import os import sys from glob import glob import cv2 import torch sys.path.append(os.path.abspath(os.path.dirname(__file__)) + '/../../') from botr.yolov8.model import Predictor ROOT = os.path.abspath(os.path.dirname(__file__)) + '/../../' model_path = ROOT + 'botr/yolov8/weights.pt' image_size = 640 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def detect(image_np, predictor=None, show=False): if predictor is None: predictor = Predictor(image_size, device, model_path) result_list = predictor.predict(image_np, show=show) return result_list if __name__ == '__main__': p = r'C:\Users\Administrator\Desktop\test_b_table\real2.png' paths = glob(r'C:\Users\Administrator\Desktop\test_b_table\error10.png') for p in paths: img = cv2.imread(p) detect(img, show=True)