Nav apraksta

Jiasheng 567991c407 公司融合代码更新 4 gadi atpakaļ
.idea 49e51aa9e8 公司融合代码 4 gadi atpakaļ
data 49e51aa9e8 公司融合代码 4 gadi atpakaļ
data1 567991c407 公司融合代码更新 4 gadi atpakaļ
.gitignore 49e51aa9e8 公司融合代码 4 gadi atpakaļ
GCN-Align-master.zip 49e51aa9e8 公司融合代码 4 gadi atpakaļ
LoadBestModel.py 567991c407 公司融合代码更新 4 gadi atpakaļ
README.md 49e51aa9e8 公司融合代码 4 gadi atpakaļ
__init__.py 49e51aa9e8 公司融合代码 4 gadi atpakaļ
getData.py 49e51aa9e8 公司融合代码 4 gadi atpakaļ
inits.py 49e51aa9e8 公司融合代码 4 gadi atpakaļ
layers.py 49e51aa9e8 公司融合代码 4 gadi atpakaļ
metrics.py 567991c407 公司融合代码更新 4 gadi atpakaļ
models.py 49e51aa9e8 公司融合代码 4 gadi atpakaļ
train.py 567991c407 公司融合代码更新 4 gadi atpakaļ
utils.py 49e51aa9e8 公司融合代码 4 gadi atpakaļ

README.md

GCN-Align

Code of the paper: Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks.

A better implementation can be seen at HIN-Align.

Initial datasets are from JAPE.

Environment

  • python>=3.5
  • tensorflow>=1.10.1
  • scipy>=1.1.0
  • networkx>=2.2

Running

python train.py --lang zh_en

Citation

Please politely cite our work as follows:

Zhichun Wang, Qingsong Lv, Xiaohan Lan, Yu Zhang. Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks. In: EMNLP 2018.