123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311 |
- import torch
- import torch.nn as nn
- import numpy as np
- import math
- from torch.nn import functional as F
- class HSwish(nn.Module):
- def forward(self, x):
- out = x * F.relu6(x + 3, inplace=True) / 6
- return out
- class ConvBNACT(nn.Module):
- def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, act=None):
- super().__init__()
- self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
- stride=stride, padding=padding, groups=groups,
- bias=False)
- self.bn = nn.BatchNorm2d(out_channels)
- if act == 'relu':
- self.act = nn.ReLU()
- elif act == 'hard_swish':
- self.act = HSwish()
- elif act is None:
- self.act = None
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- if self.act is not None:
- x = self.act(x)
- return x
- class ConvBNACTWithPool(nn.Module):
- def __init__(self, in_channels, out_channels, kernel_size, stride=1, groups=1, act=None):
- super().__init__()
- self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride, padding=0, ceil_mode=True)
- self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=1,
- padding=(kernel_size - 1) // 2,
- groups=groups,
- bias=False)
- self.bn = nn.BatchNorm2d(out_channels)
- if act is None:
- self.act = None
- else:
- self.act = nn.ReLU()
- def forward(self, x):
- x = self.pool(x)
- x = self.conv(x)
- x = self.bn(x)
- if self.act is not None:
- x = self.act(x)
- return x
- class ShortCut(nn.Module):
- def __init__(self, in_channels, out_channels, stride, name, if_first=False):
- super().__init__()
- assert name is not None, 'shortcut must have name'
- self.name = name
- if in_channels != out_channels or stride[0] != 1:
- if if_first:
- self.conv = ConvBNACT(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride,
- padding=0, groups=1, act=None)
- else:
- self.conv = ConvBNACTWithPool(in_channels=in_channels, out_channels=out_channels, kernel_size=1,
- stride=stride, groups=1, act=None)
- elif if_first:
- self.conv = ConvBNACT(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride,
- padding=0, groups=1, act=None)
- else:
- self.conv = None
- def forward(self, x):
- if self.conv is not None:
- x = self.conv(x)
- return x
- class BasicBlock(nn.Module):
- def __init__(self, in_channels, out_channels, stride, if_first, name):
- super().__init__()
- assert name is not None, 'block must have name'
- self.name = name
- self.conv0 = ConvBNACT(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride,
- padding=1, groups=1, act='relu')
- self.conv1 = ConvBNACT(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1,
- groups=1, act=None)
- self.shortcut = ShortCut(in_channels=in_channels, out_channels=out_channels, stride=stride,
- name=f'{name}_branch1', if_first=if_first, )
- self.relu = nn.ReLU()
- self.output_channels = out_channels
- def forward(self, x):
- y = self.conv0(x)
- y = self.conv1(y)
- y = y + self.shortcut(x)
- return self.relu(y)
- class BottleneckBlock(nn.Module):
- def __init__(self, in_channels, out_channels, stride, if_first, name):
- super().__init__()
- assert name is not None, 'bottleneck must have name'
- self.name = name
- self.conv0 = ConvBNACT(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0,
- groups=1, act='relu')
- self.conv1 = ConvBNACT(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=stride,
- padding=1, groups=1, act='relu')
- self.conv2 = ConvBNACT(in_channels=out_channels, out_channels=out_channels * 4, kernel_size=1, stride=1,
- padding=0, groups=1, act=None)
- self.shortcut = ShortCut(in_channels=in_channels, out_channels=out_channels * 4, stride=stride,
- if_first=if_first, name=f'{name}_branch1')
- self.relu = nn.ReLU()
- self.output_channels = out_channels * 4
- def forward(self, x):
- y = self.conv0(x)
- y = self.conv1(y)
- y = self.conv2(y)
- y = y + self.shortcut(x)
- return self.relu(y)
- class ResNet(nn.Module):
- def __init__(self, in_channels, layers, **kwargs):
- super().__init__()
- supported_layers = {
- 18: {'depth': [2, 2, 2, 2], 'block_class': BasicBlock},
- 34: {'depth': [3, 4, 6, 3], 'block_class': BasicBlock},
- 50: {'depth': [3, 4, 6, 3], 'block_class': BottleneckBlock},
- 101: {'depth': [3, 4, 23, 3], 'block_class': BottleneckBlock},
- 152: {'depth': [3, 8, 36, 3], 'block_class': BottleneckBlock},
- 200: {'depth': [3, 12, 48, 3], 'block_class': BottleneckBlock}
- }
- assert layers in supported_layers, "supported layers are {} but input layer is {}".format(supported_layers,
- layers)
- depth = supported_layers[layers]['depth']
- block_class = supported_layers[layers]['block_class']
