ocr_interface.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226
  1. import base64
  2. import json
  3. import multiprocessing as mp
  4. import socket
  5. import sys
  6. import os
  7. sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../")
  8. import time
  9. import traceback
  10. from multiprocessing.context import Process
  11. import cv2
  12. import requests
  13. import logging
  14. import numpy as np
  15. os.environ['FLAGS_eager_delete_tensor_gb'] = '0'
  16. from format_convert.utils import request_post, test_gpu, get_intranet_ip, log, get_md5_from_bytes
  17. from flask import Flask, request
  18. from format_convert import _global
  19. # 接口配置
  20. app = Flask(__name__)
  21. @app.route('/ocr', methods=['POST'])
  22. def _ocr():
  23. _global._init()
  24. _global.update({"port": globals().get("port")})
  25. log("into ocr_interface _ocr")
  26. try:
  27. if not request.form:
  28. log("ocr no data!")
  29. return json.dumps({"text": str([-9]), "bbox": str([-9])})
  30. data = request.form.get("data")
  31. img_data = base64.b64decode(data)
  32. # _md5 = get_md5_from_bytes(img_data)[0]
  33. _md5 = request.form.get("md5")
  34. _global.update({"md5": _md5})
  35. log("====")
  36. ocr_model = globals().get("global_ocr_model")
  37. if ocr_model is None:
  38. log("----------- init ocr_model ------------")
  39. ocr_model = OcrModels().get_model()
  40. globals().update({"global_ocr_model": ocr_model})
  41. log("----")
  42. text = picture2text(img_data, ocr_model)
  43. return json.dumps(text)
  44. except TimeoutError:
  45. return json.dumps({"text": str([-5]), "bbox": str([-5])})
  46. except:
  47. traceback.print_exc()
  48. return json.dumps({"text": str([-1]), "bbox": str([-1])})
  49. def ocr(data, ocr_model):
  50. log("into ocr_interface ocr")
  51. try:
  52. img_data = base64.b64decode(data)
  53. text = picture2text(img_data, ocr_model)
  54. return text
  55. except TimeoutError:
  56. raise TimeoutError
  57. flag = 0
  58. def picture2text(img_data, ocr_model):
  59. log("into ocr_interface picture2text")
  60. try:
  61. start_time = time.time()
  62. # 二进制数据流转np.ndarray [np.uint8: 8位像素]
  63. img = cv2.imdecode(np.frombuffer(img_data, np.uint8), cv2.IMREAD_COLOR)
  64. # 将bgr转为rbg
  65. try:
  66. np_images = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
  67. except cv2.error as e:
  68. if "src.empty()" in str(e):
  69. log("ocr_interface picture2text image is empty!")
  70. return {"text": str([]), "bbox": str([])}
  71. # resize
  72. # cv2.imshow("before resize", np_images)
  73. # print("np_images.shape", np_images.shape)
  74. # best_h, best_w = get_best_predict_size(np_images)
  75. # np_images = cv2.resize(np_images, (best_w, best_h), interpolation=cv2.INTER_AREA)
  76. # cv2.imshow("after resize", np_images)
  77. # print("np_images.shape", np_images.shape)
  78. # cv2.waitKey(0)
  79. # 预测
  80. results = ocr_model.ocr(np_images, det=True, rec=True, cls=True)
  81. # 循环每张图片识别结果
  82. text_list = []
  83. bbox_list = []
  84. for line in results:
  85. # print("ocr_interface line", line)
  86. text_list.append(line[-1][0])
  87. bbox_list.append(line[0])
  88. # 查看bbox
  89. # img = np.zeros((np_images.shape[1], np_images.shape[0]), np.uint8)
  90. # img.fill(255)
  91. # for box in bbox_list:
  92. # print(box)
  93. # cv2.rectangle(img, (int(box[0][0]), int(box[0][1])),
  94. # (int(box[2][0]), int(box[2][1])), (0, 0, 255), 1)
  95. # cv2.imshow("bbox", img)
  96. # cv2.waitKey(0)
  97. # log("ocr model use time: " + str(time.time()-start_time))
  98. return {"text": str(text_list), "bbox": str(bbox_list)}
  99. except TimeoutError:
  100. raise TimeoutError
  101. except Exception as e:
  102. log("picture2text error!")
