123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 |
- #Global:
- # use_gpu: True
- # epoch_num: 10
- # log_smooth_window: 20
- # print_batch_step: 10
- # save_model_dir: output/rec/my_rec_chinese_lite/
- # save_epoch_step: 5
- # # evaluation is run every 100000 iterations
- # eval_batch_step: [0, 100000]
- # # if pretrained_model is saved in static mode, load_static_weights must set to True
- # cal_metric_during_train: True
- ## pretrained_model: output/rec/my_rec_chinese_lite/best_accuracy
- # pretrained_model:
- # checkpoints:
- # save_inference_dir:
- # use_visualdl: False
- # infer_img: doc/imgs_words_en/word_10.png
- # # for data or label process
- # character_dict_path: ppocr/utils/ppocr_keys_v1.txt
- # character_type: ch
- # max_text_length: 128
- # infer_mode: False
- # use_space_char: True
- #
- #
- #Optimizer:
- # name: Adam
- # beta1: 0.9
- # beta2: 0.999
- # lr:
- # name: Cosine
- # learning_rate: 0.0003
- # regularizer:
- # name: 'L2'
- # factor: 0.00001
- #
- #Architecture:
- # model_type: rec
- # algorithm: CRNN
- # Transform:
- # Backbone:
- # name: MobileNetV3
- # scale: 0.5
- # model_name: large
- # Neck:
- # name: SequenceEncoder
- # encoder_type: rnn
- # hidden_size: 96
- # Head:
- # name: CTCHead
- # fc_decay: 0.00001
- #
- #Loss:
- # name: CTCLoss
- #
- #PostProcess:
- # name: CTCLabelDecode
- #
- #Metric:
- # name: RecMetric
- # main_indicator: acc
- #
- #Train:
- # dataset:
- # name: SimpleDataSet
- # data_dir: train_data/bidi_data/mix_data4/
- # label_file_list: ["./train_data/bidi_data/mix_data4/rec_gt_train.txt"]
- # transforms:
- # - DecodeImage: # load image
- # img_mode: BGR
- # channel_first: False
- # - CTCLabelEncode: # Class handling label
- # - RecResizeImg:
- # image_shape: [3, 32, 1000]
- # - KeepKeys:
- # keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
- # loader:
- # shuffle: True
- # batch_size_per_card: 50
- # drop_last: True
- # num_workers: 0
- #
- #Eval:
- # dataset:
- # name: SimpleDataSet
- # data_dir: train_data/bidi_data/mix_data4/
- # label_file_list: ["./train_data/bidi_data/mix_data4/rec_gt_test.txt"]
- # transforms:
- # - DecodeImage: # load image
- # img_mode: BGR
- # channel_first: False
- # - CTCLabelEncode: # Class handling label
- # - RecResizeImg:
- # image_shape: [3, 32, 1000]
- # - KeepKeys:
- # keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
- # loader:
- # shuffle: False
- # drop_last: False
- # batch_size_per_card: 50
- # num_workers: 0
- Global:
- use_gpu: True
- epoch_num: 10
- log_smooth_window: 20
- print_batch_step: 20
- save_model_dir: output/rec/my_rec_chinese_lite/
- save_epoch_step: 5
- # evaluation is run every 100000 iterations
- eval_batch_step: [0, 100000]
- # if pretrained_model is saved in static mode, load_static_weights must set to True
- cal_metric_during_train: True
- # pretrained_model .pdmodel .pdiparams .pdiparams.info
- pretrained_model: output/rec/my_rec_chinese_lite/best_accuracy
- # pretrained_model:
- # checkpoints .pdparams .pdopt .states
- # checkpoints: output/rec/my_rec_chinese_lite/best_accuracy
- save_inference_dir:
- use_visualdl: False
- infer_img: doc/imgs_words_en/word_10.png
- # for data or label process
- character_dict_path: ppocr/utils/ppocr_keys_v1.txt
- character_type: ch
- max_text_length: 128
- infer_mode: False
- use_space_char: True
- Optimizer:
- name: Adam
- beta1: 0.9
- beta2: 0.999
- lr:
- learning_rate: 0.0005
- regularizer:
- name: 'L2'
- factor: 0
- Architecture:
- model_type: rec
- algorithm: CRNN
- Transform:
- Backbone:
- name: MobileNetV3
- scale: 0.5
- model_name: large
- Neck:
- name: SequenceEncoder
- encoder_type: rnn
- hidden_size: 96
- Head:
- name: CTCHead
- fc_decay: 0
- Loss:
- name: CTCLoss
- PostProcess:
- name: CTCLabelDecode
- Metric:
- name: RecMetric
- main_indicator: acc
- Train:
- dataset:
- name: SimpleDataSet
- data_dir: train_data/bidi_data/mix_data4/
- label_file_list: ["./train_data/bidi_data/mix_data4/rec_gt_train.txt"]
- transforms:
- - DecodeImage: # load image
- img_mode: BGR
- channel_first: False
- - CTCLabelEncode: # Class handling label
- - RecResizeImg:
- image_shape: [3, 32, 1000]
- - KeepKeys:
- keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
- loader:
- shuffle: True
- batch_size_per_card: 80
- drop_last: True
- num_workers: 0
- Eval:
- dataset:
- name: SimpleDataSet
- data_dir: train_data/bidi_data/mix_data4/
- label_file_list: ["./train_data/bidi_data/mix_data4/rec_gt_test.txt"]
- transforms:
- - DecodeImage: # load image
- img_mode: BGR
- channel_first: False
- - CTCLabelEncode: # Class handling label
- - RecResizeImg:
- image_shape: [3, 32, 1000]
- - KeepKeys:
- keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
- loader:
- shuffle: False
- drop_last: False
- batch_size_per_card: 80
- num_workers: 0
|