ocr_interface.py 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227
  1. import base64
  2. import json
  3. import multiprocessing as mp
  4. import socket
  5. import sys
  6. import os
  7. sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../")
  8. import time
  9. import traceback
  10. from multiprocessing.context import Process
  11. import cv2
  12. import requests
  13. import logging
  14. import numpy as np
  15. os.environ['FLAGS_eager_delete_tensor_gb'] = '0'
  16. from format_convert.utils import request_post, test_gpu, get_intranet_ip, log, get_md5_from_bytes
  17. from flask import Flask, request
  18. from format_convert import _global
  19. # 接口配置
  20. app = Flask(__name__)
  21. @app.route('/ocr', methods=['POST'])
  22. def _ocr():
  23. _global._init()
  24. _global.update({"port": globals().get("port")})
  25. start_time = time.time()
  26. log("into ocr_interface _ocr")
  27. try:
  28. if not request.form:
  29. log("ocr no data!")
  30. return json.dumps({"text": str([-9]), "bbox": str([-9])})
  31. data = request.form.get("data")
  32. img_data = base64.b64decode(data)
  33. # _md5 = get_md5_from_bytes(img_data)[0]
  34. _md5 = request.form.get("md5")
  35. _global.update({"md5": _md5})
  36. ocr_model = globals().get("global_ocr_model")
  37. if ocr_model is None:
  38. log("----------- init ocr_model ------------")
  39. ocr_model = OcrModels().get_model()
  40. globals().update({"global_ocr_model": ocr_model})
  41. text = picture2text(img_data, ocr_model)
  42. return json.dumps(text)
  43. except TimeoutError:
  44. return json.dumps({"text": str([-5]), "bbox": str([-5])})
  45. except:
  46. traceback.print_exc()
  47. return json.dumps({"text": str([-1]), "bbox": str([-1])})
  48. finally:
  49. log("ocr interface finish time " + str(time.time()-start_time))
  50. def ocr(data, ocr_model):
  51. log("into ocr_interface ocr")
  52. try:
  53. img_data = base64.b64decode(data)
  54. text = picture2text(img_data, ocr_model)
  55. return text
  56. except TimeoutError:
  57. raise TimeoutError
  58. flag = 0
  59. def picture2text(img_data, ocr_model):
  60. log("into ocr_interface picture2text")
  61. try:
  62. start_time = time.time()
  63. # 二进制数据流转np.ndarray [np.uint8: 8位像素]
  64. img = cv2.imdecode(np.frombuffer(img_data, np.uint8), cv2.IMREAD_COLOR)
  65. # 将bgr转为rbg
  66. try:
  67. np_images = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
  68. except cv2.error as e:
  69. if "src.empty()" in str(e):
  70. log("ocr_interface picture2text image is empty!")
  71. return {"text": str([]), "bbox": str([])}
  72. # resize
  73. # cv2.imshow("before resize", np_images)
  74. # print("np_images.shape", np_images.shape)
  75. # best_h, best_w = get_best_predict_size(np_images)
  76. # np_images = cv2.resize(np_images, (best_w, best_h), interpolation=cv2.INTER_AREA)
  77. # cv2.imshow("after resize", np_images)
  78. # print("np_images.shape", np_images.shape)
  79. # cv2.waitKey(0)
  80. # 预测
  81. results = ocr_model.ocr(np_images, det=True, rec=True, cls=True)
  82. # 循环每张图片识别结果
  83. text_list = []
  84. bbox_list = []
  85. for line in results:
  86. # print("ocr_interface line", line)
  87. text_list.append(line[-1][0])
  88. bbox_list.append(line[0])
  89. # 查看bbox
  90. # img = np.zeros((np_images.shape[1], np_images.shape[0]), np.uint8)
  91. # img.fill(255)
  92. # for box in bbox_list:
  93. # print(box)
  94. # cv2.rectangle(img, (int(box[0][0]), int(box[0][1])),
  95. # (int(box[2][0]), int(box[2][1])), (0, 0, 255), 1)
  96. # cv2.imshow("bbox", img)
  97. # cv2.waitKey(0)
  98. # log("ocr model use time: " + str(time.time()-start_time))
  99. return {"text": str(text_list), "bbox": str(bbox_list)}
  100. except TimeoutError:
  101. raise TimeoutError
  102. except Exception as e:
  103. log("picture2text error!")
