ocr_interface.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158
  1. import base64
  2. import json
  3. import multiprocessing as mp
  4. import socket
  5. import sys
  6. import os
  7. sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../")
  8. import time
  9. import traceback
  10. from multiprocessing.context import Process
  11. import cv2
  12. import requests
  13. import logging
  14. import numpy as np
  15. os.environ['FLAGS_eager_delete_tensor_gb'] = '0'
  16. from format_convert.utils import request_post, test_gpu, get_intranet_ip, log, get_md5_from_bytes, bytes2np
  17. from flask import Flask, request
  18. from format_convert import _global
  19. # 接口配置
  20. app = Flask(__name__)
  21. @app.route('/ocr', methods=['POST'])
  22. def _ocr():
  23. _global._init()
  24. _global.update({"port": globals().get("port")})
  25. start_time = time.time()
  26. log("into ocr_interface _ocr")
  27. try:
  28. if not request.form:
  29. log("ocr no data!")
  30. return json.dumps({"text": str([-9]), "bbox": str([-9])})
  31. data = request.form.get("data")
  32. _md5 = request.form.get("md5")
  33. only_rec = request.form.get("only_rec")
  34. if only_rec is None:
  35. only_rec = 0
  36. else:
  37. only_rec = int(only_rec)
  38. _global.update({"md5": _md5})
  39. ocr_model = globals().get("global_ocr_model")
  40. if ocr_model is None:
  41. log("----------- init ocr_model ------------")
  42. ocr_model = OcrModels().get_model()
  43. globals().update({"global_ocr_model": ocr_model})
  44. text = ocr(data, ocr_model, only_rec)
  45. return json.dumps(text)
  46. except TimeoutError:
  47. return json.dumps({"text": str([-5]), "bbox": str([-5])})
  48. except:
  49. traceback.print_exc()
  50. return json.dumps({"text": str([-1]), "bbox": str([-1])})
  51. finally:
  52. log("ocr interface finish time " + str(time.time()-start_time))
  53. def ocr(data, ocr_model, only_rec=0):
  54. log("into ocr_interface ocr")
  55. try:
  56. img_data = base64.b64decode(data)
  57. text = picture2text(img_data, ocr_model, only_rec)
  58. return text
  59. except TimeoutError:
  60. return {"text": str([-5]), "bbox": str([-5])}
  61. def picture2text(img_data, ocr_model, only_rec=0):
  62. log("into ocr_interface picture2text")
  63. try:
  64. # 二进制数据流转np.ndarray [np.uint8: 8位像素]
  65. img = bytes2np(img_data)
  66. # 预测
  67. if only_rec:
  68. results = ocr_model.ocr(img, det=False, rec=True, cls=False)
  69. else:
  70. results = ocr_model.ocr(img, det=True, rec=True, cls=False)
  71. # 循环每张图片识别结果
  72. text_list = []
  73. bbox_list = []
  74. if only_rec:
  75. text_list = [results[0][0]]
  76. bbox_list = []
  77. else:
  78. for line in results:
  79. text_list.append(line[-1][0])
  80. bbox_list.append(line[0])
  81. return {"text": str(text_list), "bbox": str(bbox_list)}
  82. except TimeoutError:
  83. raise TimeoutError
  84. except Exception:
  85. log("picture2text error!")
  86. traceback.print_exc()
  87. return {"text": str([]), "bbox": str([])}
  88. def get_best_predict_size(image_np):
  89. sizes = [1280, 1152, 1024, 896, 768, 640, 512, 384, 256, 128]
  90. min_len = 10000
  91. best_height = sizes[0]
  92. for height in sizes:
  93. if abs(image_np.shape[0] - height) < min_len:
  94. min_len = abs(image_np.shape[0] - height)
  95. best_height = height
  96. min_len = 10000
  97. best_width = sizes[0]
  98. for width in sizes:
  99. if abs(image_np.shape[1] - width) < min_len:
  100. min_len = abs(image_np.shape[1] - width)
  101. best_width = width
  102. return best_height, best_width
  103. class OcrModels:
  104. def __init__(self):
  105. from ocr.paddleocr import PaddleOCR
  106. try:
  107. log('----------- init ocr model ---------------')
  108. self.ocr_model = PaddleOCR(use_angle_cls=True, lang="ch")
  109. except:
  110. print(traceback.print_exc())
  111. raise RuntimeError
  112. def get_model(self):
  113. return self.ocr_model
  114. def test_ocr_model(from_remote=True):
  115. file_path = "error8.png"
  116. with open(file_path, "rb") as f:
  117. file_bytes = f.read()
  118. file_base64 = base64.b64encode(file_bytes)
  119. _md5 = get_md5_from_bytes(file_bytes)[0]
  120. only_rec = False
  121. _global._init()
  122. _global.update({"port": 15010, "md5": _md5})
  123. if from_remote:
  124. file_json = {"data": file_base64, "md5": _md5, 'only_rec': only_rec}
  125. # _url = "http://192.168.2.102:17000/ocr"
  126. _url = "http://127.0.0.1:17000/ocr"
  127. print(json.loads(request_post(_url, file_json)))
  128. else:
  129. ocr_model = OcrModels().get_model()
  130. result = ocr(file_base64, ocr_model, only_rec=only_rec)
  131. print(result)
  132. if __name__ == '__main__':
  133. test_ocr_model(False)