ocr_interface.py 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
  1. import base64
  2. import json
  3. import multiprocessing as mp
  4. import socket
  5. import sys
  6. import os
  7. sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../")
  8. import time
  9. import traceback
  10. from multiprocessing.context import Process
  11. import cv2
  12. import requests
  13. import logging
  14. import numpy as np
  15. os.environ['FLAGS_eager_delete_tensor_gb'] = '0'
  16. from ocr.paddleocr import PaddleOCR
  17. from format_convert.utils import request_post, test_gpu, get_intranet_ip, log, get_md5_from_bytes
  18. from flask import Flask, request
  19. from format_convert import _global
  20. # 接口配置
  21. app = Flask(__name__)
  22. @app.route('/ocr', methods=['POST'])
  23. def _ocr():
  24. log("into ocr_interface _ocr")
  25. try:
  26. if not request.form:
  27. log("ocr no data!")
  28. return json.dumps({"text": str([-9]), "bbox": str([-9])})
  29. ocr_model = globals().get("global_ocr_model")
  30. if ocr_model is None:
  31. ocr_model = OcrModels().get_model()
  32. globals().update({"global_ocr_model": ocr_model})
  33. data = request.form.get("data")
  34. img_data = base64.b64decode(data)
  35. _md5 = get_md5_from_bytes(img_data)[0]
  36. _global.update({"md5": _md5})
  37. text = picture2text(img_data, ocr_model)
  38. return json.dumps(text)
  39. except TimeoutError:
  40. return json.dumps({"text": str([-5]), "bbox": str([-5])})
  41. except:
  42. traceback.print_exc()
  43. return json.dumps({"text": str([-1]), "bbox": str([-1])})
  44. def ocr(data, ocr_model):
  45. log("into ocr_interface ocr")
  46. try:
  47. img_data = base64.b64decode(data)
  48. text = picture2text(img_data, ocr_model)
  49. return text
  50. except TimeoutError:
  51. raise TimeoutError
  52. flag = 0
  53. def picture2text(img_data, ocr_model):
  54. log("into ocr_interface picture2text")
  55. try:
  56. start_time = time.time()
  57. # 二进制数据流转np.ndarray [np.uint8: 8位像素]
  58. img = cv2.imdecode(np.frombuffer(img_data, np.uint8), cv2.IMREAD_COLOR)
  59. # 将bgr转为rbg
  60. try:
  61. np_images = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
  62. except cv2.error as e:
  63. if "src.empty()" in str(e):
  64. log("ocr_interface picture2text image is empty!")
  65. return {"text": str([]), "bbox": str([])}
  66. # resize
  67. # cv2.imshow("before resize", np_images)
  68. # print("np_images.shape", np_images.shape)
  69. # best_h, best_w = get_best_predict_size(np_images)
  70. # np_images = cv2.resize(np_images, (best_w, best_h), interpolation=cv2.INTER_AREA)
  71. # cv2.imshow("after resize", np_images)
  72. # print("np_images.shape", np_images.shape)
  73. # cv2.waitKey(0)
  74. # 预测
  75. results = ocr_model.ocr(np_images, det=True, rec=True, cls=True)
  76. # 循环每张图片识别结果
  77. text_list = []
  78. bbox_list = []
  79. for line in results:
  80. # print("ocr_interface line", line)
  81. text_list.append(line[-1][0])
  82. bbox_list.append(line[0])
  83. # 查看bbox
  84. # img = np.zeros((np_images.shape[1], np_images.shape[0]), np.uint8)
  85. # img.fill(255)
  86. # for box in bbox_list:
  87. # print(box)
  88. # cv2.rectangle(img, (int(box[0][0]), int(box[0][1])),
  89. # (int(box[2][0]), int(box[2][1])), (0, 0, 255), 1)
  90. # cv2.imshow("bbox", img)
  91. # cv2.waitKey(0)
  92. log("ocr model use time: " + str(time.time()-start_time))
  93. return {"text": str(text_list), "bbox": str(bbox_list)}
  94. except TimeoutError:
  95. raise TimeoutError
  96. except Exception as e:
  97. log("picture2text error!")
  98. print("picture2text", traceback.print_exc())
  99. return {"text": str([]), "bbox": str([])}
  100. def get_best_predict_size(image_np):
  101. sizes = [1280, 1152, 1024, 896, 768, 640, 512, 384, 256, 128]
  102. min_len = 10000
  103. best_height = sizes[0]
  104. for height in sizes:
  105. if abs(image_np.shape[0] - height) < min_len:
  106. min_len = abs(image_np.shape[0] - height)
  107. best_height = height
  108. min_len = 10000
  109. best_width = sizes[0]
  110. for width in sizes:
  111. if abs(image_np.shape[1] - width) < min_len:
  112. min_len = abs(image_np.shape[1] - width)
  113. best_width = width
  114. return best_height, best_width
  115. class OcrModels:
  116. def __init__(self):
  117. try:
  118. self.ocr_model = PaddleOCR(use_angle_cls=True, lang="ch")
  119. except:
  120. print(traceback.print_exc())
  121. raise RuntimeError
  122. def get_model(self):
  123. return self.ocr_model
  124. def test_ocr_model():
  125. file_path = "C:/Users/Administrator/Desktop/error2.png"
  126. with open(file_path, "rb") as f:
  127. file_bytes = f.read()
  128. file_base64 = base64.b64encode(file_bytes)
  129. file_json = {"data": file_base64}
  130. # _url = "http://192.168.2.102:17000/ocr"
  131. _url = "http://127.0.0.1:17000/ocr"
  132. print(json.loads(request_post(_url, file_json)))
  133. if __name__ == '__main__':
  134. if len(sys.argv) == 2:
  135. port = int(sys.argv[1])
  136. elif len(sys.argv) == 3:
  137. port = int(sys.argv[1])
  138. using_gpu_index = int(sys.argv[2])
  139. else:
  140. port = 17000
  141. using_gpu_index = 0
  142. _global._init()
  143. _global.update({"port": str(port)})
  144. ip = get_intranet_ip()
  145. logging.basicConfig(level=logging.INFO,
  146. format='%(asctime)s - %(name)s - %(levelname)s - '
  147. + ip + ' - ' + str(port) + ' - %(message)s')
  148. os.environ['CUDA_VISIBLE_DEVICES'] = str(using_gpu_index)
  149. app.run(host='0.0.0.0', port=port, processes=1, threaded=False, debug=False)
  150. log("OCR running "+str(port))
  151. # test_ocr_model()
  152. #
  153. # log("OCR running")
  154. # file_path = "C:/Users/Administrator/Desktop/error9.jpg"
  155. # file_path = "error1.png"
  156. #
  157. # with open(file_path, "rb") as f:
  158. # file_bytes = f.read()
  159. # file_base64 = base64.b64encode(file_bytes)
  160. #
  161. # ocr_model = OcrModels().get_model()
  162. # result = ocr(file_base64, ocr_model)
  163. # result = ocr(file_base64, ocr_model)
  164. # text_list = eval(result.get("text"))
  165. # box_list = eval(result.get("bbox"))
  166. #
  167. # new_list = []
  168. # for i in range(len(text_list)):
  169. # new_list.append([text_list[i], box_list[i]])
  170. #
  171. # # print(new_list[0][1])
  172. # new_list.sort(key=lambda x: (x[1][1][0], x[1][0][0]))
  173. #
  174. # for t in new_list:
  175. # print(t[0])