#Global: # use_gpu: True # epoch_num: 10 # log_smooth_window: 20 # print_batch_step: 10 # save_model_dir: output/rec/my_rec_chinese_lite/ # save_epoch_step: 5 # # evaluation is run every 100000 iterations # eval_batch_step: [0, 100000] # # if pretrained_model is saved in static mode, load_static_weights must set to True # cal_metric_during_train: True ## pretrained_model: output/rec/my_rec_chinese_lite/best_accuracy # pretrained_model: # checkpoints: # save_inference_dir: # use_visualdl: False # infer_img: doc/imgs_words_en/word_10.png # # for data or label process # character_dict_path: ppocr/utils/ppocr_keys_v1.txt # character_type: ch # max_text_length: 128 # infer_mode: False # use_space_char: True # # #Optimizer: # name: Adam # beta1: 0.9 # beta2: 0.999 # lr: # name: Cosine # learning_rate: 0.0003 # regularizer: # name: 'L2' # factor: 0.00001 # #Architecture: # model_type: rec # algorithm: CRNN # Transform: # Backbone: # name: MobileNetV3 # scale: 0.5 # model_name: large # Neck: # name: SequenceEncoder # encoder_type: rnn # hidden_size: 96 # Head: # name: CTCHead # fc_decay: 0.00001 # #Loss: # name: CTCLoss # #PostProcess: # name: CTCLabelDecode # #Metric: # name: RecMetric # main_indicator: acc # #Train: # dataset: # name: SimpleDataSet # data_dir: train_data/bidi_data/mix_data4/ # label_file_list: ["./train_data/bidi_data/mix_data4/rec_gt_train.txt"] # transforms: # - DecodeImage: # load image # img_mode: BGR # channel_first: False # - CTCLabelEncode: # Class handling label # - RecResizeImg: # image_shape: [3, 32, 1000] # - KeepKeys: # keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order # loader: # shuffle: True # batch_size_per_card: 50 # drop_last: True # num_workers: 0 # #Eval: # dataset: # name: SimpleDataSet # data_dir: train_data/bidi_data/mix_data4/ # label_file_list: ["./train_data/bidi_data/mix_data4/rec_gt_test.txt"] # transforms: # - DecodeImage: # load image # img_mode: BGR # channel_first: False # - CTCLabelEncode: # Class handling label # - RecResizeImg: # image_shape: [3, 32, 1000] # - KeepKeys: # keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order # loader: # shuffle: False # drop_last: False # batch_size_per_card: 50 # num_workers: 0 Global: use_gpu: True epoch_num: 10 log_smooth_window: 20 print_batch_step: 20 save_model_dir: output/rec/my_rec_chinese_lite/ save_epoch_step: 5 # evaluation is run every 100000 iterations eval_batch_step: [0, 100000] # if pretrained_model is saved in static mode, load_static_weights must set to True cal_metric_during_train: True # pretrained_model .pdmodel .pdiparams .pdiparams.info pretrained_model: output/rec/my_rec_chinese_lite/best_accuracy # pretrained_model: # checkpoints .pdparams .pdopt .states # checkpoints: output/rec/my_rec_chinese_lite/best_accuracy save_inference_dir: use_visualdl: False infer_img: doc/imgs_words_en/word_10.png # for data or label process character_dict_path: ppocr/utils/ppocr_keys_v1.txt character_type: ch max_text_length: 128 infer_mode: False use_space_char: True Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: learning_rate: 0.0005 regularizer: name: 'L2' factor: 0 Architecture: model_type: rec algorithm: CRNN Transform: Backbone: name: MobileNetV3 scale: 0.5 model_name: large Neck: name: SequenceEncoder encoder_type: rnn hidden_size: 96 Head: name: CTCHead fc_decay: 0 Loss: name: CTCLoss PostProcess: name: CTCLabelDecode Metric: name: RecMetric main_indicator: acc Train: dataset: name: SimpleDataSet data_dir: train_data/bidi_data/mix_data4/ label_file_list: ["./train_data/bidi_data/mix_data4/rec_gt_train.txt"] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - CTCLabelEncode: # Class handling label - RecResizeImg: image_shape: [3, 32, 1000] - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 80 drop_last: True num_workers: 0 Eval: dataset: name: SimpleDataSet data_dir: train_data/bidi_data/mix_data4/ label_file_list: ["./train_data/bidi_data/mix_data4/rec_gt_test.txt"] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - CTCLabelEncode: # Class handling label - RecResizeImg: image_shape: [3, 32, 1000] - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 80 num_workers: 0