123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- import base64
- import json
- import multiprocessing as mp
- import sys
- import os
- sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../")
- import time
- import traceback
- from multiprocessing.context import Process
- import cv2
- import requests
- import logging
- import numpy as np
- os.environ['FLAGS_eager_delete_tensor_gb'] = '0'
- from ocr.paddleocr import PaddleOCR
- logging.basicConfig(level=logging.INFO,format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- logger = logging.getLogger(__name__)
- def log(msg):
- '''
- @summary:打印信息
- '''
- logger.info(msg)
- def ocr(data, ocr_model):
- logging.info("into ocr_interface ocr")
- try:
- img_data = base64.b64decode(data)
- text = picture2text(img_data, ocr_model)
- return text
- except TimeoutError:
- raise TimeoutError
- flag = 0
- def picture2text(img_data, ocr_model):
- logging.info("into ocr_interface picture2text")
- try:
- start_time = time.time()
- # 二进制数据流转np.ndarray [np.uint8: 8位像素]
- img = cv2.imdecode(np.frombuffer(img_data, np.uint8), cv2.IMREAD_COLOR)
- # 将bgr转为rbg
- try:
- np_images = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
- except cv2.error as e:
- if "src.empty()" in str(e):
- logging.info("ocr_interface picture2text image is empty!")
- return {"text": str([]), "bbox": str([])}
- # resize
- # cv2.imshow("before resize", np_images)
- # print("np_images.shape", np_images.shape)
- # best_h, best_w = get_best_predict_size(np_images)
- # np_images = cv2.resize(np_images, (best_w, best_h), interpolation=cv2.INTER_AREA)
- # cv2.imshow("after resize", np_images)
- # print("np_images.shape", np_images.shape)
- # cv2.waitKey(0)
- # 预测
- results = ocr_model.ocr(np_images, det=True, rec=True, cls=True)
- # 循环每张图片识别结果
- text_list = []
- bbox_list = []
- for line in results:
- # print("ocr_interface line", line)
- text_list.append(line[-1][0])
- bbox_list.append(line[0])
- # 查看bbox
- # img = np.zeros((np_images.shape[1], np_images.shape[0]), np.uint8)
- # img.fill(255)
- # for box in bbox_list:
- # print(box)
- # cv2.rectangle(img, (int(box[0][0]), int(box[0][1])),
- # (int(box[2][0]), int(box[2][1])), (0, 0, 255), 1)
- # cv2.imshow("bbox", img)
- # cv2.waitKey(0)
- logging.info("ocr model use time: " + str(time.time()-start_time))
- return {"text": str(text_list), "bbox": str(bbox_list)}
- except TimeoutError:
- raise TimeoutError
- except Exception as e:
- logging.info("picture2text error!")
- print("picture2text", traceback.print_exc())
- return {"text": str([]), "bbox": str([])}
- def get_best_predict_size(image_np):
- sizes = [1280, 1152, 1024, 896, 768, 640, 512, 384, 256, 128]
- min_len = 10000
- best_height = sizes[0]
- for height in sizes:
- if abs(image_np.shape[0] - height) < min_len:
- min_len = abs(image_np.shape[0] - height)
- best_height = height
- min_len = 10000
- best_width = sizes[0]
- for width in sizes:
- if abs(image_np.shape[1] - width) < min_len:
- min_len = abs(image_np.shape[1] - width)
- best_width = width
- return best_height, best_width
- class OcrModels:
- def __init__(self):
- try:
- self.ocr_model = PaddleOCR(use_angle_cls=True, lang="ch")
- except:
- print(traceback.print_exc())
- raise RuntimeError
- def get_model(self):
- return self.ocr_model
- if __name__ == '__main__':
- # if len(sys.argv) == 2:
- # port = int(sys.argv[1])
- # else:
- # port = 15011
- #
- # app.run(host='0.0.0.0', port=port, threaded=False, debug=False)
- # log("OCR running")
- file_path = "C:/Users/Administrator/Desktop/error1.png"
- # file_path = "1.png"
- with open(file_path, "rb") as f:
- file_bytes = f.read()
- file_base64 = base64.b64encode(file_bytes)
- ocr_model = OcrModels().get_model()
- result = ocr(file_base64, ocr_model)
- result = ocr(file_base64, ocr_model)
- text_list = eval(result.get("text"))
- box_list = eval(result.get("bbox"))
- new_list = []
- for i in range(len(text_list)):
- new_list.append([text_list[i], box_list[i]])
- # print(new_list[0][1])
- new_list.sort(key=lambda x: (x[1][1][0], x[1][0][0]))
- for t in new_list:
- print(t[0])
|