# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle.distributed import fleet import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) import yaml import paddle import paddle.distributed as dist # paddle.seed(2) from ppocr.data import build_dataloader from ppocr.modeling.architectures import build_model from ppocr.losses import build_loss from ppocr.optimizer import build_optimizer from ppocr.postprocess import build_post_process from ppocr.metrics import build_metric from ppocr.utils.save_load import init_model import tools.program as program dist.get_world_size() def main(config, device, logger, vdl_writer): # init dist environment # 如果分布式训练就初始化分布式环境 if config['Global']['distributed']: dist.init_parallel_env() global_config = config['Global'] # build dataloader # 根据Train/Eval模式不同读取数据 # 获取DataLoader对象 train_dataloader = build_dataloader(config, 'Train', device, logger) if len(train_dataloader) == 0: logger.error( 'No Images in train dataset, please check annotation file and path in the configuration file' ) return if config['Eval']: valid_dataloader = build_dataloader(config, 'Eval', device, logger) else: valid_dataloader = None # build post process # 后处理,初始化后处理所用算法的类 CTCLabelDecode post_process_class = build_post_process(config['PostProcess'], global_config) # build model # for rec algorithm # 判断 class中是否有 character属性或方法 if hasattr(post_process_class, 'character'): # 获取character属性的值的长度 char_num = len(getattr(post_process_class, 'character')) config['Architecture']["Head"]['out_channels'] = char_num # 初始化整个模型对象 # backbone、Neck、Head model = build_model(config['Architecture']) if config['Global']['distributed']: model = paddle.DataParallel(model) # build loss loss_class = build_loss(config['Loss']) # build optim optimizer, lr_scheduler = build_optimizer( config['Optimizer'], epochs=config['Global']['epoch_num'], step_each_epoch=len(train_dataloader), parameters=model.parameters()) # 初始化Fleet环境 fleet.init(is_collective=True) optimizer = fleet.distributed_optimizer(optimizer) # 通过Fleet API获取分布式model,用于支持分布式训练 model = fleet.distributed_model(model) # build metric eval_class = build_metric(config['Metric']) # load pretrain model # 读取已预训练好的,模型 pre_best_model_dict = init_model(config, model, logger, optimizer) # print("pre_best_model_dict", pre_best_model_dict) logger.info('train dataloader has {} iters, valid dataloader has {} iters'. format(len(train_dataloader), len(valid_dataloader))) # start train program.train(config, train_dataloader, valid_dataloader, device, model, loss_class, optimizer, lr_scheduler, post_process_class, eval_class, pre_best_model_dict, logger, vdl_writer) def test_reader(config, device, logger): loader = build_dataloader(config, 'Train', device, logger) import time starttime = time.time() count = 0 try: for data in loader(): count += 1 if count % 1 == 0: batch_time = time.time() - starttime starttime = time.time() logger.info("reader: {}, {}, {}".format( count, len(data[0]), batch_time)) except Exception as e: logger.info(e) logger.info("finish reader: {}, Success!".format(count)) if __name__ == '__main__': # 读取配置文件 # 得到:全局配置字典,设备对象,训练日志对象,visualDL日志对象 config, device, logger, vdl_writer = program.preprocess(is_train=True) # 根据这些信息启动训练 main(config, device, logger, vdl_writer) # test_reader(config, device, logger)