123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358 |
- import torch
- import torch.nn as nn
- import numpy as np
- import math
- import os
- from torch.nn import functional as F
- import torch.nn.init as init
- import logging
- class HSwish(nn.Module):
- def forward(self, x):
- out = x * F.relu6(x + 3, inplace=True) / 6
- return out
- class ConvBNACT(nn.Module):
- def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, act=None):
- super().__init__()
- self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
- stride=stride, padding=padding, groups=groups,
- bias=False)
- self.bn = nn.BatchNorm2d(out_channels)
- if act == 'relu':
- self.act = nn.ReLU(inplace=True)
- elif act == 'hard_swish':
- self.act = HSwish()
- elif act is None:
- self.act = None
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- if self.act is not None:
- x = self.act(x)
- return x
- class ConvBNACTWithPool(nn.Module):
- def __init__(self, in_channels, out_channels, kernel_size, groups=1, act=None):
- super().__init__()
- # self.pool = nn.AvgPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)
- self.pool = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
- self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=1,
- padding=(kernel_size - 1) // 2,
- groups=groups,
- bias=False)
- self.bn = nn.BatchNorm2d(out_channels)
- if act is None:
- self.act = None
- else:
- self.act = nn.ReLU(inplace=True)
- def forward(self, x):
- x = self.pool(x)
- x = self.conv(x)
- x = self.bn(x)
- if self.act is not None:
- x = self.act(x)
- return x
- class ShortCut(nn.Module):
- def __init__(self, in_channels, out_channels, stride, name, if_first=False):
- super().__init__()
- assert name is not None, 'shortcut must have name'
- self.name = name
- if in_channels != out_channels or stride != 1:
- if if_first:
- self.conv = ConvBNACT(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride,
- padding=0, groups=1, act=None)
- else:
- self.conv = ConvBNACTWithPool(in_channels=in_channels, out_channels=out_channels, kernel_size=1,
- groups=1, act=None)
- elif if_first:
- self.conv = ConvBNACT(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride,
- padding=0, groups=1, act=None)
- else:
- self.conv = None
- def forward(self, x):
- if self.conv is not None:
- x = self.conv(x)
- return x
- class BottleneckBlock(nn.Module):
- def __init__(self, in_channels, out_channels, stride, if_first, name):
- super().__init__()
- assert name is not None, 'bottleneck must have name'
- self.name = name
- self.conv0 = ConvBNACT(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0,
- groups=1, act='relu')
- self.conv1 = ConvBNACT(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=stride,
- padding=1, groups=1, act='relu')
- self.conv2 = ConvBNACT(in_channels=out_channels, out_channels=out_channels * 4, kernel_size=1, stride=1,
- padding=0, groups=1, act=None)
- self.shortcut = ShortCut(in_channels=in_channels, out_channels=out_channels * 4, stride=stride,
- if_first=if_first, name=f'{name}_branch1')
- self.relu = nn.ReLU(inplace=True)
- self.output_channels = out_channels * 4
- def forward(self, x):
- y = self.conv0(x)
- y = self.conv1(y)
- y = self.conv2(y)
- y = y + self.shortcut(x)
- return self.relu(y)
- class BasicBlock(nn.Module):
- def __init__(self, in_channels, out_channels, stride, if_first, name):
- super().__init__()
- assert name is not None, 'block must have name'
- self.name = name
- self.conv0 = ConvBNACT(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride,
- padding=1, groups=1, act='relu')
- self.conv1 = ConvBNACT(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1,
- groups=1, act=None)
- self.shortcut = ShortCut(in_channels=in_channels, out_channels=out_channels, stride=stride,
- name=f'{name}_branch1', if_first=if_first, )
- self.relu = nn.ReLU(inplace=True)
- self.output_channels = out_channels
- def forward(self, x):
- y = self.conv0(x)
- y = self.conv1(y)
- y = y + self.shortcut(x)
- return self.relu(y)
- class ResNet(nn.Module):
- def __init__(self, in_channels, layers, out_indices=[0, 1, 2, 3], pretrained=True, **kwargs):
- """
- the Resnet backbone network for detection module.