  103. print("picture2text", traceback.print_exc())
  104. return {"text": str([]), "bbox": str([])}
  105. def get_best_predict_size(image_np):
  106. sizes = [1280, 1152, 1024, 896, 768, 640, 512, 384, 256, 128]
  107. min_len = 10000
  108. best_height = sizes[0]
  109. for height in sizes:
  110. if abs(image_np.shape[0] - height) < min_len:
  111. min_len = abs(image_np.shape[0] - height)
  112. best_height = height
  113. min_len = 10000
  114. best_width = sizes[0]
  115. for width in sizes:
  116. if abs(image_np.shape[1] - width) < min_len:
  117. min_len = abs(image_np.shape[1] - width)
  118. best_width = width
  119. return best_height, best_width
  120. class OcrModels:
  121. def __init__(self):
  122. from ocr.paddleocr import PaddleOCR
  123. try:
  124. self.ocr_model = PaddleOCR(use_angle_cls=True, lang="ch")
  125. except:
  126. print(traceback.print_exc())
  127. raise RuntimeError
  128. def get_model(self):
  129. return self.ocr_model
  130. def test_ocr_model(from_remote=True):
  131. file_path = "C:/Users/Administrator/Desktop/error2.png"
  132. with open(file_path, "rb") as f:
  133. file_bytes = f.read()
  134. file_base64 = base64.b64encode(file_bytes)
  135. _md5 = get_md5_from_bytes(file_bytes)[0]
  136. _global._init()
  137. _global.update({"port": 15010, "md5": _md5})
  138. if from_remote:
  139. file_json = {"data": file_base64, "md5": _md5}
  140. # _url = "http://192.168.2.102:17000/ocr"
  141. _url = "http://127.0.0.1:17000/ocr"
  142. print(json.loads(request_post(_url, file_json)))
  143. else:
  144. ocr_model = OcrModels().get_model()
  145. result = ocr(file_base64, ocr_model)
  146. print(result)
  147. if __name__ == '__main__':
  148. if len(sys.argv) == 2:
  149. port = int(sys.argv[1])
  150. elif len(sys.argv) == 3:
  151. port = int(sys.argv[1])
  152. using_gpu_index = int(sys.argv[2])
  153. else:
  154. port = 17000
  155. using_gpu_index = 0
  156. _global._init()
  157. _global.update({"port": str(port)})
  158. globals().update({"port": str(port)})
  159. # ip = get_intranet_ip()
  160. # logging.basicConfig(level=logging.INFO,
  161. # format='%(asctime)s - %(name)s - %(levelname)s - '
  162. # + ip + ' - ' + str(port) + ' - %(message)s')
  163. os.environ['CUDA_VISIBLE_DEVICES'] = str(using_gpu_index)
  164. # app.run(host='0.0.0.0', port=port, processes=1, threaded=False, debug=False)
  165. app.run()
  166. log("OCR running "+str(port))
  167. # test_ocr_model(False)
  168. #
  169. # log("OCR running")
  170. # file_path = "C:/Users/Administrator/Desktop/error9.jpg"
  171. # file_path = "error1.png"
  172. #
  173. # with open(file_path, "rb") as f:
  174. # file_bytes = f.read()
  175. # file_base64 = base64.b64encode(file_bytes)
  176. #
  177. # ocr_model = OcrModels().get_model()
  178. # result = ocr(file_base64, ocr_model)
  179. # result = ocr(file_base64, ocr_model)
  180. # text_list = eval(result.get("text"))
  181. # box_list = eval(result.get("bbox"))
  182. #
  183. # new_list = []
  184. # for i in range(len(text_list)):
  185. # new_list.append([text_list[i], box_list[i]])
  186. #
  187. # # print(new_list[0][1])
  188. # new_list.sort(key=lambda x: (x[1][1][0], x[1][0][0]))
  189. #
  190. # for t in new_list:
  191. # print(t[0])