123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- import os
- import sys
- import numpy as np
- import paddle
- import signal
- import random
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
- import copy
- from paddle.io import Dataset, DataLoader, BatchSampler, DistributedBatchSampler
- # from paddle.fluid.io import DataLoader
- # from paddle.fluid.dataloader import Dataset, BatchSampler, DistributedBatchSampler
- import paddle.distributed as dist
- from ppocr.data.imaug import transform, create_operators
- from ppocr.data.simple_dataset import SimpleDataSet
- from ppocr.data.lmdb_dataset import LMDBDataSet
- __all__ = ['build_dataloader', 'transform', 'create_operators']
- def term_mp(sig_num, frame):
- """ kill all child processes
- """
- pid = os.getpid()
- pgid = os.getpgid(os.getpid())
- print("main proc {} exit, kill process group " "{}".format(pid, pgid))
- os.killpg(pgid, signal.SIGKILL)
- signal.signal(signal.SIGINT, term_mp)
- signal.signal(signal.SIGTERM, term_mp)
- def build_dataloader(config, mode, device, logger, seed=None):
- config = copy.deepcopy(config)
- # 从配置文件中读取相关配置,并判断是否包含在支持中
- assert mode in ['Train', 'Eval', 'Test'
- ], "Mode should be Train, Eval or Test."
- module_name = config[mode]['dataset']['name']
- support_dict = ['SimpleDataSet', 'LMDBDataSet']
- assert module_name in support_dict, Exception(
- 'DataSet only support {}'.format(support_dict))
- # 初始化对应的Dataset类
- # eval: 根据字符串调用同名类
- # eval('SimpleDataSet')(config) = SimpleDataSet(config)
- dataset = eval(module_name)(config, mode, logger, seed)
- # 读取其他参数
- loader_config = config[mode]['loader']
- batch_size = loader_config['batch_size_per_card']
- drop_last = loader_config['drop_last']
- shuffle = loader_config['shuffle']
- num_workers = loader_config['num_workers']
- if 'use_shared_memory' in loader_config.keys():
- use_shared_memory = loader_config['use_shared_memory']
- else:
- use_shared_memory = True
- # Train模式,可多个GPU同时训练,Eval模式则是单卡,分多个Batch
- if mode == "Train":
- #Distribute data to multiple cards
- batch_sampler = DistributedBatchSampler(
- dataset=dataset,
- batch_size=batch_size,
- shuffle=shuffle,
- drop_last=drop_last)
- # random_epoch = np.random.randint(1, 10)
- # batch_sampler.set_epoch(random_epoch)
- else:
- #Distribute data to single card
- batch_sampler = BatchSampler(
- dataset=dataset,
- batch_size=batch_size,
- shuffle=shuffle,
- drop_last=drop_last)
- # 根据已设参数,初始化数据集读取对象
- data_loader = DataLoader(
- dataset=dataset,
- batch_sampler=batch_sampler,
- places=device,
- num_workers=num_workers,
- return_list=True,
- use_shared_memory=use_shared_memory)
- return data_loader
|