- Args:
- params(dict): the super parameters for network build
- """
- super().__init__()
- supported_layers = {
- 18: {'depth': [2, 2, 2, 2], 'block_class': BasicBlock},
- 34: {'depth': [3, 4, 6, 3], 'block_class': BasicBlock},
- 50: {'depth': [3, 4, 6, 3], 'block_class': BottleneckBlock},
- 101: {'depth': [3, 4, 23, 3], 'block_class': BottleneckBlock},
- 152: {'depth': [3, 8, 36, 3], 'block_class': BottleneckBlock},
- 200: {'depth': [3, 12, 48, 3], 'block_class': BottleneckBlock}
- }
- assert layers in supported_layers, \
- "supported layers are {} but input layer is {}".format(supported_layers, layers)
- depth = supported_layers[layers]['depth']
- block_class = supported_layers[layers]['block_class']
- self.use_supervised = kwargs.get('use_supervised', False)
- self.out_indices = out_indices
- num_filters = [64, 128, 256, 512]
- self.conv1 = nn.Sequential(
- ConvBNACT(in_channels=in_channels, out_channels=32, kernel_size=3, stride=2, padding=1, act='relu'),
- ConvBNACT(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1, act='relu'),
- ConvBNACT(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1, act='relu')
- )
- self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.stages = nn.ModuleList()
- self.out_channels = []
- tmp_channels = []
- in_ch = 64
- for block_index in range(len(depth)):
- block_list = []
- for i in range(depth[block_index]):
- if layers >= 50:
- if layers in [101, 152, 200] and block_index == 2:
- if i == 0:
- conv_name = "res" + str(block_index + 2) + "a"
- else:
- conv_name = "res" + str(block_index + 2) + "b" + str(i)
- else:
- conv_name = "res" + str(block_index + 2) + chr(97 + i)
- else:
- conv_name = f'res{str(block_index + 2)}{chr(97 + i)}'
- block_list.append(block_class(in_channels=in_ch, out_channels=num_filters[block_index],
- stride=2 if i == 0 and block_index != 0 else 1,
- if_first=block_index == i == 0, name=conv_name))
- in_ch = block_list[-1].output_channels
- tmp_channels.append(in_ch)
- self.stages.append(nn.Sequential(*block_list))
- for idx, ch in enumerate(tmp_channels):
- if idx in self.out_indices:
- self.out_channels.append(ch)
- if pretrained:
- ckpt_path = f'./weights/resnet{layers}_vd.pth'
- logger = logging.getLogger('torchocr')
- if os.path.exists(ckpt_path):
- logger.info('load imagenet weights')
- self.load_state_dict(torch.load(ckpt_path))
- else:
- logger.info(f'{ckpt_path} not exists')
- if self.use_supervised:
- ckpt_path = f'./weights/res_supervised_140w_387e.pth'
- logger = logging.getLogger('torchocr')
- if os.path.exists(ckpt_path):
- logger.info('load supervised weights')
- self.load_state_dict(torch.load(ckpt_path))
- else:
- logger.info(f'{ckpt_path} not exists')
- def forward(self, x):
- x = self.conv1(x)
- x = self.pool1(x)
- out = []
- for idx, stage in enumerate(self.stages):
- x = stage(x)
- if idx in self.out_indices:
- out.append(x)
- return out
- def weights_init(m):
- if isinstance(m, nn.Conv2d):
- init.kaiming_normal_(m.weight.data)
- if m.bias is not None:
- init.normal_(m.bias.data)
- elif isinstance(m, nn.ConvTranspose2d):
- init.kaiming_normal_(m.weight.data)
- if m.bias is not None:
- init.normal_(m.bias.data)
- elif isinstance(m, nn.BatchNorm2d):
- init.normal_(m.weight.data, mean=1, std=0.02)
- init.constant_(m.bias.data, 0)
- class DB_fpn(nn.Module):
- def __init__(self, in_channels, out_channels=256, **kwargs):
- """
- :param in_channels: 基础网络输出的维度
- :param kwargs:
- """
- super().__init__()
- inplace = True
- self.out_channels = out_channels
- # reduce layers
- self.in2_conv = nn.Conv2d(in_channels[0], self.out_channels, kernel_size=1, bias=False)
- self.in3_conv = nn.Conv2d(in_channels[1], self.out_channels, kernel_size=1, bias=False)
