import base64 import json import multiprocessing as mp import sys import os sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../") import time import traceback from multiprocessing.context import Process import cv2 import requests import logging import numpy as np os.environ['FLAGS_eager_delete_tensor_gb'] = '0' from ocr.paddleocr import PaddleOCR logging.basicConfig(level=logging.INFO,format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) def log(msg): ''' @summary:打印信息 ''' logger.info(msg) def ocr(data, ocr_model): try: img_data = base64.b64decode(data) text = picture2text(img_data, ocr_model) return text except TimeoutError: raise TimeoutError flag = 0 def picture2text(img_data, ocr_model): logging.info("into ocr_interface picture2text") try: start_time = time.time() # 二进制数据流转np.ndarray [np.uint8: 8位像素] img = cv2.imdecode(np.frombuffer(img_data, np.uint8), cv2.IMREAD_COLOR) # 将bgr转为rbg try: np_images = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) except cv2.error as e: if "src.empty()" in str(e): logging.info("ocr_interface picture2text image is empty!") return {"text": str([]), "bbox": str([])} # resize # cv2.imshow("before resize", np_images) # print("np_images.shape", np_images.shape) # best_h, best_w = get_best_predict_size(np_images) # np_images = cv2.resize(np_images, (best_w, best_h), interpolation=cv2.INTER_AREA) # cv2.imshow("after resize", np_images) # print("np_images.shape", np_images.shape) # cv2.waitKey(0) # 预测 results = ocr_model.ocr(np_images, det=True, rec=True, cls=True) # 循环每张图片识别结果 text_list = [] bbox_list = [] for line in results: # print("ocr_interface line", line) text_list.append(line[-1][0]) bbox_list.append(line[0]) # 查看bbox # img = np.zeros((np_images.shape[1], np_images.shape[0]), np.uint8) # img.fill(255) # for box in bbox_list: # print(box) # cv2.rectangle(img, (int(box[0][0]), int(box[0][1])), # (int(box[2][0]), int(box[2][1])), (0, 0, 255), 1) # cv2.imshow("bbox", img) # cv2.waitKey(0) logging.info("ocr model use time: " + str(time.time()-start_time)) return {"text": str(text_list), "bbox": str(bbox_list)} except TimeoutError: raise TimeoutError except Exception as e: logging.info("picture2text error!") print("picture2text", traceback.print_exc()) return {"text": str([]), "bbox": str([])} def get_best_predict_size(image_np): sizes = [1280, 1152, 1024, 896, 768, 640, 512, 384, 256, 128] min_len = 10000 best_height = sizes[0] for height in sizes: if abs(image_np.shape[0] - height) < min_len: min_len = abs(image_np.shape[0] - height) best_height = height min_len = 10000 best_width = sizes[0] for width in sizes: if abs(image_np.shape[1] - width) < min_len: min_len = abs(image_np.shape[1] - width) best_width = width return best_height, best_width class OcrModels: def __init__(self): try: self.ocr_model = PaddleOCR(use_angle_cls=True, lang="ch") except: print(traceback.print_exc()) raise RuntimeError def get_model(self): return self.ocr_model if __name__ == '__main__': # if len(sys.argv) == 2: # port = int(sys.argv[1]) # else: # port = 15011 # # app.run(host='0.0.0.0', port=port, threaded=False, debug=False) # log("OCR running") file_path = "C:/Users/Administrator/Desktop/error1.png" # file_path = "1.png" with open(file_path, "rb") as f: file_bytes = f.read() file_base64 = base64.b64encode(file_bytes) ocr_model = OcrModels().get_model() result = ocr(file_base64, ocr_model) result = ocr(file_base64, ocr_model) text_list = eval(result.get("text")) box_list = eval(result.get("bbox")) new_list = [] for i in range(len(text_list)): new_list.append([text_list[i], box_list[i]]) # print(new_list[0][1]) new_list.sort(key=lambda x: (x[1][1][0], x[1][0][0])) for t in new_list: print(t[0])