61FablSpedlnU6Kp0V2OHUsZUNHCEqNdOyF3gPPPxCQYrApW/aZjSkWj6qCRbPmEh6MYhmXl2tl4mk1yef9xHdZIN72rcNkGxxL58oFazmadO/D/Izy4L4TZDshPImrsozDz3keeyTP28Tzta44JW3dFrmKISZQTsHHt5JfJmAb71cYf56pKO9CiJZFlt5W1o9kVESprgJZZW1EH0Rq6un3PVIovbYog2d5LUQAEMe3mud/XWWR8hUfX92CvdKLD+SlAN4CYJuZPfOKyr/G9EL+WTO7DsBOAG+YfTeCIAiCuTLjgu7u38Spswu8fH67EwRBEMyWiBQNgiDoE2JBD4Ig6BMW/D1Cyxz+nRMcNYZMGGrW3E0fEILPIEc+1pkA43kHoMVIaepFpBH1H5WQUwsxxPI0oMKmBBNTCqsQJL1IBb2i4CjdsuBjuTgBr4To2k4jbu04p6RtOI9PQ/R/aoxto/tT4enJB3nuPHE/i65Tu0Tt1Cyi1MZZ7Bw9zoK9HefzXnceRwmuvzyNAl29ntvUFYuuxw8fJNvgINd09XLmZ7GiZNW7EPU2rcxtQhQV161QOW9Fu7wGZ13zuMqUunx0nda6zgRJ8cKECxuc50q+rxRh1fGFAOodjkCvp7J51hGiaC+C9ymIJ/QgCII+IRb0IAiCPiEW9CAIgj5hQX3oBqCR+4kn+YX8aiINDmmzewpYJjIwqhf+W6kfMS9JB2i/nPKr91K8TpW4c+Enq5QPuhTBG7lPW3WiVL599gl3PB1XlSGuGBC+XvGhlEEPQH0i1T7qQ4e4Xx3Rr0n2ZR79Hvvfn/xOWj7tse9xENHYHh7D9SJb59pWNqnGuTRbOcXjun4Z287bzFrEOc9Pfei2nMdw/6M8sccPcz8aqzkrow1m/nGhDSkfus3Why4CyQoXz4OinZdZ4E+nx7Jr0kcv2mVBPSqIyCH85T0E/uSBiQDgeRsAEPPap3gO11PpnC2EllaKgLBeiSf0IAiCPiEW9CAIgj4hFvQgCII+IRb0IAiCPmGBA4sMZSakNETGtmosFRgmR1mEKCrOQCeq0gGNtJ0roUhkf5NCqTRmgT/iO7ISmQ+rSRGcIMrSWSaU1pVQhUqRQTKvXQegmsoy+dUskA2IgBUTois6LIp2skCizgEOkhnfwZkPj+9lIXD/fbzvwcdSca21jM9x3QgLoBuXsWg51EjPszYOAimn+Hq0B3n8V46I69ZIhblyGU/OZcu5HN+Y0u7abCwGU/FaTU0UPNddZVssMpsqu6YyE6qsiYUI4LHs/pWZoXrLwKjIM6iqvsrAH2GrsnlthcjSKN7S8CkRRDTJ87qeTNs1RORSMYdlOZ7QgyAI+oRY0IMgCPqEWNCDIAj6hFjQgyAI+gRTmfR+ZB9m9hSmqxutAcCq1+Ih+n9mif6fORZz34HF2/+N7s4hwxkLuqD/4EPNtrr7lgX/4Hki+n9mif6fORZz34HF3/+ZCJdLEARBnxALehAEQZ9kHbj4AAAECklEQVRwphb0m8/Q584X0f8zS/T/zLGY+w4s/v7/UM6IDz0IgiCYf8LlEgRB0Ccs+IJuZq8ys4fM7FEzu3GhP/90MbNbzOyAmd1/km3EzO40s0e6vzkpx1mAmV1gZl83swfN7AEze0fXvlj6P2hm3zKz73T7/2+79s1mdnd3Dv03M1NZfM4azKw0s781sy93txdN/81sh5ltM7P7zGxr17Yo5g8AmNlKM7vNzL5nZtvN7MrF1P/TZUEXdDMrAfxHAD8L4BIAbzKzSxayD7PgkwBeldluBPA1d382gK91t89GOgBucPdLAPwEgF/rjvdi6f8kgJ929xcCuBTAq8zsJwD8LoAPu/vfAXAYwHVnsI+98A4A20/aXmz9/yl3v/Sk1/0Wy/wBgI8A+Et3fy6AF2L6Oiym/p8e7r5gPwCuBPCVk7bfA+A9C9mHWfZ7E4D7T9p+CMCG7t8bADx0pvvY43l8EcArF2P/ASwBcC+Al2A6MKSh5tTZ9gPgfEwvGj8N4MuYTiu4mPq/A8CazLYo5g+AFQAeR1crXGz9n83PQrtczgOw66Tt3V3bYmO9u+/t/r0PwPoz2ZleMLNNAC4DcDcWUf+77or7ABwAcCeAxwAc8f9XOPJsn0N/COBdwA9yvK7G4uq/A/iqmd1jZtd3bYtl/mwG8BSAT3RdXn9iZsNYPP0/bUIUnSM+/TV/Vr8qZGZLAdwO4J3uniQtP9v77+6Vu1+K6SfdKwA89wx3qWfM7O8DOODu95zpvsyBq9z9cky7SX/NzF528j+e5fOnAeByAH/k7pcBGEPmXjnL+3/aLPSCvgfABSdtn9+1LTb2m9kGAOj+PnCG+3NKzKyJ6cX80+7+513zoun/M7j7EQBfx7SLYqWZPVMF4GyeQy8F8HNmtgPAn2Ha7fIRLJ7+w933dH8fAPB5TH+pLpb5sxvAbne/u7t9G6YX+MXS/9NmoRf0bwN4dlflbwF4I4AvLXAf5oMvAXhr9++3Yto3fdZh0yWWPg5gu7v/wUn/tFj6v9bMVnb/HsK0/387phf2f9htdtb2393f4+7nu/smTM/1v3b3f4RF0n8zGzazZc/8DeBnANyPRTJ/3H0fgF1m9pyu6eUAHsQi6f+sOANCxasBPIxpX+h7z7SI0EN/PwNgL4A2pr/xr8O0H/RrAB4B8FcARs50P0/R96sw/d/J7wK4r/vz6kXU/xcA+Ntu/+8H8Jtd+7MAfAvAowA+B2DgTPe1h3O5BsCXF1P/u/38TvfngWfu18Uyf7p9vRTA1u4c+gKAVYup/6f7E5GiQRAEfUKIokEQBH1CLOhBEAR9QizoQRAEfUIs6EEQBH1CLOhBEAR9QizoQRAEfUIs6EEQBH1CLOhBEAR9wv8FgXp0TEg7XNgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "GYS7\n" ] } ], "source": [ "bgs = glob.glob('/data/captcha/crop_english/bg_70_25/*.jpg')\n", "crops = glob.glob('/data/captcha/crop_english/crop_70_25/*.jpg')\n", "def merge_img_7025():\n", " img = Image.open(random.choice(bgs))\n", " w, h = (37,12)\n", " label = []\n", " for i in range(4):\n", " im_p = random.choice(crops)\n", " lb = im_p.split('/')[-1].split('_')[0]\n", " label.append(lb)\n", " im = Image.open(im_p)\n", " img.paste(im, (16+w//4*i,7+0)) # ,w//4*(i+1), h\n", " return img, ''.join(label)\n", "\n", "img, label = merge_img_7025()\n", "\n", "plt.imshow(img)\n", "plt.show()\n", "print(label)" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuUAAAFFCAYAAABLzpONAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmYXOddJ/rvW0tXdfVSvS+SWq19X1uSbcmy5X0NWQ0EmAsBBi4EHibJ5D48DGQwXJiBee6wJEC4F26SSwhxdsd2vFteZC3WLlmytbf23vfuqq713D/UnTGmv7+jSLKPJb6ff2T3T7+3Tp3lPW+Xur/HeZ4HEREREREJTijoDRARERER+fdOi3IRERERkYBpUS4iIiIiEjAtykVEREREAqZFuYiIiIhIwLQoFxEREREJmBblIiIiIiIB06JcRERERCRgWpSLiIiIiARMi3IRERERkYBpUS4iIiIiEjAtykVEREREAqZFuYiIiIhIwLQoFxEREREJWKCLcufcDOfcV5xzF51zGefcaefcXznnqoPcLhERERGR95PzPC+YF3ZuLoBtABoA/BDAEQA3AbgTwFEAt3qe13eFY7cDqARw+ppsrIiIiIjI1GYBGPY8b/bVDBK5NttyRf4Olxbkv+N53pcmv+ic+wsAnwXwpwB+4wrHrgRQE4mGaqas+n4j4nglZP/jgvVNTtHvdfnLIhQK269bLPJhHR84XyiY40Yj/BQp+PRGjN5cNmf2lsRKaK3o2a9byPO6B34MIuGoOW6+kKe1sN/xMV63WLTPC+Pw+Z6PhZyxzRG+zc7n39Dyxj6OGOMCgOcZ56pnv7B1voZ89kXI2JHWdRuJ2OdFJpOhtXD4yveF3/uxx7XPqVCYj50zzpmoz7E1j481wQFw5klnvx+ras1/AFA05s5IlM9h2Yw9h7kQf92ozzmVzWavaJsAe1625mQAyOeN+cI8l322qcjfj8/UiaJxjficFghb51TR757Kj5+1L3J5Ph8AQKSEb1O+yPc/YN8L4NnnOTy+zSHY+6IA41y37k/2FpnzlN/cad6D/OZd45r3W2sVyfVVyBvn6U8gkE/KJz4lP4FLn2TP9d5xZ3LOVQDowKXj2eB53tgVjL8nEg211dUnpqxbkzAAeMaZH09MPeakcWOxOZ61L7iQccOLl5aZveYkbtwABgcHzXEb6uppbWR4yOytruY/hdR54aLZO3s2/2ZzNGtvs/WeCgV+7Gtr+HsFgP7+florq6g0e62bnbWoA+wbaUkp/+YFAHq7e2itpq6Kv2aJPTH19vF/xGpsnPp74UnpdJrWol6p2dvfz49teXm52RuL8n1lXT9NDc3muMePH6c16xoAgEyW74vSUntfAPxctt4PAFQkK2ito6OT1hob68xx+4zzIu5iZm88Hqc1v/tUzviGuaTEvkas87GusYHWTp8+a44bM95PY2Oj2dt+5gytNTc3mb39Q/waqauzj19PD58vkskkrYWK9rgDqQu0lkja98V0ji8BnM/yJRnm24y0PWcXRvl909oX53v4fAAAjXP4PNU1wq89AIgal5CX4+cbAIRzfL6PgdcAYNSdozXrm16/DxYKOb5esvYxAPT18PtxbZU9746n+DVfWW6/7jBZX4z0jqGQL+71PG+NOYCPoH6m/M6JP5/33vVRked5IwC2AkgAuOX93jARERERkfdbUD++snDiz2OkfhzAfQAWAHiJDeKc20NKi65800RERERE3l9BfVI++e8D7OcfJr9u/5uKiIiIiMgNIMhf9Lxq7Gd3Jj5Bb3ufN0dERERE5IoE9Un55Cfh7CfqJ79u/0afiIiIiMgNIKhPyo9O/LmA1OdP/Ml+5txXyIVoesHWrVvN3ozxG8GVVfZP1HhGBNN4zk5EsBJWRkZTZu/4+DitzZo+i9be2PuGOW7CSIBYuHAhrQFAapT/1vz21+1jMHtOK61V1vLkCMBOW7BqW16zt2lsjL+f2nqe0gAAy5cvpzUrdQIARkdHaW3v/v1m7+2bNtLajh3baG3hYvvYVlXx5IJUmm8vAKRS/Fw+ctC+5O+++25aGxwcNnvLE8b1NTJCax0dHea4a1fwX7bv6LV7YzEep1BWZicuPf7492nttttuM3tLy/h1bSW3xON2ksnOnTtp7aY2O5TACsXKZuwYVMvOPXybAGDtWr5dvb29tLZo0RJz3OERfh1YKV2AnTwxNmanXnlGFKOVjgMA06bNoLUnfvg0byzYSSb3f5ifj+G4fW9LZfg2x3yiJbe/tJfWls3dYPbOa5lPa9/+9uO0lmyw5/OBcZ5ksunBm83eSJS/30zKJ8ovxeeTY4f5NgFAIc6vAyvNbnjYnpOzxrrFL6FooI9/ZltaYic9ZdL8dRcvtK/rT3zsY1N+PTUwfk1iEYP6pPzliT/vc+8Kp52IRLwVQArAjvd7w0RERERE3m+BLMo9zzsJ4HlcegLSb72r/EcAygB8/UoyykVERERErjdB/qLnpwFsA/BF59zdAN4GcDMuZZgfA/D7AW6biIiIiMj7JqgfX5n8tHwtgK/h0mL8PwOYC+CvAdzieZ79w28iIiIiIjeIQCMRPc87B+CXg9wGEREREZGgBfZJuYiIiIiIXKJFuYiIiIhIwJzneUFvwzXnnNsTCqEtUT51XmtHV6fZPzjI8y/LK+081v5BniEbidkZv/W1TbR2tsPOEa0y8tO7u7tpbe9enuMKAE0NPCt0+vTpZm9luZ0nbrl4/jyttc6bafY6x3N6HXiWazqdNsetrq6ltQsdF83e8+d4vb293exNVJTTWk2NnZt/8SJ/3fKKBK3dZeSBA0A2x3Nen3rqKbP3Z3/mZ2nt5c2bzd6Ukf187733mr1WZm5dTT2t+c2RVo55fV2d2WvNNU1Ndvb900/z3Oh77rGPXzrDj59lfNzOlN63bx+tVVTY2cELFyyjtVjUnnejUT52LM7nAwB4ffsrtLZx43pa6+m2n21XV88zv3u6+83enPFMiz0H7GdL3HkXfzZBWZk9J297fQ+tjY3ybUqn7Yzs1nn8XD52ir8mANTW89zvgX57P9Yl+DGoq5xl9l5s52NbGdrDGX6/BYCM8etysUp7rrnQeYHWaqpazN6yqHEvb2aPjLkkWsaf42DllPvd24r5PK2tWLHC7A07/tPXiZidFR82nidTEbPnmhkzp0359YHOIeRzhb3sSfOXS5+Ui4iIiIgETItyEREREZGAaVEuIiIiIhIwLcpFRERERAKmRbmIiIiISMC0KBcRERERCdgNG4kYiYba6pumjn968803zf5QhEftPP7Ek2bvz/7cz9Ha0ePHzN7q2hpaKy0tNXtzxQKtJRI8+u7pJ+34Out177/3PrM3k8nQWjrFo+0AYHSU198+esTsnTtnPq2dOnWK1tra2sxxi+DRan7XkRXTWBLnxwcAtm/fTmtr1tjpS/E4j4ba/MrLtBYK2d+v9/R00drChQvN3jlz5tDant07zN6lS5fSmnVsAWDFUh65Z52rL7/M9xMAPPKJT9CaX8xmMpmktSNH7PN8eJjHr65atcrsHRrivdb82O8TQTd79mxa6+k/YfbGS3jkaAh2lJ8VMVhKonEnjaV7aC1ZVUZrhbz9QOySMH8/+WLU7I3H+diZ3IDZ6zkeWznQz2NBAeDOTR+itViU35/e2MOjMAGgf5BH+T3wEI9wBIAd21/i2xSzYzb7OniU33138esWADJj/LzJG1F+oRI7brSqkW/zE08/ZvaWVfDr4JZb7jJ7cxn+um8fPmv2jo6dobUKY5vOnbOjnJNG78aN9nlREuHvZ2yYH3cAKOT48YuG7ejqFcumvo+kh7LwCp4iEUVERERErndalIuIiIiIBEyLchERERGRgGlRLiIiIiISMC3KRUREREQCpkW5iIiIiEjAtCgXEREREQmYHbR6HfOKHsbT2SlrRqQ3ACBf5BmWP/MzP2P2Pv/C87S2YeN6s7doZF0Pj9n5slaudNF4P7lizhw3mg/TWldvh9nrFYq0lqyoNHvDYV4vKbFzRJubm2nt5MmTtObC9veoMSO/PmLUAGBggOdC79y92+xdsGABrb311ltm74yZLWadKUuUm/XyWTxftr+Pv1cAOHWS537X1fFcaADo6LhIa1ZuNwC8sXsnrVk587Pm8uxtANi1ZxetXbjA85kBIBrledUNdfVmr5Xl/8QTT5i9lZX8+tq0aROthZ19jXR3d9PagqU8txsARkf5NbR3l51BX1XXSGvLV/JcfACYVsuz/C8Mnqa1A/vs3PVFi3im/t7dR83eO+7gGc3PvGBnWS9dMZPWerrtjHNzDnT8+PjNndns1PdiANj+On8OAwCEQvx1l8zn+xgA2sN8vti+y34mQqK0mtas+WLBInvOLRb5ffH++x42e9PpMVo7dMi+FzQ28uugf8R+/sBt62+mNeveZx13AHDGfszl7LVJWSm/R5WV2feRkgifd2NRPh8A/NktmZE8CgWfxeVl0CflIiIiIiIB06JcRERERCRgWpSLiIiIiARMi3IRERERkYBpUS4iIiIiEjAtykVEREREAnbDRiKGIxFU1dZNWYvGY2bv8OgIrXWdbjd729auprVt2+3op2UrV9Cac2arWX/7bR6VFI3ap0BNA4+F2rp1q9kbDfOxp02bZvaePn2a1lLpcbN3PJOhta6uLlrbv3+vOa4zdnJfX5/ZW1ldZQzMIysB4Oy507QWCvPISgBob+cRkLfccgutjY7w6C0AOHriOK0NjvCoPgBYsHgJrZ05fdjsXbh4Ea3NnNVq9lpRmlZUZkWFHa9VXzf1PAMA625ZZ/amUilaC8O+6F977XVae+ihh8xeK04xY1xfzicSMZHg+6qz/4jZu2g6j4zdkePHBwAKBR6ftnffAbN3J3i069338GjCVW0rzXG3b9lHaw8+8IjZ29ffSWslMXvOHksN0lqPT4ztovl87EKen495nzms2Zjvly62r9u3DvJ5uTrJ708AsOU8j0G978GPmr3Pv/Qard1xxx209tbh/ea43V18DXH77XxOBoBYjF9fM2fyKEwAOHHaiGeN8mhCwI5ctuIhx8d97tXG/HfkiD1fTGuaTmuJmB1rWFnOI30H++1oXRp7aOyHn4Q+KRcRERERCZgW5SIiIiIiAdOiXEREREQkYFqUi4iIiIgETItyEREREZGAaVEuIiIiIhIwLcpFRERERAJ2w+aUF4tFjI1NnbX8/Isvmb35PM9craji+ZYA0NnNs5CtjGwAiB0/RmuZnJ33OTjIs2njcZ7ZGfXJvJ07dy6tLVu2zOwtMXLKe3p6zN45c+bQWqKs3Ox99dVXaa11Fs9yXbBggTluPM6PbdEnR/7o0bdprbnZzultnjaD1s6cOWf2RqN8m/fv301reZ/I1fF0ltY+/nE7//d73/serdXV2se2s5PnN/f29pq9XujK8nQTiYQ5bnmyktZKjbkEALI5nq/tc0qhvJzvK8+nucy4hrxCkW+Ts3Pxc+P8/cyY3mL29o7yOWxokOcZA0DrTOO5B5EBs3fF0jZae+7552gtGrIzsouopbWt2/m1BwC9ffy6Lq+2D+7ufXzshx/6iNlbW1lPa0dP8uurf6zfHDdufPx34pidQe+MyfWJx39k9iaS/PkQpWWlZm8xzueL57Y8z18zYh+flhZ+Hezfw7PtAcAz9sUd9z9o9vaO8Od3pGEfv82bN9NaU1MTrVlrKQCoquLHxy/j3LoX5Mb5ewWAfJbPU+UJe42XIc9BKSqnXERERETkxqBFuYiIiIhIwLQoFxEREREJmBblIiIiIiIB06JcRERERCRgWpSLiIiIiATMedcoxuWDxDm3J1oSbWtsaZiy/vrrr5v9jU2NtHb6fLvZW2lEJpaUxszep5/l8U7RaNTs3XjHRlqzIgKjITvibNVKHhd2YP9+s3fpkuW0VldTY/ZaxkbtqKRDhw7S2oqVfJtKSux4yFdf5/vx9tv5/geAF196gdbuf/A+szed4vFOOSNSDwBqanjE2XMv8GjQaITHaALAqlX8vNi374DZC49/FuDBjrKaNZvHR7a22tGSW7bw4zeamjo+FQDKy+1IROd4TNnw8LDZe8/dd9Pa1le3mr1egddCPpmIN61bR2tlpUYspfGaABCJ8GtoxF20m/N8Tti/+4LZmsnwDdtw2xKz94WX/5nW7n3odt5YsKPTXtvMY1BvWnuX2bt9B4+gi5T5xA+W8fkxm+FxlwCweD5/v6eO8cjKuTfPMsd9842dtBbL29uUH+HXUHW1HUs5MD5Ca7mYfU/NR/k8FQob900jFhQAvOFRPm7OvsCqkvwaGcza98Walum0duy8Ha27oLqO1urqeM0v+jhszJ1W5CEAJOJltBZx9ufNVuzrhltuNXtXr1w55dcHuoZRyBX2ep63xhzAhz4pFxEREREJmBblIiIiIiIB06JcRERERCRgWpSLiIiIiARMi3IRERERkYBpUS4iIiIiEjAtykVEREREAmYHM1/PHBAKTf09x3gua7aOpniOqF8u6lia96Z9ckTjcZ4NveZmO/rSyl4vLS2ltZFhns8MALEYz1YvifFxL/Xy99PTZ2ftJpN8P8dKeD4pAGRyPHs/GuOZ06Njdqb0SpJPCgC7dvMcXgBobOZZrv0D3WavdV6UV9gZ2umccT6O8/cbrbTz60sTJbS2YePNZu8LRj56JGTna9fW8P04nrUzzj0ju7aqhp9vy5cvNcctFnnm7a5du8ze4RF+/ZWU2lnxqZEUrUXD/PgAwMEDb9HawvmLaK1l2gxz3PFUmtZi8Vqzt1jk+ejjKTu/2RmfL23bYl+bFWVTP88CAF59cQetlcTse0E6zW+vx47xDHMAcGF+HRTy9rNFSuM8P31kpM/sfWPXdlqrSLTQ2va99rM/ykv4+bhq+Qqzd//WN2itrY0/LwEANr/Bn02wtG2x2bvtwG5aS4/x87y1rtkcNz/O94V91QLhIj8vairt8/Hc+fO0VpG07yOjo/w+MjZmryEsXoFf19bzHwC+vgOANW32eqk8wdcQWZ+c+TDJqPfZ3MumT8pFRERERAKmRbmIiIiISMC0KBcRERERCZgW5SIiIiIiAdOiXEREREQkYFqUi4iIiIgE7IaNRCwUCugbHJiy1tDAI7AA4Hs/+C6tVVbxuCkAyBZ43OLDDz9s9rLtBYC8ER0EAMtX8FipAwfepLWYT+xaOsvjgXr6Bs3eAwd57Nqdm+4we0eMqLjnnn/F7H3wwftpbWiQR4I1NNab41oRgulxO47vYuc5Wlu/Zp3ZmwM/Bp19dpzi7l17ae2BB++jtSeefMYcd2iER1rWGLGFAFBWzs+5kIuavQcPHTa2yT4fUyl+TlXX8bi+dMaOyDp1+iStjY3z6DQAOHLsKK2NjvHIQwCoKOdzUbhoT+3ZFD9f33qLx/VdOH3BHPfC+Q5aKymvNHujYf5+XM4Oi7t5/Xpa27r9ebN3/U2301p9Hd/mb33v++a4d951L62l0nY87shbfD/GK6rM3kOH99Na8/TpZm+ylh+D9Bi/vobydsRtwePRum++ddDs9cAjR3fs2Gb2Zov8fnz4JL8vAkA0yT+zzJfwyNiR8RFz3Eg2T2t1pfbcGQJ/XVdiRxS3zuKRlk3zWs3eaC+fi8rKeLzgG2/wOEsAiJB4QQCor7fvxyuW8YhiFPg5A9gxjn5xsu81fVIuIiIiIhIwLcpFRERERAKmRbmIiIiISMC0KBcRERERCZgW5SIiIiIiAbsmi3Ln3CPOuS8557Y454adc55z7p99ejY45552zvU759LOuYPOuc845/iv44qIiIiI3ICuVSTiHwBYCWAUwHkAi6y/7Jz7CIDvARgH8C0A/QB+CsBfArgVwE9fo+0SEREREfnAc57nXf0gzt2JS4vxEwA2AXgZwDc8z/sPU/zdyom/lwRwq+d5uye+HgewGcB6AD/ned5jV7E9e8LRSFtVc82U9UOH7XzS8nKeuzloZLUCwFh6lNYOH+G53QAwPDpEa3V1U7+XSf39fLusHNEPLZhrjhuK8n9MiUbtTOm+gV5aKylNmL0w/sGkNG7nHafGeK50ZQXfj1u2bDXHrarir7tkyTyzd+uWF2jt5puNvFUAsTK+L578wbfM3prKNlpLzODfk7999IQ5bl0NzzvO5Z3ZGy+tprXBIZ4fCwD5PM/4ram3M357enn2c6ORU376TLs5rivy91tdyccFgEiIZ+I21E8ze5sa+DFIhez9eP7IdlqbPp3nGVeU2xnZbx85xcedac81iUp+bT7z4stm7x338cz9VJZnVQNAc3MTrZ08eoTWZjfaz7t4a89uWosb5zEAzJvGj22pz7x7oreT1tpW28/K+P73f0Rra9atpbUzPtfIvIV8fiwU7OcAJI15d8R4tgcAvPrqq7RWV2tfm8U8fzbI3bffRWubX3zRHDce5c9psHK7AWBslD/34Ka7Npi93z/xFK0Nhe3nKcyP82vklltuobVnn33WHLckwu9BuZx9Xjz0AD+XhwfsdVpdDT/2I0N8DQcAa9umvqf2dQwgny3s9TxvjTmAj2vy4yue573sed5x7/JW+I8AqAfw2OSCfGKMcVz6xB0AfvNabJeIiIiIyPUgiCd6Tn6LOdW3UK8BSAHY4JyLeZ5nPibRObeHlMwfnxERERER+SAJIn1l4cSfx95d8DwvD6Adl75ZmPN+bpSIiIiISFCC+KQ8OfEn+wHqya/bP7wIgP3szsQn6PyHaUVEREREPkCUUy4iIiIiErAgFuWTn4QnSX3y6/avz4qIiIiI3CCC+PGVowDWAlgA4F/9oqZzLgJgNoA8AJ6tdRmcczSyb2zMjgvr6eumtdmts83e8SyPFlqxYpnZG47ywzE0Mmz2joyleO8wj/jJ2KlDqIiX0poVeQgAySSPvjt74bzZ29jEI5h6+njkFwAkSvlPPvX0896Dhw6Y4/7WZz7Lxz1nR4Ktv+U2WvvBD+30z59+5CN83A08mgsAXLGZ1nYc20ZrN61bb4577NgZWuvps8/VuXP4NlVXx8zeE6dO09qK1TzKDwDKy3kM5/ETR2mtZcZMc9yGukZa6+joMnthxEe2tNjv5+JFfi5HKu2pPRrjsWzDI3x+rPGJaWyZzefH3kEe+QoA8RoeaTlvif27+0NpPv95YfuzpxNn+bk8Z/4CWutoP2mOmynwSL0Kn0jYCz38vFk0x46WTKd5PsL3H3/a7L1lA7/uh4f552QVVRXmuEePvs1fc/3NZu/Zs6dprbqa32MAYPoMPtfks/bNLzvOYyu37eDxuc4n1jCX5xGdFRV2TKNzfL7YuXOn2ZucyY9RuNSed5sq+f3Y2qbx8XFz3JLyclqLGHGJAJCI8GtoxNlzTWcnnzvLSvk2vR