- self.in4_conv = nn.Conv2d(in_channels[2], self.out_channels, kernel_size=1, bias=False)
- self.in5_conv = nn.Conv2d(in_channels[3], self.out_channels, kernel_size=1, bias=False)
- # Smooth layers
- self.p5_conv = nn.Conv2d(self.out_channels, self.out_channels // 4, kernel_size=3, padding=1, bias=False)
- self.p4_conv = nn.Conv2d(self.out_channels, self.out_channels // 4, kernel_size=3, padding=1, bias=False)
- self.p3_conv = nn.Conv2d(self.out_channels, self.out_channels // 4, kernel_size=3, padding=1, bias=False)
- self.p2_conv = nn.Conv2d(self.out_channels, self.out_channels // 4, kernel_size=3, padding=1, bias=False)
- self.in2_conv.apply(weights_init)
- self.in3_conv.apply(weights_init)
- self.in4_conv.apply(weights_init)
- self.in5_conv.apply(weights_init)
- self.p5_conv.apply(weights_init)
- self.p4_conv.apply(weights_init)
- self.p3_conv.apply(weights_init)
- self.p2_conv.apply(weights_init)
- def _interpolate_add(self, x, y):
- return F.interpolate(x, scale_factor=2) + y
- def _interpolate_cat(self, p2, p3, p4, p5):
- p3 = F.interpolate(p3, scale_factor=2)
- p4 = F.interpolate(p4, scale_factor=4)
- p5 = F.interpolate(p5, scale_factor=8)
- return torch.cat([p5, p4, p3, p2], dim=1)
- def forward(self, x):
- c2, c3, c4, c5 = x
- in5 = self.in5_conv(c5)
- in4 = self.in4_conv(c4)
- in3 = self.in3_conv(c3)
- in2 = self.in2_conv(c2)
- out4 = self._interpolate_add(in5, in4)
- out3 = self._interpolate_add(out4, in3)
- out2 = self._interpolate_add(out3, in2)
- p5 = self.p5_conv(in5)
- p4 = self.p4_conv(out4)
- p3 = self.p3_conv(out3)
- p2 = self.p2_conv(out2)
- x = self._interpolate_cat(p2, p3, p4, p5)
- return x
- class Head(nn.Module):
- def __init__(self, in_channels):
- super().__init__()
- self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=in_channels // 4, kernel_size=3, padding=1,
- bias=False)
- # self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=in_channels // 4, kernel_size=5, padding=2,
- # bias=False)
- self.conv_bn1 = nn.BatchNorm2d(in_channels // 4)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = nn.ConvTranspose2d(in_channels=in_channels // 4, out_channels=in_channels // 4, kernel_size=2,
- stride=2)
- self.conv_bn2 = nn.BatchNorm2d(in_channels // 4)
- self.conv3 = nn.ConvTranspose2d(in_channels=in_channels // 4, out_channels=1, kernel_size=2, stride=2)
- def forward(self, x):
- x = self.conv1(x)
- x = self.conv_bn1(x)
- x = self.relu(x)
- x = self.conv2(x)
- x = self.conv_bn2(x)
- x = self.relu(x)
- x = self.conv3(x)
- x = torch.sigmoid(x)
- return x
- class DBHead(nn.Module):
- """
- Differentiable Binarization (DB) for text detection:
- see https://arxiv.org/abs/1911.08947
- args:
- params(dict): super parameters for build DB network
- """
- def __init__(self, in_channels, k=50):
- super().__init__()
- self.k = k
- self.binarize = Head(in_channels)
- self.thresh = Head(in_channels)
- self.binarize.apply(weights_init)
- self.thresh.apply(weights_init)
- def step_function(self, x, y):
- return torch.reciprocal(1 + torch.exp(-self.k * (x - y)))
- def forward(self, x):
- shrink_maps = self.binarize(x)
- if not self.training:
- return shrink_maps
- threshold_maps = self.thresh(x)
- binary_maps = self.step_function(shrink_maps, threshold_maps)
- y = torch.cat((shrink_maps, threshold_maps, binary_maps), dim=1)
- return y
- class DB_ResNet_18(nn.Module):
- def __init__(self, ):
- super().__init__()
- self.backbone = ResNet(in_channels=3,layers=18,pretrained=False)
- self.neck = DB_fpn(in_channels=self.backbone.out_channels,out_channels=256)
- self.head = DBHead(self.neck.out_channels)
- def forward(self, x):
- x = self.backbone(x)
- x = self.neck(x)
- x = self.head(x)
- return x
|