ocr_interface.py 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206
  1. import base64
  2. import json
  3. import multiprocessing as mp
  4. import socket
  5. import sys
  6. import os
  7. sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../")
  8. import time
  9. import traceback
  10. from multiprocessing.context import Process
  11. import cv2
  12. import requests
  13. import logging
  14. import numpy as np
  15. os.environ['FLAGS_eager_delete_tensor_gb'] = '0'
  16. from format_convert.utils import request_post, test_gpu, get_intranet_ip, log, get_md5_from_bytes, bytes2np
  17. from flask import Flask, request
  18. from format_convert import _global
  19. # 接口配置
  20. app = Flask(__name__)
  21. @app.route('/ocr', methods=['POST'])
  22. def _ocr():
  23. _global._init()
  24. _global.update({"port": globals().get("port")})
  25. start_time = time.time()
  26. log("into ocr_interface _ocr")
  27. try:
  28. if not request.form:
  29. log("ocr no data!")
  30. return json.dumps({"text": str([-9]), "bbox": str([-9])})
  31. data = request.form.get("data")
  32. _md5 = request.form.get("md5")
  33. _global.update({"md5": _md5})
  34. ocr_model = globals().get("global_ocr_model")
  35. if ocr_model is None:
  36. log("----------- init ocr_model ------------")
  37. ocr_model = OcrModels().get_model()
  38. globals().update({"global_ocr_model": ocr_model})
  39. text = ocr(data, ocr_model)
  40. return json.dumps(text)
  41. except TimeoutError:
  42. return json.dumps({"text": str([-5]), "bbox": str([-5])})
  43. except:
  44. traceback.print_exc()
  45. return json.dumps({"text": str([-1]), "bbox": str([-1])})
  46. finally:
  47. log("ocr interface finish time " + str(time.time()-start_time))
  48. def ocr(data, ocr_model):
  49. log("into ocr_interface ocr")
  50. try:
  51. img_data = base64.b64decode(data)
  52. text = picture2text(img_data, ocr_model)
  53. return text
  54. except TimeoutError:
  55. return {"text": str([-5]), "bbox": str([-5])}
  56. def picture2text(img_data, ocr_model):
  57. log("into ocr_interface picture2text")
  58. try:
  59. # 二进制数据流转np.ndarray [np.uint8: 8位像素]
  60. img = bytes2np(img_data)
  61. # 预测
  62. results = ocr_model.ocr(img, det=True, rec=True, cls=False)
  63. # 循环每张图片识别结果
  64. text_list = []
  65. bbox_list = []
  66. for line in results:
  67. text_list.append(line[-1][0])
  68. bbox_list.append(line[0])
  69. # 查看bbox
  70. # img = np.zeros((img.shape[1], img.shape[0]), np.uint8)
  71. # img.fill(255)
  72. # for box in bbox_list:
  73. # print(box)
  74. # cv2.rectangle(img, (int(box[0][0]), int(box[0][1])),
  75. # (int(box[2][0]), int(box[2][1])), (0, 0, 255), 1)
  76. # cv2.imshow("bbox", img)
  77. # cv2.waitKey(0)
  78. # log("ocr model use time: " + str(time.time()-start_time))
  79. return {"text": str(text_list), "bbox": str(bbox_list)}
  80. except TimeoutError:
  81. raise TimeoutError
  82. except Exception as e:
  83. log("picture2text error!")
  84. print("picture2text", traceback.print_exc())
  85. return {"text": str([]), "bbox": str([])}
  86. def get_best_predict_size(image_np):
  87. sizes = [1280, 1152, 1024, 896, 768, 640, 512, 384, 256, 128]
  88. min_len = 10000
  89. best_height = sizes[0]
  90. for height in sizes:
  91. if abs(image_np.shape[0] - height) < min_len:
  92. min_len = abs(image_np.shape[0] - height)
  93. best_height = height
  94. min_len = 10000
  95. best_width = sizes[0]
  96. for width in sizes:
  97. if abs(image_np.shape[1] - width) < min_len:
  98. min_len = abs(image_np.shape[1] - width)
  99. best_width = width
  100. return best_height, best_width
  101. class OcrModels:
  102. def __init__(self):
  103. from ocr.paddleocr import PaddleOCR
  104. try:
  105. self.ocr_model = PaddleOCR(use_angle_cls=True, lang="ch")
  106. except:
  107. print(traceback.print_exc())
  108. raise RuntimeError
  109. def get_model(self):
  110. return self.ocr_model
  111. def test_ocr_model(from_remote=True):
  112. file_path = "C:/Users/Administrator/Desktop/error2.png"
  113. with open(file_path, "rb") as f:
  114. file_bytes = f.read()
  115. file_base64 = base64.b64encode(file_bytes)
  116. _md5 = get_md5_from_bytes(file_bytes)[0]
  117. _global._init()
  118. _global.update({"port": 15010, "md5": _md5})
  119. if from_remote:
  120. file_json = {"data": file_base64, "md5": _md5}
  121. # _url = "http://192.168.2.102:17000/ocr"
  122. _url = "http://127.0.0.1:17000/ocr"
  123. print(json.loads(request_post(_url, file_json)))
  124. else:
  125. ocr_model = OcrModels().get_model()
  126. result = ocr(file_base64, ocr_model)
  127. print(result)
  128. if __name__ == '__main__':
  129. # if len(sys.argv) == 2:
  130. # port = int(sys.argv[1])
  131. # elif len(sys.argv) == 3:
  132. # port = int(sys.argv[1])
  133. # using_gpu_index = int(sys.argv[2])
  134. # else:
  135. # port = 17000
  136. # using_gpu_index = 0
  137. # _global._init()
  138. # _global.update({"port": str(port)})
  139. # globals().update({"port": str(port)})
  140. #
  141. # # ip = get_intranet_ip()
  142. # # logging.basicConfig(level=logging.INFO,
  143. # # format='%(asctime)s - %(name)s - %(levelname)s - '
  144. # # + ip + ' - ' + str(port) + ' - %(message)s')
  145. #
  146. # os.environ['CUDA_VISIBLE_DEVICES'] = str(using_gpu_index)
  147. #
  148. # # app.run(host='0.0.0.0', port=port, processes=1, threaded=False, debug=False)
  149. # app.run()
  150. # log("OCR running "+str(port))
  151. # test_ocr_model(False)
  152. #
  153. # log("OCR running")
  154. file_path = "C:/Users/Administrator/Desktop/test_image/error3.png"
  155. with open(file_path, "rb") as f:
  156. file_bytes = f.read()
  157. file_base64 = base64.b64encode(file_bytes)
  158. ocr_model = OcrModels().get_model()
  159. result = ocr(file_base64, ocr_model)
  160. text_list = eval(result.get("text"))
  161. box_list = eval(result.get("bbox"))
  162. from format_convert.utils import ocr_cant_read
  163. print(ocr_cant_read(text_list, box_list))
  164. print(text_list)
  165. #
  166. # new_list = []
  167. # for i in range(len(text_list)):
  168. # new_list.append([text_list[i], box_list[i]])
  169. #
  170. # # print(new_list[0][1])
  171. # new_list.sort(key=lambda x: (x[1][1][0], x[1][0][0]))
  172. #
  173. # for t in new_list:
  174. # print(t[0])