import os import random import sys from glob import glob os.environ["CUDA_VISIBLE_DEVICES"] = "1" import tensorflow as tf # tf.compat.v1.disable_eager_execution() sys.path.append(os.path.dirname(os.path.abspath(__file__))) sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../") from keras.callbacks import ReduceLROnPlateau, ModelCheckpoint from keras.losses import BinaryCrossentropy, mse, CategoricalCrossentropy, MSE from keras.optimizer_v2.adam import Adam from click_captcha.metrics import precision, recall, f1 from click_captcha.loss import focal_loss, contrastive_loss, l2_focal_loss, l1_focal_loss, perceptual_loss from click_captcha.model import u_net_denoise from click_captcha.pre_process import gen_equation, gen_equation2, gen_equation_denoise PRETRAINED = False random.seed(42) image_shape = (32, 192, 1) project_root = os.path.dirname(os.path.abspath(__file__)) + "/../" if __name__ == "__main__": model = u_net_denoise(input_shape=image_shape, class_num=image_shape[2]) if PRETRAINED: _path = "./models/e130-acc0.87-char.h5" model.load_weights(_path, skip_mismatch=True, by_name=True) print("read pretrained model", _path) else: print("no pretrained") # batch num batch_size = 32 # 模型权重存放位置 filepath = 'models/e{epoch:02d}-loss{val_loss:.2f}-denoise.h5' check_pointer = ModelCheckpoint(filepath=filepath, monitor='val_loss', verbose=0, save_weights_only=True, save_best_only=True, mode="min", save_freq='epoch') rlu = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=10, verbose=1, mode='min', cooldown=0, min_lr=0) model.compile(optimizer=Adam(lr=0.0003), loss=perceptual_loss(), metrics=['acc', precision, recall, f1]) # data loader train_loader = gen_equation_denoise(None, batch_size=batch_size, shape=image_shape) test_loader = gen_equation_denoise(None, batch_size=batch_size, shape=image_shape) # train steps_per_epoch = 1000 validation_steps = int(steps_per_epoch * 0.1) model.fit_generator(train_loader, steps_per_epoch=steps_per_epoch, callbacks=[check_pointer, rlu], validation_data=test_loader, validation_steps=validation_steps, epochs=1000, max_queue_size=100, use_multiprocessing=False)