+C+KR888SfD0xRux1AAsA2v+QVEREREZEbRRCL8u8C6AXwSefcj59GMPHwoD+Z+N8vB7BdIiIiIiKBuCY/vuKc+yiAj0787+S/c6x3zn1t4r97Pc/7PAB4njfsnPs1XFqcv+KcewxAP4AP41Jc4ncB2I8pFBERERG5gVyrnylfBeCX3vW1OfhfWeNnAHx+suB53uPOuU0Afh/AJwDEAZwA8DkAX7zMJ4OKiIiIiNwQrsmi3PO8RwE8+hP2bAXw0LV4fRERERGR65lyykVEREREAhZEJOL7Il/Io2+gb8ra9MYZZu/pztO09vjTPzR7XYTHA+U9HrEEALX1NbTW22vHD8ZjPB4om+XRXF6hxBy3o2OA1mrr7DiqvoF+WpuzaLHZO9THI8GqayrN3v4+Hoc0bVorra1atcIcd8CIUQpHeMQcAPT285i5B+77hNn71JMv0drDD91n9oZK+Dk1sHOE1vzeT2Mzjwkcz1w0e8fHi7TWP8TjOwGgqrqe1sZSPGoMAGa2zqG19jNnaS1b4NsLAEePn6C1nBGrBgAlJTxytLPbjlOsMuLghrL2Yx7GMnxfDYzyeMHzvXw+AIAK4/j0DtlRtH3Gbr7QZ79uvRF7OJyyX9fL8/mxq5/Pu0NddjRrkxH31jtkx4bWJfh5sfvQQbPXi/I5vbLSnjurq9njQ4D+IWM+n8OvLQC42Mkj95546kmzt6GBR2XWNdgRgiNG/HFZKd/HALBmHX8o+KGDh2ktX7DnoUYjQrXLuMcAdkxgzk5iRE83j3pue+AWs3f0KL8OrLXJjBn2Witews/VM2d4VCkAnDjL592GWn7OAEBlOY+HHE8FG/ynT8pFRERERAKmRbmIiIiISMC0KBcRERERCZgW5SIiIiIiAdOiXEREREQkYFqUi4iIiIgETItyEREREZGA3bA55eFwGBUVU2dRDqftjFjLPffcY9ZHjLHLKnhuLQD0D06dqw4AfT75wNkCz9qtquGZnYmEneeZrOGZqpnclWdKd120s6zjcZ5fOjhiH79QlAe2/r9f/Qqt1VTz9woAaxI82zSbtfOooxF+7CtqeZY4ACxZxPPEQ1F7mwf6ee7t6rYNtJYvRM1xq6r5vujq5DnXANDYzLPiz13cb/YuXLyI1rq77WvEihtfvmI1rW3b+po5bmN9A6011PP9BADnzvLrIGnkkANAPs/fUCzGc6EBIF7Kz8fRDM/5Dxm5wgAQNua4737rO3ZveRWtRYxcYQDoeuVlWiuJ23nUpTH+nlyGZxZX+eyLjStW0lpNzL6+QuVltDbY22P2VhrbtXTFUrP3+z/8Pq2tvWkdrb265RVz3EQFfz/TZ043e7u7+Rx28tRxs9cZK5x0Nm32fu7zn6W1YpZfe3755z/3sz9Pa3fefYfZ+/bbR2kt43lm72DUeH5HvMnsHarnz1+x8sSPHTtmjttQx9cf9fV8/eBXT5baefxnz/NtLjfu8+8HfVIuIiIiIhIwLcpFRERERAKmRbmIiIiISMC0KBcRERERCZgW5SIiIiIiAdOiXEREREQkYDdsJKLl6WeeMusf+djHaG1otN/sjUZ51NXjjz9u9t57P49brKm3owuHh3lsXldXF63lF/H4QADIjuVobXDYjiaMGclQnmefetk8j3c6d46/HwDo6uLRkqtW30RrHRfsY/vCi9tozcvzyCgAGE/xaLVkMmn2Jo2YuV27njR7S5MdQWC4AAAgAElEQVTjtLZkw3pas6L6AOD8Bb6PB4f4awLAwqW30FplkscLAoCHOK2VltnRkiNjfLv6BnhcWPO0FnubPB5H2tFjx9fNnD2L1gaGBs3eeDxBawcOHzB7Myl+rv/Mz/PItrNd9vvpTfE4zOT0GWbvYJ7PNe3d9jU/a/58Whsa4scWAEZyPM60zIhLvNDba4675/AhWnvwttvM3uPnztFaQ12t2VvI8P24/Q0+hwHADCOecCTF7zH3P/SAOe6xEzzKLxyx587m6dacYMcAHj3BI/leePY5s9dF+GeWg/38+unq7jDHLS3jc9gLm1+wt8nxfeWF7BjUcAu/158Zajd7Z1fz86KykscPjo/b9wLPiHIuFo0MW9jXtZfn4wJAqU9sZZD0SbmIiIiISMC0KBcRERERCZgW5SIiIiIiAdOiXEREREQkYFqUi4iIiIgETItyEREREZGAaVEuIiIiIhKwGzan3PM8FEgGZswno/JHP/oRrcUS9i6LxHhOeUVFhdn7xo5dtJbO8pxrAIiEeUbpRz/6cVp7+l/srFY4nuE7o3Wa2drX30lriQqesQwA3Ua+8/LlK83e+Rt5/vZzz7xCaw/e+2Fz3Oee3Uxrt67faPZOa6mita/+3980e+/9xYdobdGiNrN318Ef0loqzTN+x8bt/N94KX8/CxrtrPGDh47TWr9Pxnkmb2Tue/xcBYDxDM9Zrqspo7VEGc/hBYD2UzwLuaLMnmtS42laO3r8hNk7f+48WmNz36TKCp6N//rrPMv6/ICdnT5v5Wpa6xqxn2uQLeFzWOW0RrN3ybo1tOaXSVwa5nP2cz/4Aa1FS+05bCTNz+W0kY0OAKWV/F6RKdrXJn83QDRuVYHWObNozTpXz54/Y4779tG3+DaV2M/KSCT48Vu5crnZ+8xzT9PamwcPmr1LFy2mtcpqfv145XwuAYCB4QFas3LiAWDFihW0tvnVHWZvPsrz68vL+bMwAGBsYIzWamt5bv7o6Kg5btbIMa+psZ87YV3Xfvno5Ql+jHIZ+9p8r+mTchERERGRgGlRLiIiIiISMC3KRUREREQCpkW5iIiIiEjAtCgXEREREQmYFuUiIiIiIgG7YSMRXRiIVropa+kCj/cBgA89/FO09sxzL5q9JY7v0mjUjkpKZXl8UDJpxykWcjwy8aUXH6e1D99xjzludXU1rY2m7Lijzp46WvvDR//I7H3z4FFaW75yrdn7e7/7x7RWmZhPa4W8HXH205/4EK099eQ+s/fjH32U1upq7Diqv/7Lv6G1Xbu3mr2rVvMIrdcPn6e1TMaO1Kso48e2/UyH2fv448/y180VzV7npr6mAWAszSMPAaCmlu/n3/iNT9HamXPnzHFntLTS2rq1dmTlN7/xdVpbvtyOe7vYySNH/WIA7771VlrrGRqitTM9u81xw/E4rdU32RGqvbksrXWP2HPN8jYeiTg4wCPoAGB2QzOtfe1vv0xrrdV2ZFsyacTmeXas4ZKlS2nt3MlTZm/G2I/pDI81BICaOj7fR0b5vS1n3H8A4IEH76O1zh4ecwoAGWObf+VXP2X2WlF/fvGDLsLnmsHeflqrSfK4WABoaW2htVMnTpq9iQr+fvzOqbjHj1/9kB2VuePtQ7R2/jy/j1ixrQBQMKJBuy5cNHvL4nyO2/vmYbN3TussWitP2GutMLlFOXv3XzZ9Ui4iIiIiEjAtykVEREREAqZFuYiIiIhIwLQoFxEREREJmBblIiIiIiIB06JcRERERCRgWpSLiIiIiATshs0pL+QLGOqfOp+2qsrOEX3++edpzfN4dunEX6Cl8Yyd5RqPldBaKjVu9maMjOZZs2bRWl0Lz5sGgDPHeW5qorTS7G2ZwTNKP/0bv2v2/smf/hWt7dlh55d+/rO895++xmvPPHHMHDeR4Dnmf/To/zR7nZFf39szbPb+7Zf/jta+/o1/Nntb5/PztauXn6uz5vA8dwDo6+G50d/5zg/N3nCUZ+1WVNoZsSPD/HWnTa83e/sHeH76f/vv/Ph9/v/4LXPcrt4eWjt1ut3sbZrGs7sbmprsXqPe02lnxfdc4NnQJUYW8tpVq81xE9X8GLz11ltmb9Xs2bzmM2d3d3fTWnWZfU5FjM+mls5bQGtjnXa+9sjAIK2lfXLXz57i500uy3PIASCV5rneDU0zzN5vfusxWrv99o20Vp60n7XQ09/Le8vt50MMDfXRWlWNnRV/4tgRWvvCF75g9v793/w9rVUY73dwxJ7P+wf5+6mpqzV7L168QGvr1vFnDwDA5qNP09quXbvM3vEQv4/MnTuX1np6+NwIALeu30BrN6+xn0dy4sQJWuvqsq/N22/l5/JgP39Ow/tBn5SLiIiIiARMi3IRERERkYBpUS4iIiIiEjAtykVEREREAqZFuYiIiIhIwLQoFxEREREJmPOMCL/rlXNuT6gk1FY+vXTK+ptvHjb7n3vhRVqrqWs0eysqePzWW2+/bfbOnddKayM+MUtweVoKhfj3XslBHp8FAB0XeZRVY/0ss7emdiatnWm338/8+TfT2i/9h/9k9jY1LqS1c2f4+/n7v7NjDX/rtz9Ha/X1PM4SAKqq+XX2iUfuNHsrkjyOqrrGjhPLudO0lpxzE63t2L7XHPeZZ16mtdExe06pq+exbJ/7rB2VaY3c3WNHZT76R79Hay2tDbSWSvFzBgD+/H/8Ma0ND9m9/b08yq+8bOr5a1JpKa97mZzZu7iORzEiEaeloWLRHPfEUD+tffO5Z8zeYWOe6hmyY8qqq3mUXDhvn4+5QT52vm/qWF0AWNRixwtuXLmC1ta3rTJ7z57g8awNPrF5ew7ya7dt2V1mbzbLo3djCX6+pdNj5ri1dTy6MFewIx4/85nfobV8zo4Z/tKXvkRr/T32tfkrn/plWls4l0dlomifb7/8i3zcRNy+5js6eNTfxlvvN3uLDTyGMxSyj0HO2K4DBw7QWmrUPi/yWT5PNdfzORkA1rWto7VdO94we+fNnkNrFWV21PPa1W1Tfr2ncwC5XGGv53lrzAF86JNyEREREZGAaVEuIiIiIhIwLcpFRERERAKmRbmIiIiISMC0KBcRERERCZgW5SIiIiIiAdOiXEREREQkYJGgN+C9Eg6HaGa4ldsNAKWxGK31dveYvcuWLaO1VNrOBG9o4BnoQ0ODZm8sHuWvm0rR2k03LTfHra3n2ekI8Ux2APiHv/kWrf3qL3/K7H1zH6/t2Po1s3ft6j+gtdkzp84YBYBHv/CP5rhVZTzbuafrtNn7ne/8Da3tP7jf7L3tdn5OXew8ZfYePPImrZ028mWXLFtqjvvqqzwHtn/APldHR3h27Wc/93mzt6mJH4ORlJ1lXVXDc2+rkjxHuVDk1w8AHD9+nNYGB3gOOQBUVfKcec/xvHAAKBZ5xu/oyIjZu+v4NlprnD2L1mrm8BoAzJ7ZQmuJEj6vAsCAsc1pn5zyxvIqWium7SzreIY/42H+3Pm0duvKlea4oXF+3rz5xk6zd3iwj9bGh3h2OgBMm9FMayUl9vMUTp/m84mLhGntppvWmuOmjBzzT//vnzZ7neO538M+50VXF8/1Huq392NbG79XhD2+hujq6DTHXbeO52tbud0AkExW09rJkyfN3kUzea5+PMbXDwDw4hu7aW1sjB/birJyc9ybb99Ea0WffTFizBdLliwxe/fu4u9n/c0bzN73mj4pFxEREREJmBblIiIiIiIB06JcRERERCRgWpSLiIiIiATsqhflzrla59x/dM79wDl3wjmXds4NOeded879qnNuytdwzm1wzj3tnOuf6DnonPuMc47/NomIiIiIyA3oWqSv/DSALwPoAPAygLMAGgF8HMA/AnjQOffTnuf9+FeonXMfAfA9AOMAvgWgH8BPAfhLALdOjCkiIiIi8u/CtViUHwPwYQA/8jyvOPlF59x/AbATwCdwaYH+vYmvVwL4BwAFAHd4nrd74utfALAZwCPOuU96nvfY1WxULpPHhVNTRxN5heKUX5/04IMP0tpzL7xs9u7fy7P8RsZGzd6xFI/4qaysNHtHRnk0VC7Ho4Vqm3gMIwCcOvIW36aK6Wbvr/36p2jt2ScPmr2bNq6gte98k8dcAcCc2Qtp7cC+I7TWVM8j8wCgtIzHiVVV8qgqwP4nqXTajtzb8cZWWquusWPzbrvtNlp79RCP7po2rckc94ARpzizdbHZWzQuv0TCjtDK5wq0NjZmR46WJvg/wh08eIjWKqvsf7ybPXsurUXnzzJ7e3su0NrFi+fN3pkt/Ppzzpm999x5F60dv3iW1vbu2WWOW0zyeeqoMZcAQG3LTFpbNmee2bvRiDGL5XikHgB4Q8O0VpIe57VxO2qxxIjyW7NujdlbneTXwbbtfD4AgI5hHvWXHjhq9t5zz920tnUrf90XX3zRHHfuvDm0NugTTbho0QJaKyvlkaIA8Hdf4lG0VqQeAHSe5/NjTRWP4IxF7Tn513/912ntD7/wqNk7ZMTNrlzF53oAOHh0C60dP86jcwGgmEjSWllZGa2947PYKfX399Nas8/9uJDl94JYxI549Jsfg3TVP77ied5mz/OefOeCfOLrnQD+fuJ/73hH6REA9QAem1yQT/z9cQCTAdO/ebXbJSIiIiJyvXivf9Fz8iPadz6dYfIjmmen+PuvAUgB2OCcs580ISIiIiJyg3jPnujpnIsA+MWJ/33nAnzyZwuOvbvH87y8c64dwFIAcwC87fMae0hp0U+2tSIiIiIiwXkvPyn/MwDLADzted5z7/j65A8nsR+Cnvw6/6EtEREREZEbyHvySblz7ncA/GcARwD8b+/FawCA53lT/rbMxCfobe/V64qIiIiIXEvX/JNy59xvA/hrAG8BuNPzvHf/eu3kJ+Hs13knv85/zVhERERE5AZyTRflzrnPAPgSgEO4tCCfKlNoMpPp3+QcTfwc+mxc+sXQU9dy20REREREPqiu2Y+vOOd+F5d+jnw/gHs9z+slf3UzgF8A8ACAb76rdjuABIDXPM+zQ2B9lMQiaJ5TO2Utl7eHHjPiSysSPJMTAAaGeV74nXfeafbu2vUGrZ09y7ODAeCuu++gtXNnTtPav3z1a+a4FeU1tBYO2TnKA707aa2mimeJA8Brr/H85n/6+lfN3s4LPFu4dSbPZS8vtzOyh4d5bm3cjqbFvXd/kta2bLcj+V96+Qlaa22tN3v3GOfU/JU81/bUSTvPeNly/rvUxaK9H9NGnPhvf/q3zN7yCp6DPbOVZ+kCwK7dPFt93oJptFYo2HnGQ0PdtHbo0G5aA4C2VUtpbbpPVnw6PUZrmUye1gBg7wG+XdkQz/CtqbHz+KcvX0JrDS8+R2sAkM/x6zYzzDOJAaDcyB1243xcAKgwMo1r6yporarEzkLu7uBz9svPPG32NrXwY99+1v68Kjqd5zu3tswye5964ke0ls3z513cfPM6c9zuPn6N1Nbac9jOnfxcnTt3ttnb38uWIf7PK1m4kN+jTh47SWuNtfbNYNq0Flrr7+0ze0tK+LMyMhl7XeN5/Br68Ic/ZPaGKvgxevElnlGfTNpz8u7d/NjWVNq9bSv5Tyh7eXu+KFoPywjYNfmkfOLBP38GYA+Au40FOQB8F0AvgE8659a+Y4w4gD+Z+N8vX4vtEhERERG5Hlz1J+XOuV8C8Me49ITOLQB+Z4qnJZ32PO9rAOB53rBz7tdwaXH+inPuMQD9uPRU0IUTX//W1W6XiIiIiMj14lr8+Mrkvx+FAXyG/J1XAXxt8n88z3vcObcJwO8D+ASAOIATAD4H4Iue37NZRURERERuIFe9KPc871EAj15B31YAD13t64uIiIiIXO/ey4cHiYiIiIjIZdCiXEREREQkYO/JEz0/CAr5AoYGp37+0PhYyuytrkrQ2pzZrWbvocM8Sq4kHDN7V65cTWunTh0zewsFHgE0MsIj3ZYuXGGOm07zGKzWWYvN3ubWZbT28jO7zN4eI05sNHXO7IUR6VZaxuP6fvlXft4c9r/96R/SWvN0O77OC5fSWvnUyZ0/1ljHYxyH+uy4vowRB9c/YMSU1VWZ44aMb+dPnzph9tbU8mvoi1/8otn7B1/4r7T2zDNbzd43dr5Ka+f+n+O01tDA5wMA+NjH7qW1ebPnmL3ZLD8+p07ybQKAqioeGVYZ51GmAFBawqf+sHFsUxH7131yxSytFT1eA3Dp6RR0m/g1DQBJK54wYr9uWYG/p3CK3yuyKXtfzJ7ezF8zbvfOaOW95VU8Fg8ADvd10Vp9vR0/aEXulZby+9fwKI8CBoBkBY+WfOwb/2L27ty5g9Zqa+3JsyrJX7es1L6uf/EXfpHW2lbze/W217aZ4/7T175Oa3t37zV7F83nMY2v7+IRxACw4p6ZtPbi5hfM3nWbHqS1kHEzSCTsffzIRx+htVTKvrdtfY3P92tW8eNzOdsVJH1SLiIiIiISMC3KRUREREQCpkW5iIiIiEjAtCgXEREREQmYFuUiIiIiIgHTolxEREREJGDuRnyivXNuTyQWaqudOXX83Y7tdnRQXS2Pt+sdmjpm8cdjv7GHb1c4bPauWctjfF57/WWz94EHeSzb008/RWtNw/bxj8bitDY2akeNjYzyjLOamhlm75/+n39Fa/PntZm9+/bw+Mi/+9uv0lpm3MhkA5DPZmjtz/7HH5m9xeIorZ0//5bZ+5Wv/i2t9fd3mr1VjTxWqj9WSWslMR4lBgCD/Twq8ytf+Y7ZG43yuL5olMf8AcD4OH/dZJK/HwA4cnQ/ra1YNY/Wbtmw3Bx33rxptNbd1W721tby/VxaakfftRiRe4VxIyIQwIxyHol4YaCf1g6dO2OOG66uprVv/PBxszcaK6O18SE7xvZDt91Dawkj1hUAls+YRWur5/HzouPcKXPcqHH4Dp06bPZWNfBrpKO/w+xFE49QrRibZbYuXLiA1vJFHrvb3n7SHHf5iqW0dqHjvNm7bx+PCZzWzN8rADQ18Xu581n6/Pqv/kdaixvxxkuXLDHH/flP8ujdTCpt9l64wI99/Qx+rgJAqpLHDGcydqRlvoRH5A4PD9Nac6MdFXz2NJ9PfupB+4HvIY9/pjw8YK/Taqv4PJXL2OuAtaunXn/0dA4glyvs9TxvjTmAD31SLiIiIiISMC3KRUREREQCpkW5iIiIiEjAtCgXEREREQmYFuUiIiIiIgHTolxEREREJGBalIuIiIiIBIyH1V7nisUi0mNTZ0PHY3aGb/9AL629+soWs7e6luempjPjZu/BgwdpLRSyD9XWrdtprVgs0tqHHn7EHLe/n2cWnzlr58suW7aM1jZsvNPsDYVLaW3fmy+Zvf/fN75Na+Vljtb6eu3js7ZtJq3lCr9h9v7F//VntLZu3Tqz97/+Ac9A/59/8edmb/fwDloLlU6d4w8A8+bMMsfFXJ6vncvZ+do//MGLvDdvZ8SePctzbadNszNxV6/mzwHYsHEVH3e6nX+eGuWZuKOjPJ8eAGpreTZ3Pmufj1u38rmovqrV7C1fyLPVY+X82QSxcn5dAkCXMXc6fulN1HlwdLKC7ycAmNZQS2s3z7Nzo5/5xjdpbfwin+Mqy3lWNQC0zubPYoiE7J1RUc3fb7J5kdm7/TTPT28oW2z29vTw41dZya/55maemQ8A3d3dtHb07SNm74Zb1tNaLmdn0B/YzzPOoyH7uSHz5syntXNGvvae3fw1AeCz/+mztHa2nWeJA8Cm226nteGc/Rlr9WJ+jF7d8qzZa82d+/fz5z/Mn8/3IQAsWcTPxy1b7LVWZRmflwf7+LoFAO68fROtOWfvxzy5R12rR/7ok3IRERERkYBpUS4iIiIiEjAtykVEREREAqZFuYiIiIhIwLQoFxEREREJmBblIiIiIiIBc961ynH5AHHO7YnGQm0NM6eOldq7h0f4AEDWSGVrP33O7C1N8JiesxfsCMHxbIbWQnaKIxDmsYexGI9+ip2wY9ce+thHaO3Y24fM3v0H99FaS6sd2RaJ8ui1s2c6zF6HBK0tXsij744d5TFXABAJ86i4++652ey9cG6I1hrqk2ZvJpumtfJSO6JutMiPwZb2dlob6EuZ48ZL62itqrLF7L14YYTWYvEas3fuvAW0tmvXLrO3xEiwKy3j82ChyI8dALTMqKY1z/PbjzwaL+z4NQ0Avb08Zq51mh19V0zz3pIkj8rsIDGzk8JJfi6PFu17TYlxzbcfOmb2LmmeTWuL6+24vi2PP0VrH3vgflobH+FRmAAwkuH1Y+ePm72L1iylteGsfU7tPMPnsfxJe65Zv5HHDxYK/MYYidiRvaXlPCb1pZdeMHvLy/n5OGPGdLO3pppfm33dPWZvLMq3ua6az1PFXMEc99RxHllZV8OjPQGgro7PuyN5O+IxPpdfuyNjPAoTAPYf5uue4eFhWrv/3vvMccdT/N4W9YkmzKaztFbvsx9Lwvx8zRjjAsDKZcun/Hp3xwByufxez/PWmAP40CflIiIiIiIB06JcRERERCRgWpSLiIiIiARMi3IRERERkYBpUS4iIiIiEjAtykVEREREAqZFuYiIiIhIwOxw0euY53ko5qfOVS0W7fzfkPG9yswWO4M5UV5Fa+ESnnsKAKdO8/zSbMHOEx8d4lmha+7axPuydrbz00/+I63NnDHX7L33jo20dvDAYbN3ON1Jax974E6zN1TLc8pHLp6mtRktdhj8Sy+/Qmt7j9j59fPnreXFmH1epHNGBr3dilyOZ9/XVvHjN3+2nfN65MgRWitLGEH/AGbM4NdXNDpm9hbzb9Ha9Gaefz7RTSvhCN+mbp88474unrU7ONRv9tbX87xjK5MYAAp5fvAjYfvEaKgx5rGYcR3k7Wvk5BE+h0XAM9kBYHYjz5yODfJ9DAA3z+Ih9KnuC2bv9Nl8Px8b5725mJ27Xm1kZJcP15u92779Cq19aNPdZm9POd+P4038WQsAcHDXblrbdPtdtHbkGD/uANDYzLPiK0qnmb2rV62mtfYzdn79wTe30tq9991h9l7s4M8VGfP4+Vhdb8+d53bxZwQkZ9j7oifF1wGREn7fA+znoNTU8nMVAPJ5/kyLhoYGWhsYGDDHbWpopLXMmJ3Hb+XX53I5s7fzwkVaq6q09wUb+1o980eflIuIiIiIBEyLchERERGRgGlRLiIiIiISMC3KRUREREQCpkW5iIiIiEjAtCgXEREREQnYjRuJWPSQSU0dWxT2+VYkn+fRaZGIHTUWM2IPm+p5dBAAnL/II5j6uvvM3lmzW2nNioA8d46/JgDU1/Eoq7paO9arupa/38WL7VjKC8Z29ffbMXN1MT52dzePo5o+s8kct7WVx8gdPcEjowDAoZLWyhJ29FNz80I+rs+5bMVVnRrgr5vJ2hGc2WyW1vIkinRSyNhm5+zYvJDRHI/b12aJcW2WJnhUXNZnXyTK+LjhiB2TVVpaSmvDI4Nmb18fnxNOFk+avVWz+bk8OMDHdaU8ehAACoUCrS2YM8/sPXvkBK1VGfFnANDTw2MrB4bs/VhZza/NSITfInNFO3Ytk+PXiBURCABjZ7to7fx5e86uXMDnsZ4T9tyZyfDYvD179tBastq+F1y4wKMlW1v5vQsAxsf59WfNBwAwbx4/5/bt22f2Llq8gNYy43w/DQ/zeGIAqK/n+2r3bh5JCQBrVvJo3fpGO8ovU8rn+/OdZ83ecDhMa1bsYSFn3wviJXw+CfskDFZV8PjpQta+Nq37Ynbc7qX7wr51XTZ9Ui4iIiIiEjAtykVEREREAqZFuYiIiIhIwLQoFxEREREJmBblIiIiIiIB06JcRERERCRgWpSLiIiIiATshs0pdw6IRqNT1iI+4c55I2+ykOc5vICd2dk/YOflZtI8+7S6Mmn2Hjt6nNbmzZtDa1YOr1/94MGDZu+J4zz7tLzcfj+Dg3xfdfhkqpYneW50sipBa1aeOwAsXMjzwi922ce2tpZnyA4N2jnlYeMQjY3ZYa7pAs8lDod5RnYqZW9T0ePXQbTEPqdKjde1cpIBYHycb5eVnQ4AHvjxLa/g25TL2dvU28tziY14XwBAdQ3PyC4v5zm8ADBr1kxaO/H2GbPXM871sDE/+uVClxjzhd9cY5neZOd6D3TxXO+hoSGzt7mxltasLPhEjT2HWedjrc/8V1bBc9l7+u1nVox18htYSUmZ/brG53TWnFDfaD8joNN4PkRdo/38DmtO8Dsfyyv4fq6prTB7T57kWf/z5/L8c7/7SJdxri5dutTs7ejooLWSuJ3lH63gee/1Rm43AESjjbR2+PBhWps5k89RAHDs2DFaW7HE3hfWM0fK4nw+BwAU+DEqK7X3I3u2RCg0DMBeH14OfVIuIiIiIhIwLcpFRERERAKmRbmIiIiISMC0KBcRERERCZgW5SIiIiIiAdOiXEREREQkYDdsJGLIhRCPxaas+cWuhSM8Ni/sE+s1MsZjsNrb281eF+JRVm1r1pi9NVU8Pu3bj3+T1n5u4yZzXOsUeWPbHrNzwIiAzOeM3EkApaVGdJezY4cKBX4Mzp07R2tdvefNcSuSPNZweMSOREwbUX6n2nnMFQB0dvHIvULePh+LYX6MZq58gNZGR0fNcUuM2MNEIm72lpXxKDIr8gsABgaNyNF+Hv8IAM7x+MiWFh65N7N1hr1NAzyiLpUaM3tHRnhcn1UDgNbWFrNuiYX48SurqaO1nhQ/FwEgEuIZkIffPGT2rpzLI0eTMTumbKSnl9YSCT6fA3Z04fH2E7S2uvFme9yxNK0Nj9nXV6aQp7WIs+fOxYsW0drh3TyODwDg+PFrqOfXSD7PtxcAwkY26IULF8zeGTP59ed3bFtaptHaltc3m7133X0Hrb38Eu8dGbGv+YcffpjW9uw5YPZWV/N7kBXhCABDvadorejZ27xs6W20lkzy2EkWH/jj1zXiI3O5nNlbX0l5co8AABYSSURBVF9Pa2HY14hnRFv39/J7DMDvjUUjZvEnoU/KRUREREQCpkW5iIiIiEjAtCgXEREREQmYFuUiIiIiIgHTolxEREREJGDXZFHunPtz59xLzrlzzrm0c67fObfPOfeHzrla0rPBOff0xN9NO+cOOuc+45zx698iIiIiIjega/VJ+WcBlAF4AcBfA/gGgDyARwEcdM79q+wu59xHALwG4HYAPwDwNwBKAPwlgMeu0TaJiIiIiFwXrlVOeaXneePv/qJz7k8B/BcAvwfg0xNfqwTwDwAKAO7wPG/3xNe/AGAzgEecc5/0PO8qF+cegKlzI/1yyitLeI5yjkcdA7BzU/1yN6PxqXPVATvnFQA6enm+c2NjI62d8Pl3iXNnebbpig/dafYePcIzfjsHRszelUtX0NqsJjvjN53iOdmDPTw39eI5e9ya+XNorbHNzm/eufdHtLbmI/Ps3p07aW39zfeZvfHIJ2ktl+Hfk5cnK81xO3rO0lrLHJ6lCwAdnTwr/mLnPrP37rvvpbXeHjvXe1rzLFrr6+bZtPNn288I+OFTj9Paupvs3lCIZ9tufvV5s3fO3Om0dsud/PoBgN5Bfq6fPHGU1uYtWGKOu3gaz5Q+9KadR91dyq/bN/v4PAQAc9fxzPaaGH+GAwDkMvw2uGYez/w+8Ca/LgFg1erZtPbazi1278abaK2lkee5A8Dzz22ltZvW2+djaSm/wRXBz5nejP2MgNQh/gyI1evvN3uzKT5Ptb9lP/ujuZLf+6xzBgB6PT722gf5eVEo2s9pePLFZ2ktBOP5HABGjflitKzH7A2F+H70fCK2jx7lc4IzcvO7OjrNcbPjfC02YjznBABiEb5eKmTttRaMTPH5cxeYranU1M8csTLXfxLX5JPyqRbkE7498ef8d3ztEQD1AB6bXJC/Y4w/mPjf37wW2yUiIiIicj14r5/o+VMTfx58x9fumvhzqm8XXwOQArDBORfzPM/8SNs5xx5XyL+NFRERERH5gLmmi3Ln3OcBlANIAlgLYCMuLcj/7B1/bfLf3o69u9/zvLxzrh3AUgBzALx9LbdPREREROSD6Fp/Uv55AO/8Ia5nAXzK87x3/rBTcuJP9gOgk1+3fxAQgOd5U/6A3MQn6G1+/SIiIiIiHwTXNKfc87wmz/McgCYAH8elT7v3Oee0QBYRERERId6Thwd5ntfled4PANwHoBbAP72jPPlJePLfNP7rr9u/eisiIiIicoNwnueT8Xe1L+DcPgCrANR7ntfrnPtnAL8A4Oc9z/vmu/5uBJcW7SUAyv1+0dN4zT3REtfWNH3qyJxtW98w+ysqa2itb2jM7K2sqqe1La9vM3uH0zwmMFFuxyzlvSytFYq8Fk/wWCEASI3x9+sVeRQSAKRT/HWTySmfKfVjDjyrsRDi8VoAMDpUQmuzpt9Ca6eO27FelUkeVxUvtSMRs0UeAxiJTR2xNMmK0oyX2PsxZ8RDhhyPhywU7EipZBWP/rzQYcfX1dfzyES/GKzaWn59DQ/Y+3E8zSOrGhum0Vpvr31elJXx/Rgusa+RonFtFl3e7LXiFENRfg0AwNAwj7eLhPmckCi3f6qwr4/vq5DjEY4AkKzm1/yFrsNmb/O0Olor5Oyf0hwz0lkLuQKtVdXYc2eh2MeLnn0fiTh+3Q718m0CgPpqHsWYzbKgtEvS4120Fo3xOSHHpwMAQNjjc2d6zM7lTcT5HJcatfdjPMGvv2zevq6T1fwYjFknTZHPBwBQWd5Ea2fO2LGGdXV8XxScvS/yRR77Gimx5/sw+OtaEdPxEvsaiYb5tXnL2nVm787tPJL0pjVrzV4rEnF02N6Pd96+acqv93QNIp8r7GU/Vn253pNPyt9l8m43OZNsnvjzgSn+7u0AEgC2XemCXERERETkenPVi3Ln3ALn3L/5URTnXGji4UENuLTInvw27bsAegF80jm39h1/Pw7gTyb+98tXu10iIiIiIteLa5G+8hCA/+6cex1AO4A+XEpg2YRLv+jZCeDXJv+y53nDzrlfw6XF+SvOuccA9AP4MC7FJX4XwLeuwXaJiIiIiFwXrsWi/EUA83Apk3w1LkUZjuFSDvnXAXzR87x/9cNbnuc97pzbBOD3AXwCQBzACQCfm/j77+0PuouIiIiIfIBc9aLc87xDAH77Cvq24tKn7CIiIiIi/669H7/oKSIiIiIiBi3KRUREREQC9p7nlAfBObcnHAm3VdVVTlk/dcrOUe7p4Vmhztm5w2VlPI/Vz86dPHdzzRo7+rKqiucHnzhxgtba29vNcYtFnufZ0NBg9lr7YmCAZ6YCQFcXz8vNF+ys3ZkzZ9JaocAzfltbW81xS0t5/uyYkecOANOm8Rzs0VGeGQ0AN+I1KpdY15c1HwDAxo0baS2VsjPbLYkED51+/fXXzd6bbrqJ1qw8Y8Ceizo6OszeWIznITc2Npq9NTX8uRTl5eW0Fo/bz47493Tdjo/bc7I1d+bzdh7/4CB/doHfOWWdy5WVU68PJkWjUVqzjq3fNllKSuznC1j7anjY51kZWf5MhHDYzoqfMX0WrT377LO0duutt5rjWsfHb5us/fzSSy+ZvZs2TZ01DgCRiP1T3atXr57y6z0dvchl89dFTrmIiIiIiBi0KBcRERERCZgW5SIiIiIiAdOiXEREREQkYFqUi4iIiIgETItyEREREZGAXfUTPT+onHM00qivr8/steLr/GJ6ent7ac0vQmvp0qW05hffZEUMNjU10Zr1XgE7dsgv1tDaz36RbVbE2fR6O+LM2s9nzpyhtZGREXPcUIh/D2vVAPv9+EUwWbF5cn2zzosFCxaYvVZkmxVB58ca92q2yYojBYC5c+fS2sKFC6/4df3iSq24xdOnT9Oa3/tpa2sz6zcS6zz2q/vFAFrzXy6XM3ute4Hf/diKP7aOvd98bo3rtx/99pXF2mbr+gHsa8iKPfSLIz179qxZt1hjW2spADh37hyt1dXVmb0sfrq/ewA52PGel0OflIuIiIiIBEyLchERERGRgGlRLiIiIiISMC3KRUREREQCpkW5iIiIiEjAtCgXEREREQmYFuUiIiIiIgG7YXPKC4UChoeHp6zdfffdZq+VYVlbW2v2WrmpfhmkVr6pX673lb6uX+6plamaz9uZnNY2eZ5n9loKRZ6dDvAcUcDOIi8rK7Nf18h59cs4r66uprV0Om32+mWgy/VrfHyc1ioqKq6492quL+ua98t2tq4Dv/dj5VFb2+TX6zd3WtefNT/6PTvCL8f8RmKdi4B93vgd22w2S2t+57l1T/V7Xev+ZvX6Zadb87nfGuFqXtfil1NeyPPXTSaTtOb3jABrm/2Oj7XNflnx3d3dtNba2mr2Hjt2fMqve1e++/8V3e1FRERERAKmRbmIiIiISMC0KBcRERERCZgW5SIiIiIiAdOiXEREREQkYO5qfkv/g8o51wegxoWm/u1dv980tn7b2++3eq396ffbxFbdShfwe90Q2Q+Xs00Ar/udO+/VueXB3heRcJjWCgXe659ywt+PNS4AhCN8mzyfY2sdA7m+FT1+7MMhfs749Rqnqj/jdAs5+xopFHniiN/7sTfavgY8o9d37ixe2ZwdDtv74ga8tVLmuQj/88ZydUlCZvU9eV2/PmubXGD76crvMeErvN8Cfusl+3Xtbb7yZB2/RLpMhqS/XXor/Z7n2RF9Pm7URXk7gEoApye+tGjizyOBbND1Q/vp8mlfXR7tp8uj/XT5tK8uj/bT5dO+ujzaT9wsAMOe582+mkFuyEX5uznn9gCA53lrgt6WDzLtp8unfXV5tJ8uj/bT5dO+ujzaT5dP++ryaD+99/Qz5SIiIiIiAdOiXEREREQkYFqUi4iIiIgETItyEREREZGAaVEuIiIiIhKwfxfpKyIiIiIiH2T6pFxEREREJGBalIuIiIiIBEyLchERERGRgGlRLiIiIiISMC3KRUREREQCpkW5iIiIiEjAtCgXEREREQmYFuUiIiIiIgG7oRflzrkZzrmvOOcuOucyzrnT7v9v72yDrqqqOP77i4aKhkYqFU4qqZE2ZRoqvsCDRZlKaOj0QVELzWbUMFFnnEr6UElpYVrZhOkYTpoYmoliKgqoWY6PqVm+xIuvpIBvqGDi6sPaBw7Xe56HD957eO5ev5kzZ+7e69zZ+z/7nL3OPmvvLU2TtG3dZWs3ksZLuljSfEmvSjJJM3q5ZoSk2ZJWSHpT0kOSJknq165ytxNJgyRNlDRL0pOpzq9IWiDp65Ka3i+56VQgaaqk2yU9neq9QlK3pPMkDaq4JkutGpF0bLoHTdLECpvDJd2Z2uBKSfdJOr7dZW0X6flsFcfSimuybk+SDknPq6Wpj3tO0hxJX2pim5VWkk7ooT0Vx5om12WlUxlJh0m6VdIzqe4LJV0raf8K+2y1ahUdu6OnpKHAPcD2wA3Av4HhQBfwGHCAmS2vr4TtRdKDwKeAlcAzwMeBq8zs2Ar7LwPXAauAa4AVwBHA7sBMMzu6HeVuJ5JOAX4FPA/MBZ4CdgCOAgbiehxtpZsmR50KJL0FPAA8CrwADAD2A/YBngP2M7OnS/bZalVG0o7Aw0A/YCvgJDOb3mBzKnAxsBzX6i1gPDAEuNDMJre10G1A0mJgG2Bak+yVZnZBg33W7UnSj4Gz8Of5zcAyYDtgb+A2Mzu7ZJudVpI+DYyryD4IGA3cZGaHl67JTqcCSVOBs/FnzvV4e/oYMBbYFJhgZjNK9tlq1VLMrCMPYA5gwGkN6T9N6ZfWXcY269EF7AoIGJU0mFFh+37cyVoN7FNK3xx/0THgq3XXqQUajcYfKps0pA/GHXQDvpK7TuV6VqT/INX9l6HVu7QRcBvwH+Anqd4TG2x2wju65cBOpfRtgSfTNfvXXZcWaLMYWLyBtlm3J+CkVMcrgPc1yd8stOpRv3tTvceGTmv7uDXAUmD7hryuVPeFoVXrj44MX0mj5GPwh/wvGrLPA14HjpM0oM1Fqw0zm2tmT1i6c3phPD7icrWZ3V/6j1XAd9LPb7agmLViZneY2Y1m9k5D+lLg0vRzVCkrS50KUj2b8Yd03rWUlrVWJU7HX/5OxJ9Dzfga0B+4xMwWF4lm9hLww/TzlBaWsS+QbXuS1B9/8X0KONnM3mq0MbP/lX5mq1UzJH0S/6L3LHBTKStnnT6KhzPfZ2YvlDPMbC7wGq5NQc5atZSOdMrxNzuAW5s4WK8BdwNb4jdm8G5Gp/MtTfLmAW8AI1LnkAtFJ/d2KS10as4R6fxQKS17rSQNA84HLjKzeT2Y9qTVzQ02nUb/FG9/rqRvSeqqiE/NuT19HneI/gi8k+KAz0l6NYv9zVmrZpyczpeZWTmmPGednsBD5IZL+mA5Q9LBwNb4F76CnLVqKZvWXYAWsXs6P16R/wQ+kr4bcHtbStS3qNTPzN6WtAjYA9gF+Fc7C1YHkjYFJqSf5YdQ6ARImozHRg/E48kPxB3y80tmWWuV2tDv8NHNc3sx70mr5yW9DgyRtKWZvfHelrR2BuM6lVkk6UQzu6uUlnN7+mw6rwK6gT3LmZLmAePN7MWUlLNW6yFpC+BYPFRjekN2tjqZ2QpJ5+DhvY9Kuh4PnxuKx5T/BfhG6ZJstWo1neqUD0znVyryi/Rt2lCWvkjotz7n4x3fbDObU0oPnZzJ+ITYgluAE0pOAYRW3wP2Ag40szd7sd0QrQYku05yyi8H5gP/xD+X7wKcio9s3ixpfzP7R7LNuT1tn85n4ZOsDwIeBHYGLsAHnK5lXahdzlo1cgxez5usNAk9kbVOZjYtTbb+LT5noeBJ4IqGsJastWolnRq+EgTvCZJOB87EV+85rubibJSY2WAzEz7KeRTuTHVL+ky9Jds4kLQvPjp+oZndW3d5NlbM7PtpXsd/zewNM3vEzE7BR++2AKbUW8KNhqLffhufqLjAzFaa2cPAkfhqLCOrlrHLnCJ05de1lmIjRNLZwEx88vBQ/MV/b2AhcFVa7SdoMZ3qlBdvaQMr8ov0l9tQlr5I6MfaZekuwkejusxsRYNJ6FQiOVOz8JG6QcCVpewstUphK1fin3m/u4GXbahWVaNUnUYxyfrgUlqW7SlR1Km7PBEYIIUzFV/zhqdzzlqtRdIewAj8pWV2E5NsdZI0CpgK/MnMvm1mC9OL8QP4i96zwJmSdkmXZKtVq+lUp/yxdN6tIr9YFaIq5jx3KvVLTsbO+CjNwnYWqp1ImoSvE/0I7pA327wke52aYWZL8BeZPUqThnLVaiu8zsOAVeWNS/CVoAB+k9KK9bl70upD+AjWMx0YT15FEQZVXi0r1/YE6+pe5fC8lM5bNNjnqFWZqgmeBTnrVKzVPrcxIz1n/ob7i3ul5Jy1aimd6pQXDWuMGnZhlLQ1cAAei/nXdhesj3BHOn+xSd7B+Mo195jZ6vYVqX2kCS8/w+M0uxqXiCqRtU698OF0Ljq/XLVaDVxWcXQnmwXpdxHa0pNWhzbY5ECxSla5g8+1PYEvTmDAJxr7t0Qx8XNROuesFQCSNsfDD9fg91ozctapWCVlu4r8Ir1YfjNnrVpL3Qult+ogNg/qSZtR9L550ItkuDEAHmJgwP3AB3qxzVmn3YCBTdI3Yd3mQXeHVj1qOIXmmwftTGabB+FfEgY0Sd8JXy3LgHOjPa2t5w2pjmc0pI8B3sFHyweGVmvrelyq54092GSrEz4B1vDNgz7SkHdoalNvAoNy16rVh5KQHUfaQOgefKb6DfiyPPvia5g/Dowws+X1lbC9SBrHui2HBwNfwEee5qe0ZVbaujvZz8Sdg6vxLXTHkrbQBY6xDms8ko7HJ7mswUNXmsXsLjazK0rXZKcTrA3v+RE+yrsIdyB3AEbiEz2XAoeY2aOla7LUqgpJU/AQlpPMbHpD3mnAz3Fdr8FHqMYDQ/AJo5PpIJIWZ+JrHC/BV18ZChyGd/SzgSOttFFOzu1J0hC8f9sRHznvxl/mxrHOIbquZJ+tVgCS5uNLtY41sxt7sMtSp/TFZQ7wOfzem4U/w4fhoS0CJpnZRaVrstSq5dT9VtDKA39gXQ48j3dqS4BpwLZ1l60GLabgD+uqY3GTaw7AO8OX8Lfkh4EzgH5116cmjQy4M3edUp33BC7BQ3yW4fGDrwB/Tzo2/cqQo1Yb0N4mVuQfAdyFd5KvJ22Pr7vcLdJiJPB7fJWjl/HNul7E10eeAD6AFO1pvbpvhw8eLEn92zLcmRoeWq1X72HpPnt6Q+qasU6bAZPwsN5X0zP9BeDPwJjQqj1Hx46UB0EQBEEQBEFfoVMnegZBEARBEARBnyGc8iAIgiAIgiComXDKgyAIgiAIgqBmwikPgiAIgiAIgpoJpzwIgiAIgiAIaiac8iAIgiAIgiComXDKgyAIgiAIgqBmwikPgiAIgiAIgpoJpzwIgiAIgiAIaiac8iAIgiAIgiComXDKgyAIgiAIgqBmwikPgiAIgiAIgpoJpzwIgiAIgiAIaiac8iAIgiAIgiComXDKgyAIgiAIgqBmwikPgiAIgiAIgpr5P9FQ6F+bExpdAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 162, "width": 370 }, "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "xep4\n" ] } ], "source": [ "bgs = glob.glob('/data/captcha/crop_english/bg_90_38/*.jpg')\n", "crops = glob.glob('/data/captcha/crop_english/crop_90_38/*.jpg')\n", "def merge_img_9038():\n", " img = Image.open(random.choice(bgs))\n", " w, h = (37,12)\n", " label = []\n", " for i in range(4):\n", " im_p = random.choice(crops)\n", " lb = im_p.split('/')[-1].split('_')[0]\n", " label.append(lb)\n", " im = Image.open(im_p)\n", " img.paste(im, (17*i+10,0+10)) \n", "\n", " return img, ''.join(label)\n", "\n", "img, label = merge_img_9038()\n", "\n", "plt.imshow(img)\n", "plt.show()\n", "print(label)\n", "\n", "# path = 'E:\\验证码标注数据/crop_english/bg_90_38/*.jpg'\n", "# files = glob.glob(path)\n", "# img = Image.open(files[0])\n", "# # img2 = img.crop((10,10,80,30))\n", "# plt.imshow(img)\n", "# plt.show()\n", "# for i in range(4):\n", "# im = Image.open(random.choice(glob.glob('E:/验证码标注数据/crop_english/crop_90_38/*.jpg')))\n", "# # im = img2.crop((17*i,0, 17*(i+1), 20))\n", "# img.paste(im,(17*i+10,0+10))\n", "# plt.imshow(img)\n", "# plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.0" } }, "nbformat": 4, "nbformat_minor": 2 }