123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434 |
- # encoding=utf8
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import io
- import logging
- import os
- import sys
- sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../../../")
- import requests
- from format_convert import _global
- from format_convert.utils import judge_error_code, log, namespace_to_dict, get_platform, file_lock
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import numpy as np
- import time
- import sys
- os.environ['FLAGS_eager_delete_tensor_gb'] = '0'
- import ocr.tools.infer.utility as utility
- from ocr.ppocr.utils.logging import get_logger
- from ocr.ppocr.utils.utility import get_image_file_list, check_and_read_gif
- from ocr.ppocr.data import create_operators, transform
- from ocr.ppocr.postprocess import build_post_process
- from config.max_compute_config import MAX_COMPUTE
- import torch
- from torch import nn
- from ocr.tools.infer.torch_det_model import DB_ResNet_18
- import gc
- logger = get_logger()
- class TextDetector(object):
- shrink_memory_count = 0
- def __init__(self, args):
- self.args = args
- self.det_algorithm = args.det_algorithm
- pre_process_list = [{
- 'DetResizeForTest': None
- }, {
- 'NormalizeImage': {
- 'std': [0.229, 0.224, 0.225],
- 'mean': [0.485, 0.456, 0.406],
- 'scale': '1./255.',
- 'order': 'hwc'
- }
- }, {
- 'ToCHWImage': None
- }, {
- 'KeepKeys': {
- 'keep_keys': ['image', 'shape']
- }
- }]
- postprocess_params = {}
- if self.det_algorithm == "DB":
- postprocess_params['name'] = 'DBPostProcess'
- postprocess_params["thresh"] = args.det_db_thresh
- postprocess_params["box_thresh"] = args.det_db_box_thresh
- postprocess_params["max_candidates"] = 1000
- postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
- postprocess_params["use_dilation"] = args.use_dilation
- elif self.det_algorithm == "EAST":
- postprocess_params['name'] = 'EASTPostProcess'
- postprocess_params["score_thresh"] = args.det_east_score_thresh
- postprocess_params["cover_thresh"] = args.det_east_cover_thresh
- postprocess_params["nms_thresh"] = args.det_east_nms_thresh
- elif self.det_algorithm == "SAST":
- pre_process_list[0] = {
- 'DetResizeForTest': {
- 'resize_long': args.det_limit_side_len
- }
- }
- postprocess_params['name'] = 'SASTPostProcess'
- postprocess_params["score_thresh"] = args.det_sast_score_thresh
- postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
- self.det_sast_polygon = args.det_sast_polygon
- if self.det_sast_polygon:
- postprocess_params["sample_pts_num"] = 6
- postprocess_params["expand_scale"] = 1.2
- postprocess_params["shrink_ratio_of_width"] = 0.2
- else:
- postprocess_params["sample_pts_num"] = 2
- postprocess_params["expand_scale"] = 1.0
- postprocess_params["shrink_ratio_of_width"] = 0.3
- else:
- logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
- sys.exit(0)
- self.preprocess_op = create_operators(pre_process_list)
- self.postprocess_op = build_post_process(postprocess_params)
- det_model_path = args.det_model_dir
- self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- model = DB_ResNet_18()
- mode_state_dict = torch.load(det_model_path, self.device)['state_dict']
- if str(self.device) == 'cpu': # cpu处理时精度调整,加速推理
- for name, value in mode_state_dict.items():
- if get_platform() != "Windows":
- value = value.double()
- value = torch.where((value < 1.0e-23) & (value > 0.0), 1.0e-23, value)
- value = torch.where((value > -1.0e-23) & (value < 0.0), -1.0e-23, value)
- mode_state_dict[name] = value
- model.load_state_dict(mode_state_dict)
- self.predictor = model
- self.predictor.to(self.device)
- self.predictor.eval()
- # self.predictor, self.input_tensor, self.output_tensors = utility.create_predictor(
- # args, 'det', logger) # paddle.jit.load(args.det_model_dir)
- # self.predictor.eval()
- def order_points_clockwise(self, pts):
- """
- reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
- # sort the points based on their x-coordinates
- """
- xSorted = pts[np.argsort(pts[:, 0]), :]
- # grab the left-most and right-most points from the sorted
- # x-roodinate points
- leftMost = xSorted[:2, :]
- rightMost = xSorted[2:, :]
- # now, sort the left-most coordinates according to their
- # y-coordinates so we can grab the top-left and bottom-left
- # points, respectively
- leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
- (tl, bl) = leftMost
- rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
- (tr, br) = rightMost