- num_filters = [64, 128, 256, 512]
- self.conv1 = nn.Sequential(
- ConvBNACT(in_channels=in_channels, out_channels=32, kernel_size=3, stride=1, padding=1, act='relu'),
- ConvBNACT(in_channels=32, out_channels=32, kernel_size=3, stride=1, act='relu', padding=1),
- ConvBNACT(in_channels=32, out_channels=64, kernel_size=3, stride=1, act='relu', padding=1)
- )
- self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.stages = nn.ModuleList()
- in_ch = 64
- for block_index in range(len(depth)):
- block_list = []
- for i in range(depth[block_index]):
- if layers >= 50:
- if layers in [101, 152, 200] and block_index == 2:
- if i == 0:
- conv_name = "res" + str(block_index + 2) + "a"
- else:
- conv_name = "res" + str(block_index + 2) + "b" + str(i)
- else:
- conv_name = "res" + str(block_index + 2) + chr(97 + i)
- else:
- conv_name = f'res{str(block_index + 2)}{chr(97 + i)}'
- if i == 0 and block_index != 0:
- stride = (2, 1)
- else:
- stride = (1, 1)
- block_list.append(block_class(in_channels=in_ch, out_channels=num_filters[block_index],
- stride=stride,
- if_first=block_index == i == 0, name=conv_name))
- in_ch = block_list[-1].output_channels
- self.stages.append(nn.Sequential(*block_list))
- self.out_channels = in_ch
- self.out = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
- def forward(self, x):
- x = self.conv1(x)
- x = self.pool1(x)
- for stage in self.stages:
- x = stage(x)
- x = self.out(x)
- return x
- class Im2Seq(nn.Module):
- def __init__(self, in_channels, **kwargs):
- super().__init__()
- self.out_channels = in_channels
- def forward(self, x):
- B, C, H, W = x.shape
- assert H == 1
- x = x.reshape(B, C, H * W)
- x = x.permute((0, 2, 1))
- return x
- class CTCHead(nn.Module):
- def __init__(self,
- in_channels=192,
- out_channels=6624,
- fc_decay=0.0004,
- mid_channels=None,
- return_feats=False,
- **kwargs):
- super(CTCHead, self).__init__()
- if mid_channels is None:
- self.fc = nn.Linear(
- in_channels,
- out_channels)
- else:
- self.fc1 = nn.Linear(
- in_channels,
- mid_channels)
- self.fc2 = nn.Linear(
- mid_channels,
- out_channels)
- self.in_channels = in_channels
- self.out_channels = out_channels
- self.mid_channels = mid_channels
- self.return_feats = return_feats
- self.apply(self._init_weights)
- print('---------model weight inits-----------')
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- stdv = 1.0 / math.sqrt(self.in_channels * 1.0)
- nn.init.uniform_(m.weight, -stdv, stdv)
- nn.init.uniform_(m.bias, -stdv, stdv)
- def forward(self, x):
- if self.mid_channels is None:
- predicts = self.fc(x)
- else:
- x = self.fc1(x)
- predicts = self.fc2(x)
- if self.return_feats:
- result = (predicts, x)
- else:
- result = (predicts, None)
- return result[0]
- class EncoderWithRNN(nn.Module):
- def __init__(self, in_channels,**kwargs):
- super(EncoderWithRNN, self).__init__()
- hidden_size = kwargs.get('hidden_size', 256)
- self.out_channels = hidden_size * 2
- self.lstm = nn.LSTM(in_channels, hidden_size, bidirectional=True, num_layers=2,batch_first=True)
- def forward(self, x):
- self.lstm.flatten_parameters()
- x, _ = self.lstm(x)
- return x
- class SequenceEncoder(nn.Module):
- def __init__(self, in_channels, encoder_type='rnn', **kwargs):
- super(SequenceEncoder, self).__init__()
- self.encoder_reshape = Im2Seq(in_channels)
- self.out_channels = self.encoder_reshape.out_channels
- if encoder_type == 'reshape':
- self.only_reshape = True
- else:
- support_encoder_dict = {
- 'reshape': Im2Seq,
- 'rnn': EncoderWithRNN
- }
- assert encoder_type in support_encoder_dict, '{} must in {}'.format(
- encoder_type, support_encoder_dict.keys())
- self.encoder = support_encoder_dict[encoder_type](
- self.encoder_reshape.out_channels,**kwargs)
- self.out_channels = self.encoder.out_channels
- self.only_reshape = False
- def forward(self, x):
- x = self.encoder_reshape(x)
- if not self.only_reshape:
- x = self.encoder(x)
- return x
- class Rec_ResNet_34(nn.Module):
- def __init__(self,class_nums=None):
- super(Rec_ResNet_34, self).__init__()
- self.backbone = ResNet(in_channels=3,layers=34)
- hidden_size = 256
- self.neck = SequenceEncoder(in_channels=512,encoder_type='rnn',hidden_size=hidden_size)
- if class_nums:
- self.class_nums = class_nums
- else:
- self.class_nums = 7551
- self.head = CTCHead(in_channels=hidden_size*2,out_channels=self.class_nums + 1,mid_channels=None)
- # self.head = CTCHead(in_channels=2304,out_channels=7546,mid_channels=200)
- def forward(self, x):
- x = self.backbone(x)
- x = self.neck(x)
- x = self.head(x)
- return x
|