my_chinese_lite_large.yml 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204
  1. #Global:
  2. # use_gpu: True
  3. # epoch_num: 10
  4. # log_smooth_window: 20
  5. # print_batch_step: 10
  6. # save_model_dir: output/rec/my_rec_chinese_lite/
  7. # save_epoch_step: 5
  8. # # evaluation is run every 100000 iterations
  9. # eval_batch_step: [0, 100000]
  10. # # if pretrained_model is saved in static mode, load_static_weights must set to True
  11. # cal_metric_during_train: True
  12. ## pretrained_model: output/rec/my_rec_chinese_lite/best_accuracy
  13. # pretrained_model:
  14. # checkpoints:
  15. # save_inference_dir:
  16. # use_visualdl: False
  17. # infer_img: doc/imgs_words_en/word_10.png
  18. # # for data or label process
  19. # character_dict_path: ppocr/utils/ppocr_keys_v1.txt
  20. # character_type: ch
  21. # max_text_length: 128
  22. # infer_mode: False
  23. # use_space_char: True
  24. #
  25. #
  26. #Optimizer:
  27. # name: Adam
  28. # beta1: 0.9
  29. # beta2: 0.999
  30. # lr:
  31. # name: Cosine
  32. # learning_rate: 0.0003
  33. # regularizer:
  34. # name: 'L2'
  35. # factor: 0.00001
  36. #
  37. #Architecture:
  38. # model_type: rec
  39. # algorithm: CRNN
  40. # Transform:
  41. # Backbone:
  42. # name: MobileNetV3
  43. # scale: 0.5
  44. # model_name: large
  45. # Neck:
  46. # name: SequenceEncoder
  47. # encoder_type: rnn
  48. # hidden_size: 96
  49. # Head:
  50. # name: CTCHead
  51. # fc_decay: 0.00001
  52. #
  53. #Loss:
  54. # name: CTCLoss
  55. #
  56. #PostProcess:
  57. # name: CTCLabelDecode
  58. #
  59. #Metric:
  60. # name: RecMetric
  61. # main_indicator: acc
  62. #
  63. #Train:
  64. # dataset:
  65. # name: SimpleDataSet
  66. # data_dir: train_data/bidi_data/mix_data4/
  67. # label_file_list: ["./train_data/bidi_data/mix_data4/rec_gt_train.txt"]
  68. # transforms:
  69. # - DecodeImage: # load image
  70. # img_mode: BGR
  71. # channel_first: False
  72. # - CTCLabelEncode: # Class handling label
  73. # - RecResizeImg:
  74. # image_shape: [3, 32, 1000]
  75. # - KeepKeys:
  76. # keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  77. # loader:
  78. # shuffle: True
  79. # batch_size_per_card: 50
  80. # drop_last: True
  81. # num_workers: 0
  82. #
  83. #Eval:
  84. # dataset:
  85. # name: SimpleDataSet
  86. # data_dir: train_data/bidi_data/mix_data4/
  87. # label_file_list: ["./train_data/bidi_data/mix_data4/rec_gt_test.txt"]
  88. # transforms:
  89. # - DecodeImage: # load image
  90. # img_mode: BGR
  91. # channel_first: False
  92. # - CTCLabelEncode: # Class handling label
  93. # - RecResizeImg:
  94. # image_shape: [3, 32, 1000]
  95. # - KeepKeys:
  96. # keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  97. # loader:
  98. # shuffle: False
  99. # drop_last: False
  100. # batch_size_per_card: 50
  101. # num_workers: 0
  102. Global:
  103. use_gpu: True
  104. epoch_num: 10
  105. log_smooth_window: 20
  106. print_batch_step: 20
  107. save_model_dir: output/rec/my_rec_chinese_lite/
  108. save_epoch_step: 5
  109. # evaluation is run every 100000 iterations
  110. eval_batch_step: [0, 100000]
  111. # if pretrained_model is saved in static mode, load_static_weights must set to True
  112. cal_metric_during_train: True
  113. # pretrained_model .pdmodel .pdiparams .pdiparams.info
  114. pretrained_model: output/rec/my_rec_chinese_lite/best_accuracy
  115. # pretrained_model:
  116. # checkpoints .pdparams .pdopt .states
  117. # checkpoints: output/rec/my_rec_chinese_lite/best_accuracy
  118. save_inference_dir:
  119. use_visualdl: False
  120. infer_img: doc/imgs_words_en/word_10.png
  121. # for data or label process
  122. character_dict_path: ppocr/utils/ppocr_keys_v1.txt
  123. character_type: ch
  124. max_text_length: 128
  125. infer_mode: False
  126. use_space_char: True
  127. Optimizer:
  128. name: Adam
  129. beta1: 0.9
  130. beta2: 0.999
  131. lr:
  132. learning_rate: 0.0005
  133. regularizer:
  134. name: 'L2'
  135. factor: 0
  136. Architecture:
  137. model_type: rec
  138. algorithm: CRNN
  139. Transform:
  140. Backbone:
  141. name: MobileNetV3
  142. scale: 0.5
  143. model_name: large
  144. Neck:
  145. name: SequenceEncoder
  146. encoder_type: rnn
  147. hidden_size: 96
  148. Head:
  149. name: CTCHead
  150. fc_decay: 0
  151. Loss:
  152. name: CTCLoss
  153. PostProcess:
  154. name: CTCLabelDecode
  155. Metric:
  156. name: RecMetric
  157. main_indicator: acc
  158. Train:
  159. dataset:
  160. name: SimpleDataSet
  161. data_dir: train_data/bidi_data/mix_data4/
  162. label_file_list: ["./train_data/bidi_data/mix_data4/rec_gt_train.txt"]
  163. transforms:
  164. - DecodeImage: # load image
  165. img_mode: BGR
  166. channel_first: False
  167. - CTCLabelEncode: # Class handling label
  168. - RecResizeImg:
  169. image_shape: [3, 32, 1000]
  170. - KeepKeys:
  171. keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  172. loader:
  173. shuffle: True
  174. batch_size_per_card: 80
  175. drop_last: True
  176. num_workers: 0
  177. Eval:
  178. dataset:
  179. name: SimpleDataSet
  180. data_dir: train_data/bidi_data/mix_data4/
  181. label_file_list: ["./train_data/bidi_data/mix_data4/rec_gt_test.txt"]
  182. transforms:
  183. - DecodeImage: # load image
  184. img_mode: BGR
  185. channel_first: False
  186. - CTCLabelEncode: # Class handling label
  187. - RecResizeImg:
  188. image_shape: [3, 32, 1000]
  189. - KeepKeys:
  190. keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  191. loader:
  192. shuffle: False
  193. drop_last: False
  194. batch_size_per_card: 80
  195. num_workers: 0