  104. print("picture2text", traceback.print_exc())
  105. return {"text": str([]), "bbox": str([])}
  106. def get_best_predict_size(image_np):
  107. sizes = [1280, 1152, 1024, 896, 768, 640, 512, 384, 256, 128]
  108. min_len = 10000
  109. best_height = sizes[0]
  110. for height in sizes:
  111. if abs(image_np.shape[0] - height) < min_len:
  112. min_len = abs(image_np.shape[0] - height)
  113. best_height = height
  114. min_len = 10000
  115. best_width = sizes[0]
  116. for width in sizes:
  117. if abs(image_np.shape[1] - width) < min_len:
  118. min_len = abs(image_np.shape[1] - width)
  119. best_width = width
  120. return best_height, best_width
  121. class OcrModels:
  122. def __init__(self):
  123. from ocr.paddleocr import PaddleOCR
  124. try:
  125. self.ocr_model = PaddleOCR(use_angle_cls=True, lang="ch")
  126. except:
  127. print(traceback.print_exc())
  128. raise RuntimeError
  129. def get_model(self):
  130. return self.ocr_model
  131. def test_ocr_model(from_remote=True):
  132. file_path = "C:/Users/Administrator/Desktop/error2.png"
  133. with open(file_path, "rb") as f:
  134. file_bytes = f.read()
  135. file_base64 = base64.b64encode(file_bytes)
  136. _md5 = get_md5_from_bytes(file_bytes)[0]
  137. _global._init()
  138. _global.update({"port": 15010, "md5": _md5})
  139. if from_remote:
  140. file_json = {"data": file_base64, "md5": _md5}
  141. # _url = "http://192.168.2.102:17000/ocr"
  142. _url = "http://127.0.0.1:17000/ocr"
  143. print(json.loads(request_post(_url, file_json)))
  144. else:
  145. ocr_model = OcrModels().get_model()
  146. result = ocr(file_base64, ocr_model)
  147. print(result)
  148. if __name__ == '__main__':
  149. if len(sys.argv) == 2:
  150. port = int(sys.argv[1])
  151. elif len(sys.argv) == 3:
  152. port = int(sys.argv[1])
  153. using_gpu_index = int(sys.argv[2])
  154. else:
  155. port = 17000
  156. using_gpu_index = 0
  157. _global._init()
  158. _global.update({"port": str(port)})
  159. globals().update({"port": str(port)})
  160. # ip = get_intranet_ip()
  161. # logging.basicConfig(level=logging.INFO,
  162. # format='%(asctime)s - %(name)s - %(levelname)s - '
  163. # + ip + ' - ' + str(port) + ' - %(message)s')
  164. os.environ['CUDA_VISIBLE_DEVICES'] = str(using_gpu_index)
  165. # app.run(host='0.0.0.0', port=port, processes=1, threaded=False, debug=False)
  166. app.run()
  167. log("OCR running "+str(port))
  168. # test_ocr_model(False)
  169. #
  170. # log("OCR running")
  171. # file_path = "C:/Users/Administrator/Desktop/error9.jpg"
  172. # file_path = "error1.png"
  173. #
  174. # with open(file_path, "rb") as f:
  175. # file_bytes = f.read()
  176. # file_base64 = base64.b64encode(file_bytes)
  177. #
  178. # ocr_model = OcrModels().get_model()
  179. # result = ocr(file_base64, ocr_model)
  180. # result = ocr(file_base64, ocr_model)
  181. # text_list = eval(result.get("text"))
  182. # box_list = eval(result.get("bbox"))
  183. #
  184. # new_list = []
  185. # for i in range(len(text_list)):
  186. # new_list.append([text_list[i], box_list[i]])
  187. #
  188. # # print(new_list[0][1])
  189. # new_list.sort(key=lambda x: (x[1][1][0], x[1][0][0]))
  190. #
  191. # for t in new_list:
  192. # print(t[0])