train_fleet.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141
  1. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from __future__ import division
  16. from __future__ import print_function
  17. from paddle.distributed import fleet
  18. import os
  19. import sys
  20. __dir__ = os.path.dirname(os.path.abspath(__file__))
  21. sys.path.append(__dir__)
  22. sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
  23. import yaml
  24. import paddle
  25. import paddle.distributed as dist
  26. # paddle.seed(2)
  27. from ppocr.data import build_dataloader
  28. from ppocr.modeling.architectures import build_model
  29. from ppocr.losses import build_loss
  30. from ppocr.optimizer import build_optimizer
  31. from ppocr.postprocess import build_post_process
  32. from ppocr.metrics import build_metric
  33. from ppocr.utils.save_load import init_model
  34. import tools.program as program
  35. dist.get_world_size()
  36. def main(config, device, logger, vdl_writer):
  37. # init dist environment
  38. # 如果分布式训练就初始化分布式环境
  39. if config['Global']['distributed']:
  40. dist.init_parallel_env()
  41. global_config = config['Global']
  42. # build dataloader
  43. # 根据Train/Eval模式不同读取数据
  44. # 获取DataLoader对象
  45. train_dataloader = build_dataloader(config, 'Train', device, logger)
  46. if len(train_dataloader) == 0:
  47. logger.error(
  48. 'No Images in train dataset, please check annotation file and path in the configuration file'
  49. )
  50. return
  51. if config['Eval']:
  52. valid_dataloader = build_dataloader(config, 'Eval', device, logger)
  53. else:
  54. valid_dataloader = None
  55. # build post process
  56. # 后处理,初始化后处理所用算法的类 CTCLabelDecode
  57. post_process_class = build_post_process(config['PostProcess'],
  58. global_config)
  59. # build model
  60. # for rec algorithm
  61. # 判断 class中是否有 character属性或方法
  62. if hasattr(post_process_class, 'character'):
  63. # 获取character属性的值的长度
  64. char_num = len(getattr(post_process_class, 'character'))
  65. config['Architecture']["Head"]['out_channels'] = char_num
  66. # 初始化整个模型对象
  67. # backbone、Neck、Head
  68. model = build_model(config['Architecture'])
  69. if config['Global']['distributed']:
  70. model = paddle.DataParallel(model)
  71. # build loss
  72. loss_class = build_loss(config['Loss'])
  73. # build optim
  74. optimizer, lr_scheduler = build_optimizer(
  75. config['Optimizer'],
  76. epochs=config['Global']['epoch_num'],
  77. step_each_epoch=len(train_dataloader),
  78. parameters=model.parameters())
  79. # 初始化Fleet环境
  80. fleet.init(is_collective=True)
  81. optimizer = fleet.distributed_optimizer(optimizer)
  82. # 通过Fleet API获取分布式model,用于支持分布式训练
  83. model = fleet.distributed_model(model)
  84. # build metric
  85. eval_class = build_metric(config['Metric'])
  86. # load pretrain model
  87. # 读取已预训练好的,模型
  88. pre_best_model_dict = init_model(config, model, logger, optimizer)
  89. # print("pre_best_model_dict", pre_best_model_dict)
  90. logger.info('train dataloader has {} iters, valid dataloader has {} iters'.
  91. format(len(train_dataloader), len(valid_dataloader)))
  92. # start train
  93. program.train(config, train_dataloader, valid_dataloader, device, model,
  94. loss_class, optimizer, lr_scheduler, post_process_class,
  95. eval_class, pre_best_model_dict, logger, vdl_writer)
  96. def test_reader(config, device, logger):
  97. loader = build_dataloader(config, 'Train', device, logger)
  98. import time
  99. starttime = time.time()
  100. count = 0
  101. try:
  102. for data in loader():
  103. count += 1
  104. if count % 1 == 0:
  105. batch_time = time.time() - starttime
  106. starttime = time.time()
  107. logger.info("reader: {}, {}, {}".format(
  108. count, len(data[0]), batch_time))
  109. except Exception as e:
  110. logger.info(e)
  111. logger.info("finish reader: {}, Success!".format(count))
  112. if __name__ == '__main__':
  113. # 读取配置文件
  114. # 得到:全局配置字典,设备对象,训练日志对象,visualDL日志对象
  115. config, device, logger, vdl_writer = program.preprocess(is_train=True)
  116. # 根据这些信息启动训练
  117. main(config, device, logger, vdl_writer)
  118. # test_reader(config, device, logger)