123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302 |
- import base64
- import json
- import os
- import time
- import sys
- import traceback
- os.environ["CUDA_VISIBLE_DEVICES"] = "0"
- import tensorflow as tf
- tf.compat.v1.enable_eager_execution()
- MAX_COMPUTE = False
- if not MAX_COMPUTE:
- # tensorflow 内存设置
- try:
- gpus = tf.config.list_physical_devices('GPU')
- if len(gpus) > 0:
- tf.config.experimental.set_virtual_device_configuration(
- gpus[0],
- [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)])
- except:
- traceback.print_exc()
- # pass
- # gpus = tf.config.list_physical_devices('GPU')
- # for gpu in gpus: # 如果使用多块GPU时
- # tf.config.experimental.set_memory_growth(gpu, True)
- os.environ['CUDA_CACHE_MAXSIZE'] = str(2147483648)
- os.environ['CUDA_CACHE_DISABLE'] = str(0)
- gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.05)
- sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
- sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../")
- from format_convert import _global
- import cv2
- import numpy as np
- from PIL import Image
- from format_convert.utils import log, get_md5_from_bytes, request_post, np2pil, bytes2np, pil2np, get_platform, \
- judge_error_code
- from isr.post_process import get_seal_part, replace_seal_part
- from isr.model import get_tiny_inference_model, seal_model, seal_model_se
- from isr.pre_process import count_red_pixel, get_anchors, get_classes, get_colors
- from isr.utils import get_best_predict_size, pil_resize, letterbox_image, draw_boxes, adjust_boxes
- from flask import Flask, request
- sess1 = tf.compat.v1.Session(graph=tf.Graph())
- sess2 = tf.compat.v1.Session(graph=tf.Graph())
- def remove_seal(image_np, model):
- # inference data
- image_seal = image_np
- h, w = image_seal.shape[:2]
- best_h, best_w = get_best_predict_size(image_seal)
- X = np.zeros((1, best_h, best_w, 3))
- # resize
- image_seal = pil_resize(image_seal, best_h, best_w)
- # cv2.imshow("resize", image_seal)
- X[0] = image_seal / 255
- # predict
- with sess2.as_default():
- with sess2.graph.as_default():
- pred = model.predict(X, batch_size=1000)
- # pred = model(X, training=False)
- # pred = pred.eval()
- pred = pred[0]*255.
- pred = pred.astype(np.uint8)
- pred = pil_resize(pred, h, w)
- # cv2.imshow("pred", pred)
- # cv2.waitKey(0)
- return pred
- def detect_seal(image_np, model):
- image_pil = np2pil(image_np)
- # 首先判断红色像素
- # if not count_red_pixel(image_np):
- # return image_np, [], []
- # create image input
- h, w = image_np.shape[:2]
- # best_h, best_w = get_best_predict_size(image_np, times=32, max_size=1280)
- best_h, best_w = 1024, 1024
- image_resize = letterbox_image(image_pil, tuple(reversed([best_h, best_w])))
- # cv2.imshow("letterbox_image", pil2np(image_resize))
- # cv2.waitKey(0)
- # image_resize = pil_resize(image_np, best_h, best_w)
- # image_resize = image_pil.resize((int(416), int(416)), Image.BICUBIC)
- image_resize = np.array(image_resize, dtype='float32')
- image_resize = image_resize.astype('float32') / 255.
- image_resize = np.expand_dims(image_resize, 0)
- # create image shape input
- image_shape = np.array([image_pil.size[1], image_pil.size[0]])
- image_shape = np.expand_dims(image_shape, 0)
- # inference data
- with sess1.as_default():
- with sess1.graph.as_default():
- out_boxes, out_scores, out_classes = model.predict([image_resize, image_shape], batch_size=1000, steps=1)
- if int(out_boxes.shape[0]) == 0:
- log("there is no seal!")
- return image_np, [], []
- else:
- log("there are " + str(out_boxes.shape[0]) + " seals!")
- out_boxes = out_boxes.astype(np.int32)
- out_classes = out_classes.astype(np.int32)
- boxes = adjust_boxes(image_pil, out_boxes)
- # # draw
- # class_names = get_classes(os.path.abspath(os.path.dirname(__file__))+"/yolo_data/my_classes.txt")
- # colors = get_colors(len(class_names))
- # image_draw = draw_boxes(image_pil, out_boxes, out_classes, out_scores, class_names, colors)
- # image_draw = cv2.cvtColor(np.array(image_draw), cv2.COLOR_RGB2BGR)
- # cv2.namedWindow('detect', cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)
- # cv2.imshow("detect", image_draw)
- # cv2.waitKey(0)
- return image_np, boxes, out_classes
- def isr(data, isr_yolo_model, isr_model):
- log("into isr_interface isr")
- try:
- img_data = base64.b64decode(data)
- img_np = bytes2np(img_data)
- # 检测印章
- start_time = time.time()
- _img, boxes, classes = detect_seal(img_np, isr_yolo_model)
- log("detect_seal cost " + str(time.time()-start_time))
- # 检测不到,直接返回
- if not boxes and not classes:
- log("no seal detected! return 1")
- return {"image": [1]}
- # 截取
- start_time = time.time()
- part_list = get_seal_part(_img, boxes, classes)
- log("get_seal_part cost " + str(time.time()-start_time))
- # 去除印章
- start_time = time.time()
- new_part_list = []
- for part in part_list:
- part_remove = remove_seal(part, isr_model)
- new_part_list.append(part_remove)
- log("remove_seal cost " + str(time.time()-start_time))
- # 替换
- start_time = time.time()
- img_replace = replace_seal_part(img_np, new_part_list, boxes)
- log("replace_seal_part cost " + str(time.time()-start_time))
- return {"image": img_replace}
- except TimeoutError:
- return {"image": [-5]}
- except:
- traceback.print_exc()
- return {"image": [-1]}
- # 接口配置
- app = Flask(__name__)
- @app.route('/isr', methods=['POST'])
- def _isr():
- _global._init()
- _global.update({"port": globals().get("port")})
- start_time = time.time()
- log("into isr_interface _isr")
- try:
- if not request.form:
- log("isr no data!")