- rect = np.array([tl, tr, br, bl], dtype="float32")
- return rect
- def clip_det_res(self, points, img_height, img_width):
- for pno in range(points.shape[0]):
- points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
- points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
- return points
- def filter_tag_det_res(self, dt_boxes, image_shape):
- img_height, img_width = image_shape[0:2]
- dt_boxes_new = []
- for box in dt_boxes:
- box = self.order_points_clockwise(box)
- box = self.clip_det_res(box, img_height, img_width)
- rect_width = int(np.linalg.norm(box[0] - box[1]))
- rect_height = int(np.linalg.norm(box[0] - box[3]))
- if rect_width <= 3 or rect_height <= 3:
- continue
- dt_boxes_new.append(box)
- dt_boxes = np.array(dt_boxes_new)
- return dt_boxes
- def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
- img_height, img_width = image_shape[0:2]
- dt_boxes_new = []
- for box in dt_boxes:
- box = self.clip_det_res(box, img_height, img_width)
- dt_boxes_new.append(box)
- dt_boxes = np.array(dt_boxes_new)
- return dt_boxes
- def __call__(self, img):
- # cv2.imwrite("/data2/znj/format_conversion_maxcompute/ocr/temp_image/temp.jpg",img)
- ori_im = img.copy()
- data = {'image': img}
- data = transform(data, self.preprocess_op)
- img, shape_list = data
- if img is None:
- return None, 0
- img = np.expand_dims(img, axis=0)
- shape_list = np.expand_dims(shape_list, axis=0)
- img = img.copy()
- starttime = time.time()
- # self.input_tensor.copy_from_cpu(img)
- img = torch.from_numpy(img).float()
- img = img.to(self.device)
- try:
- # 加锁,防止太多大图片同时预测,爆显存
- if ori_im.shape[0] > 1024 and ori_im.shape[1] > 1024 and get_platform() != "Windows" and not MAX_COMPUTE:
- time2 = time.time()
- lock_file_sub = 'ocr'
- lock_file = os.path.abspath(os.path.dirname(__file__)) + "/" + lock_file_sub + ".lock"
- f = file_lock(lock_file)
- log("get file_lock " + lock_file_sub + " time " + str(time.time()-time2))
- with torch.no_grad():
- out = self.predictor(img)
- f.close()
- else:
- with torch.no_grad():
- out = self.predictor(img)
- except RuntimeError:
- log("ocr/tools/infer/predict_det.py predict.run error! maybe no gpu memory!")
- log("predictor shrink memory!")
- # self.predictor.clear_intermediate_tensor()
- # self.predictor.try_shrink_memory()
- if str(self.device)!='cpu':
- torch.cuda.empty_cache()
- gc.collect()
- raise RuntimeError
- # outputs = []
- # for output_tensor in self.output_tensors:
- # output = output_tensor.copy_to_cpu()
- # outputs.append(output)
- out = out.cpu().numpy()
- preds = {}
- preds['maps'] = out
- # if self.det_algorithm == "EAST":
- # preds['f_geo'] = outputs[0]
- # preds['f_score'] = outputs[1]
- # elif self.det_algorithm == 'SAST':
- # preds['f_border'] = outputs[0]
- # preds['f_score'] = outputs[1]
- # preds['f_tco'] = outputs[2]
- # preds['f_tvo'] = outputs[3]
- # elif self.det_algorithm == 'DB':
- # preds['maps'] = outputs[0]
- # else:
- # raise NotImplementedError
- post_result = self.postprocess_op(preds, shape_list)
- dt_boxes = post_result[0]['points']
- if self.det_algorithm == "SAST" and self.det_sast_polygon:
- dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
- else:
- dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
- elapse = time.time() - starttime
- # 释放内存
- # print("TextDetector", self.predictor)
- # if TextDetector.shrink_memory_count % 100 == 0:
- # print("TextDetector shrink memory")
- # self.predictor.clear_intermediate_tensor()
- # self.predictor.try_shrink_memory()
- # TextDetector.shrink_memory_count += 1
- if str(self.device) != 'cpu':
- torch.cuda.empty_cache()
- # gc.collect()
- return dt_boxes, elapse
- class TextDetector2(object):
- shrink_memory_count = 0
- def __init__(self, args):
- self.args = args
- self.det_algorithm = args.det_algorithm
- pre_process_list = [{
- 'DetResizeForTest': None
- }, {
- 'NormalizeImage': {
- 'std': [0.229, 0.224, 0.225],
- 'mean': [0.485, 0.456, 0.406],
- 'scale': '1./255.',
- 'order': 'hwc'
- }
- }, {
- 'ToCHWImage': None
- }, {
- 'KeepKeys': {
- 'keep_keys': ['image', 'shape']
- }
- }]
- postprocess_params = {}
- if self.det_algorithm == "DB":
- postprocess_params['name'] = 'DBPostProcess'
- postprocess_params["thresh"] = args.det_db_thresh
- postprocess_params["box_thresh"] = args.det_db_box_thresh
- postprocess_params["max_candidates"] = 1000
- postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
- postprocess_params["use_dilation"] = args.use_dilation
- else:
- logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
- sys.exit(0)
- self.preprocess_op = create_operators(pre_process_list)
- self.postprocess_op = build_post_process(postprocess_params)
- def order_points_clockwise(self, pts):
- """
- reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
- # sort the points based on their x-coordinates
- """
- xSorted = pts[np.argsort(pts[:, 0]), :]
- # grab the left-most and right-most points from the sorted
- # x-roodinate points
- leftMost = xSorted[:2, :]
- rightMost = xSorted[2:, :]
- # now, sort the left-most coordinates according to their
- # y-coordinates so we can grab the top-left and bottom-left
- # points, respectively
- leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
- (tl, bl) = leftMost
- rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
- (tr, br) = rightMost
- rect = np.array([tl, tr, br, bl], dtype="float32")
- return rect
- def clip_det_res(self, points, img_height, img_width):
- for pno in range(points.shape[0]):
- points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
- points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
- return points
- def filter_tag_det_res(self, dt_boxes, image_shape):
- img_height, img_width = image_shape[0:2]
- dt_boxes_new = []
- for box in dt_boxes:
- box = self.order_points_clockwise(box)
- box = self.clip_det_res(box, img_height, img_width)
- rect_width = int(np.linalg.norm(box[0] - box[1]))
- rect_height = int(np.linalg.norm(box[0] - box[3]))
- if rect_width <= 3 or rect_height <= 3:
- continue
- dt_boxes_new.append(box)
- dt_boxes = np.array(dt_boxes_new)
- return dt_boxes
- def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
- img_height, img_width = image_shape[0:2]
- dt_boxes_new = []
- for box in dt_boxes:
- box = self.clip_det_res(box, img_height, img_width)
- dt_boxes_new.append(box)
- dt_boxes = np.array(dt_boxes_new)
- return dt_boxes
- def __call__(self, img):
- from format_convert.convert_need_interface import from_gpu_interface_redis
- # 预处理
- ori_im = img.copy()
- data = {'image': img}
- data = transform(data, self.preprocess_op)
- img, shape_list = data
- if img is None:
- return None, 0
- img = np.expand_dims(img, axis=0)
- shape_list = np.expand_dims(shape_list, axis=0)
- img = img.copy()
- starttime = time.time()
- # # 压缩numpy
- # compressed_array = io.BytesIO()
- # np.savez_compressed(compressed_array, img)
- # compressed_array.seek(0)
- # img = compressed_array.read()
- # 调用GPU接口
- _dict = {"inputs": img, "args": str(namespace_to_dict(self.args)), "md5": _global.get("md5")}
- result = from_gpu_interface_redis(_dict, model_type="ocr", predictor_type="det")
- if judge_error_code(result):
- logging.error("from_gpu_interface failed! " + str(result))
- raise requests.exceptions.RequestException
- _preds = result.get("preds")
- gpu_time = result.get("gpu_time")
- # # 解压numpy
- # decompressed_array = io.BytesIO()
- # decompressed_array.write(_preds)
- # decompressed_array.seek(0)
- # _preds = np.load(decompressed_array, allow_pickle=True)['arr_0']
- # log("inputs.shape" + str(_preds.shape))
- # 后处理
- preds = {}
- if self.det_algorithm == 'DB':
- preds['maps'] = _preds
- else:
- raise NotImplementedError
- post_result = self.postprocess_op(preds, shape_list)
- dt_boxes = post_result[0]['points']
- dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
- elapse = time.time() - starttime
- log("ocr model predict time - det - time " + str(gpu_time))
- return dt_boxes, elapse
- if __name__ == "__main__":
- args = utility.parse_args()
- image_file_list = get_image_file_list(args.image_dir)
- text_detector = TextDetector(args)
- count = 0
- total_time = 0
- draw_img_save = "./inference_results"
- if not os.path.exists(draw_img_save):
- os.makedirs(draw_img_save)
- for image_file in image_file_list:
- img, flag = check_and_read_gif(image_file)
- if not flag:
- img = cv2.imread(image_file)
- if img is None:
- logger.info("error in loading image:{}".format(image_file))
- continue
- dt_boxes, elapse = text_detector(img)
- if count > 0:
- total_time += elapse
- count += 1
- logger.info("Predict time of {}: {}".format(image_file, elapse))
- src_im = utility.draw_text_det_res(dt_boxes, image_file)
- img_name_pure = os.path.split(image_file)[-1]
- img_path = os.path.join(draw_img_save,
- "det_res_{}".format(img_name_pure))
- cv2.imwrite(img_path, src_im)
- logger.info("The visualized image saved in {}".format(img_path))
- if count > 1:
- logger.info("Avg Time: {}".format(total_time / (count - 1)))
|