- return json.dumps({"text": str([-9]), "bbox": str([-9])})
- data = request.form.get("data")
- log("isr_interface get data time " + str(time.time()-start_time))
- _md5 = request.form.get("md5")
- _global.update({"md5": _md5})
- # 初始化模型
- isr_yolo_model = globals().get("global_isr_yolo_model")
- isr_model = globals().get("global_isr_model")
- if isr_model is None or isr_yolo_model is None:
- print("=========== init isr model ===========")
- isr_yolo_model, isr_model = IsrModels().get_model()
- globals().update({"global_isr_yolo_model": isr_yolo_model})
- globals().update({"global_isr_model": isr_model})
- # 检测+去除
- result = isr(data, isr_yolo_model, isr_model)
- result = result.get("image")
- if judge_error_code(result):
- return json.dumps({"image": result})
- if isinstance(result, list) and result == [1]:
- return json.dumps({"image": result})
- img_replace = result
- # numpy转为可序列化的string
- success, img_encode = cv2.imencode(".jpg", img_replace)
- # numpy -> bytes
- img_bytes = img_encode.tobytes()
- # bytes -> base64 bytes
- img_base64 = base64.b64encode(img_bytes)
- # base64 bytes -> string (utf-8)
- base64_string = img_base64.decode('utf-8')
- return json.dumps({"image": base64_string})
- except TimeoutError:
- return json.dumps({"image": [-5]})
- except:
- traceback.print_exc()
- return json.dumps({"image": [-1]})
- finally:
- log("isr interface finish time " + str(time.time()-start_time))
- class IsrModels:
- def __init__(self):
- # python文件所在目录
- _dir = os.path.abspath(os.path.dirname(__file__))
- # detect
- model_path = _dir + "/models/seal_detect_yolo.h5"
- anchors = get_anchors(_dir + "/yolo_data/my_anchors.txt")
- class_names = get_classes(_dir + "/yolo_data/my_classes.txt")
- colors = get_colors(len(class_names))
- with sess1.as_default():
- with sess1.graph.as_default():
- self.isr_yolo_model = get_tiny_inference_model(anchors, len(class_names), weights_path=model_path)
- self.isr_yolo_model.load_weights(model_path)
- # self.isr_yolo_model.compile(run_eagerly=True)
- # remove
- model_path = _dir + "/models/seal_remove_unet.h5"
- with sess2.as_default():
- with sess2.graph.as_default():
- self.isr_model = seal_model_se(input_shape=(None, None, 3),
- output_shape=(None, None, 3))
- self.isr_model.load_weights(model_path)
- def get_model(self):
- return [self.isr_yolo_model, self.isr_model]
- def test_isr_model(from_remote=False):
- if get_platform() == "Windows":
- file_path = "C:/Users/Administrator/Desktop/test_image/error10.jpg"
- # file_path = "C:\\Users\\Administrator\\Downloads\\1647913696016.jpg"
- else:
- file_path = "error10.jpg"
- with open(file_path, "rb") as f:
- file_bytes = f.read()
- file_base64 = base64.b64encode(file_bytes)
- _md5 = get_md5_from_bytes(file_bytes)[0]
- _global._init()
- _global.update({"port": 15010, "md5": _md5})
- if from_remote:
- file_json = {"data": file_base64, "md5": _md5}
- # _url = "http://192.168.2.102:18040/isr"
- _url = "http://127.0.0.1:18040/isr"
- result = json.loads(request_post(_url, file_json))
- if type(result.get("image")) == list:
- print("result", result)
- else:
- img = result.get("image")
- image_base64 = img.encode("utf-8")
- image_bytes = base64.b64decode(image_base64)
- buffer = np.frombuffer(image_bytes, dtype=np.uint8)
- image_np = cv2.imdecode(buffer, 1)
- print(image_np.shape)
- else:
- if globals().get("global_isr_model") is None:
- isr_yolo_model, isr_model = IsrModels().get_model()
- globals().update({"global_isr_yolo_model": isr_yolo_model})
- globals().update({"global_isr_model": isr_model})
- result = isr(file_base64,
- globals().get("global_isr_yolo_model"),
- globals().get("global_isr_model"))
- # print(result)
- if type(result.get("image")) == list:
- print("result", len(result))
- else:
- img = result.get("image")
- print(img.shape)
- # cv2.namedWindow('img', cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)
- # cv2.imshow("img", img)
- # cv2.waitKey(0)
- # print(result)
- if __name__ == "__main__":
- for i in range(100):
- s_t = time.time()
- test_isr_model(from_remote=True)
- print("finish test_isr_model", time.time()-s_t)
|